
QIC710/CS768/CO681/PH767/AM871 Quantum Information Processing

Classical Lower Bound for Simon’s Problem

Richard Cleve

We prove that any classical (possibly probabilistic) algorithm for Simon’s problem that
succeeds with probability at least 3/4 must make Ω(

√
2n) queries. The proof uses some standard

techniques that arise in computational complexity; however, this account assumes no prior
background in the area.

The first part of the proof is to “play the adversary” by coming up with a way of generating
an instance of f that will be hard for any algorithm. Note that picking some fixed f will not work
very well. A fixed f has a fixed r associated with it and the first two queries of the algorithm
could be 0n and r, which would reveal r to the algorithm after only two queries. Rather, we
shall randomly generate instances of f . First, we pick r at random, uniformly from {0, 1}n−0n

(we exclude the all-zero string to avoid a special case, and make the proof technically easier to
write). Picking r does not fully specify f but it partitions {0, 1}n into 2n−1 colliding pairs of the
form {x, x⊕r}, for which f(x) = f(x⊕r) will occur. Let us also specify a representative element
form each colliding pair, say, the smallest element of {x, x⊕r} in the lexicographic order. Let T
be the set of all such representatives: T = {s : s = min{x, x⊕ r} for some x ∈ {0, 1}n}. Then
we can define f in terms of a random one-to-one function φ : T → {0, 1}n uniformly over all
the 2n(2n − 1)(2n − 2) · · · (2n − 2n−1 +1) possibilities. The definition of f can then be taken as

f(x) =

󰀝
φ(x) if x ∈ T
φ(x⊕ r) if x ∕∈ T .

We shall prove that no classical probabilistic algorithm can succeed with probability 3/4 on
such instances unless it makes a very large number of queries.

The next part of the proof is to show that, with respect to the above distribution among
inputs, we need only consider deterministic algorithms (by which we mean ones that make
no probabilistic choices). The idea is that any probabilistic algorithm is just a probability
distribution over all the deterministic algorithms, so its success probability p is the average
of the success probabilities of all the deterministic algorithms (where the average is weighted
by the probabilities). At least one deterministic algorithm must have success probability ≥ p
(otherwise the average would be less than p). Therefore (because we have a fixed probability
distribution of the input instances), we need only consider deterministic algorithms.

Next, consider some deterministic algorithm and the first query that it makes: (x1, y1) ∈
{0, 1}n × {0, 1}n, where x1 is the input to the query and y1 is the output of the query. The

1



result of this will just be a uniformly random element of {0, 1}n, independent of r. Therefore
the first query by itself contains absolutely no information about r.

Now consider the second query (x2, y2) (without loss of generality, we can assume that the
inputs to all queries are different; otherwise, the redundant queries could be eliminated from
the algorithm). There are two possibilities: x1⊕x2 = r (collision) or x1⊕x2 ∕= r (no collision).
In the first case, we will have y1 = y2 and so the algorithm can deduce that r = x1 ⊕ x2. But
the first case arises with probability only 1

2n−1
. With probability 1− 1

2n−1
, we are in the second

case, and all that the algorithm deduces about r is that r ∕= x1 ⊕ x2 (it has ruled out just one
possibility among 2n − 1).

We continue our analysis of the process by induction on the number of queries. Suppose
that k − 1 queries, (x1, y1), . . . , (xk−1, yk−1) have been made without any collisions so far. (No
collision so far means that, for all 1 ≤ i < j ≤ k − 1, yi ∕= yj.) Then all that has been deduced
about r is that it is not xi⊕xj for all 1 ≤ i < j ≤ k− 1. In other words, up to (k− 1)(k− 2)/2
possibilities for r have been eliminated. When the next query (xk, yk) is made, the number of
potential collisions arising from it are at most k − 1 (there are k − 1 previously made queries
to collide with). Therefore, the probability of a collision at query k is at most

k − 1

2n − 1− (k − 1)(k − 2)/2
≤ 2k

2n+1 − k2
. (1)

Since the collision probability bound in Eq. (1) holds all k, the probability of a collision
occurring somewhere among m queries is at most the sum of the right side of Eq. (1) with k
varying from 1 to m:

m󰁛

k=1

2k

2n+1 − k2
≤

m󰁛

k=1

2m

2n+1 −m2
≤ 2m2

2n+1 −m2
. (2)

If this quantity is to be at least 3/4 then

2m2

2n+1 −m2
≥ 3

4
. (3)

It is an easy exercise to solve for m in the above inequality, yielding

m ≥
󰁴

6
11
2n, (4)

which gives the desired bound.
Actually, there is a slight technicality remaining. We have shown that

󰁳
(6/11)2n queries are

necessary to attain a collision with probability 3/4; whereas the algorithm is not technically
required to make queries that include a collision. Rather, the algorithm is just required to
deduce r, and it is conceivable that an algorithm could deduce r some other way without a
collision occurring. But any algorithm that deduces r can be modified so that it makes one
additional query that collides with a previous one. Hence, we have a slightly smaller lower
bound of

󰁳
(6/11)2n − 1, but this is still Ω(

√
2n).

2


