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Abstract

These are somewhat rough notes to accompany the course lectures. They include correc-
tions and improvements that have been suggested by colleagues and students in the class (an
acknowledgements section provides more detail).
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1 Review of some basic definitions

1.1 Quantum states

A (pure) quantum state is a vector ψ in a Hilbert space of norm 1 (i.e., ‖ψ‖ = 1). For starters,
we will only consider finite-dimensional Hilbert spaces, which are without loss of generality, char-
acterized by their dimension. Thus, we can identify a d-dimensional Hilbert space with Cd. The
computational basis is referred to as |0〉, . . . , |d− 1〉.

When two separate quantum systems are considered as one (say, the state in Alice’s lab combined
with the state in Bob’s lab), the joint Hilbert space is given by the tensor product of Alice’s Hilbert
space with that of Bob. If they are both d-dimensional then the computational basis of the tensor
product consists of states of the form |j〉 ⊗ |k〉, where j, k ∈ {0, 1, . . . , d − 1}. When there is no
ambiguity, it is common to leave out the ⊗ and just write |j〉|k〉. Other alternative notations are
|j, k〉 and |jk〉. In the last one, “jk” is the concatination of the digits j and k (not their product!),
and this can be read as a two-digit number in base d representing an element of {0, 1, . . . , d2 − 1}
written in base d. Thus, Cd ⊗ Cd is the same as Cd2

.

1.2 Measurements

A projective measurement is defined by a set of complete orthogonal projectors Π1, . . . ,Πm. (Being
projectors means Π2

k = Πk; being orthogonal means ΠjΠk = 0 for all j 6= k; and being complete
means

∑m
k=1 Πk = I). When the state is ψ ∈ H (where H is the space on which the projectors act),

the corresponding measurement operation produces outcome k with probability 〈ψ|Πk|ψ〉 (and the
state is destroyed).
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A POVM measurement1 is defined by a set of positive2 operators A1, ..., Am (i.e., Ak ≥ 0 for
each k) such that

∑
k Ak = I. When state is ψ, the correspinding measurement outcome k occurs

with probability 〈ψ|Ak|ψ〉.

Note about notation

We sometimes use the so-called ket notation that is prevalent in physics, where |ψ〉 = ψ and
〈ψ| = ψ∗. Also, 〈ψ|Πk|ψ〉 = 〈ψ,Πkψ〉. Moreover, A∗, which denotes the adjoint (conjugate-
transpose) of A is sometimes denoted as A†.

1.3 Nonlocal games

Following [4], a nonlocal game is defined as G = (S, T,A,B, π, V ), where S, T,A,B are finite sets,
π is a probability distribution on S × T and V : A×B × S × T → R. V is the payoff function and
in many nonlocal games of interest it is {0, 1}-valued (where 1 means “win” and 0 means “lose”).

We think of such a game as a process, where there are two cooperating parties, usually called
Alice and Bob, who are restricted so as not being able to communicate with each other. They
are each provided a question as input (s ∈ S for Alice and t ∈ T for Bob). The question pair
(s, t) ∈ S × T is generated according to the probability distribution π. After receiving their
questions, they are required to produce answers as output (a ∈ A for Alice and b ∈ B for Bob).
The value that they attain is given by the payoff function evaluated at their inputs/outputs, i.e.,
V (a, b, s, t).

The prohibition on communication means Alice doesn’t know Bob’s question and Bob doesn’t
know Alice’s question. This restriction is what makes these games interesting, as we’ll see in the
examples coming up.

Classical strategies

We define deterministic classical strategies as functions a : S → A and b : T → B. On inputs
(s, t) ∈ S × T , Alice outputs a(s) and Bob outputs b(t).

(Note that we could also consider probabilistic strategies, but, using a convexity argument, it
can be shown that these do not increase the value; there is always an optimal strategy that is
deterministic.)

Classical value

The classical value (sometimes denoted as ω(G) or as ωc(G)) is

ωc(G) =
∑

(s,t)∈S×T

π(s, t)V (a(s), b(t), s, t). (1)

Entangled strategies (a.k.a, quantum strategies)

Here, we assume that Alice and Bob are using entanglement from some tensor product of two
finite-dimensional Hilbert spaces, HA and HB (say HA = HB = Cd). (Other, more exotic, notions
of entanglement may be discussed later on.)

1POVM stands for “positive operator-valued measure”, but this is not important for us here.
2Operator A is positive (a.k.a., positive semidefinite) if there exists an operator B such that A = B∗B.
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We assume that Alice and Bob start with some entangled state ψ ∈ HA ⊗HB. For each input
s ∈ S to Alice, there is a POVM measurement (Aas)a∈A, which Alice performs when input s ∈ S
is received. This generates an output a ∈ A for Alice’s output. Similarly, for each t ∈ T to Bob,
there is a POVM measurement (Bb

t )b∈B, which Bob performs when input t ∈ T is received. This
generates an output b ∈ B for Bob’s output.

The value attained by any particular such strategy is∑
(s,t)∈S×T

π(s, t)
∑

(a,b)∈A×B

〈ψ|Aas ⊗Bb
t |ψ〉V (a, b, s, t). (2)

Entangled value (a.k.a., quantum value)

The engangled value of a game G (sometimes denoted as ω∗(G) or as ωq(G)) is the supremum of
Eq. (2), over all possible entangled strategies.

1.4 Observables

An observable is a Hermitian operator, and it is useful to associate it with the following measurement
process. Every Hermitian operator A can be expressed as

A =
m∑
k=1

λkΠk, (3)

where Π1, ...,Πm are projectors and λ1, ..., λm ∈ R are the unique eigenvalues. The measurement
process is to perform the projective measurement with projectors Π1, ...,Πm where, on outcome k,
the information that is output is λk. The expected value of the outcome is 〈ψ|A|ψ〉.

Tensor products of observables

If A is an observable on the Hilbert space HA and B is an observable on the Hilbert space HB
then A ⊗ B is an observable on the space HA ⊗HB. The expected value of this observable is the
same as that of the following operational process. Separately measure the two systems, yielding an
eigenvalue of each one (λA ∈ R for the first system and λB ∈ R for the second system), and then
multiply the two outcomes to obtain λAλB ∈ R.

If ψ is a state on the joint system then the expected value of the above process is given by
〈ψ|A⊗B|ψ〉.

Binary observables and the bias of a binary observable

A binary observable is one whose eigenvalues are in {+1,−1}. Examples of observables are the
Pauli matrices

Z =

(
1 0
0 −1

)
(4)

X =

(
0 1
1 0

)
(5)

Y =

(
0 −i
i 0

)
. (6)

5



Note that: for Z, the measurement is with respect to the computational basis |0〉 and |1〉; for X,
the measurement is with respect to the Hadamard basis, often denoted as |+〉, |−〉, where

|+〉 := 1√
2
|0〉+ 1√

2
|1〉 (7)

|−〉 := 1√
2
|0〉 − 1√

2
|1〉; (8)

and, for Y , the measurement is with respect to the basis

|+i〉 := 1√
2
|0〉+ i√

2
|1〉 (9)

|−i〉 := 1√
2
|0〉 − i√

2
|1〉. (10)

Note that

I =

(
1 0
0 1

)
(11)

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
(12)

are also binary observables.
For a binary observable A, it is straightforward to calculate that the probability of outcome +1

is p+ = 1+〈ψ|A|ψ〉
2 and the probability of outcome −1 is p− = 1−〈ψ|A|ψ〉

2 . The bias towards +1 is
defined as p+ − p− = 〈ψ|A|ψ〉 (this is a quantity in [−1,+1]).

1.5 Frobenius inner product

For d× d matrices A and B, define their Frobenius inner product as Tr(A∗B). Note that

Tr(A∗B) =

d∑
j=1

d∑
k=1

AjkBjk. (13)

Therefore, Tr(A∗B) is the “dot product” of A and B regarded as d2-dimensional vectors.

1.6 Maximally entangled states

In this section, |ψ〉 refers to the following maximally entangled state

|ψ〉 =
1√
d

d−1∑
k=0

|k〉|k〉. (14)

Also, let AT denote the transpose of A (with respect to the computational basis) and A refers to
the element-wise conjugate of A (also with respect to the computational basis).

The following are straightforward to verify by calculation.

Lemma 1.1. For any A ∈ Cd×d, (A⊗ I)|ψ〉 = (I ⊗AT )|ψ〉.

Lemma 1.2. For any A ∈ Cd×d, (A⊗ I)|ψ〉 = 1
dTr(A).

Corollary 1.3. For any A,B ∈ Cd×d, 〈ψ|(A⊗B)|ψ〉 = 1
dTr(A∗B).
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Analysis of what happens when ψ = 1√
2
|00〉+ 1√

2
|11〉

For the Pauli operators X, Y , Z, we have

〈ψ|Z ⊗ Z|ψ〉 = +1 (15)

〈ψ|X ⊗X|ψ〉 = +1 (16)

〈ψ|Y ⊗ Y |ψ〉 = −1, (17)

where the last equation is because Y = −Y = Y T . This can be verified by calculating that

Z ⊗ Z|ψ〉 = |ψ〉 (18)

X ⊗X|ψ〉 = |ψ〉 (19)

Y ⊗ Y |ψ〉 = −|ψ〉. (20)

To get rid of the asymmetry arising for the case of Y , we can get +1 in all three equations, by
taking the transpose of the second Pauli in each equation, so that

〈ψ|Z ⊗ ZT|ψ〉 = 〈ψ|X ⊗XT|ψ〉 = 〈ψ|Y ⊗ Y T|ψ〉 = +1. (21)

2 The CHSH game

In this game (named after the authors of [3]), the input and output alphabets are {0, 1} (i.e.,
S = T = A = B = {0, 1}), π is the uniform distribution, and

V (a, b, s, t) =

{
1 if a⊕ b = s ∧ t
0 otherwise.

(22)

The classical value of CHSH is 3/4. To see why this is so, note that every (deterministic)
classical strategy is characterized by four bits, a0, a1, b0, b1 (Alice’s output on input s is as and
Bob’s output on input t is bt).

The winning conditions for the four possible questions are

a0 ⊕ b0 = 0 (23)

a0 ⊕ b1 = 0 (24)

a1 ⊕ b0 = 0 (25)

a1 ⊕ b1 = 1. (26)

By summing the left and right sides of these equations in mod 2 arithmetic, we get 0 = 1, which
implies that it is impossible to satisfy all four equations simultaneously. However, it is possible to
satisfy any three of the four equations, which leads to a strategy that succeeds with probability 3/4.
Therefore, ωc(CHSH) = 3/4.

Sometimes it is convenient to refer to the bias (towards 1) of a strategy rather than its winning
probability, where the bias is defined as the winning probability minus the losing probability. This
is denoted as β(G) and we have β(CHSH) = 3/4 − 1/4 = 1/2. The bias arises by considering the
CHSH game in its multiplicative form where S = T = {0, 1}, A = B = {+1,−1} and

V (a, b, s, t) =

{
ab if s ∧ t = 0

−ab otherwise.
(27)

Clearly, the value of this version of CHSH is 1/2.
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2.1 Entangled strategy for CHSH

Now we consider the entangled value of CHSH and show that ωq(CHSH) ≥ 1
2 +

√
2

4 . Note that this
is equivalent to the bias being 1√

2
and we will analyze the CHSH game in this form (that is, the

value of CHSH in the multiplicative form, where the outputs are in {+1,−1}). Let ψ ∈ Cd⊗Cd be
the entangled state used. Then any strategy corresponds to four d-dimensional binary observables
A0, A1, B0, B1 (Alice’s observable on input s is As and Bob’s observable on input t is Bt). Note
that, for input (s, t) ∈ S × T , the expected payoff is

(−1)s∧t〈ψ|As ⊗Bt|ψ〉. (28)

Therefore, the classical bias is

βc(CHSH) =
1

4
〈ψ|A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1|ψ〉. (29)

Consider the entangled strategy that uses the entangled state ψ = 1√
2
|00〉+ 1√

2
|11〉 and observ-

ables

A0 = Z (30)

A1 = X (31)

B0 = H (32)

B1 = −XHX = ZHZ. (33)

We can calculate that

〈ψ|A0 ⊗B0|ψ〉 = 1
2Tr(ZH) = 1√

2
(34)

〈ψ|A0 ⊗B1|ψ〉 = 1
2Tr(Z ZHZ) = 1√

2
(35)

〈ψ|A1 ⊗B0|ψ〉 = 1
2Tr(XH) = 1√

2
(36)

〈ψ|A1 ⊗B1|ψ〉 = 1
2Tr(X(−XHX)) = − 1√

2
, (37)

which implies that the quantum bias is βq(CHSH) ≥ 1√
2
. Translating this into the original formu-

lation of CHSH with output alphabets {0, 1}, we obtain ωq(CHSH) ≥
(
1 + 1√

2

)
/2 = 1

2 +
√

2
4 .

At this point, we have an entangled strategy that succeeds with probability 1
2 +

√
2

4 = 0.853 . . . ,
but we haven’t ruled out the possibility of attaining a higher success probability using some other
entangled strategy. We do this next, in section 2.2.

2.2 Optimality proof for CHSH (Tsirelson bound)

Theorem 2.1. The maximum value attained by any entangled strategy for the CHSH game is
1
2 +

√
2

4 .

Proof. Let the entangled state be ψ, Alice’s observables be A0 and A1, and Bob’s observables be
B0 and B1. (Recall that these are binary observables.) It suffices to show that

1

4
〈ψ|A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1|ψ〉 ≤

1√
2
. (38)
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Define the vectors v0 = A0 ⊗ I|ψ〉, v1 = A1 ⊗ I|ψ〉, w0 = I ⊗B0|ψ〉, and w1 = I ⊗B1|ψ〉. Note
that v0, v1, w0, w1 are unit vectors and, for each j, k ∈ {0, 1}, 〈ψ|Aj ⊗ Bk|ψ〉 = vj · wk (where “·”
denotes the inner product).

Therefore, the LHS of Eq. (38) is

1

4

(
v0 · w0 + v0 · w1 + v1 · w0 − v1 · w1

)
=

1

4

(
v0 · (w0 + w1) + v1 · (w0 − w1)

)
. (39)

Now, using the fact that v0, v1, w0, w1 are unit vectors,

v0 · (w0 + w1) + v1 · (w0 − w1) ≤ |v0 · (w0 + w1)|+ |v1 · (w0 − w1)| (40)

≤ ‖w0 + w1‖+ ‖w0 − w1‖ (41)

= (1, 1) · (‖w0 + w1‖, ‖w0 − w1‖) (42)

≤
√

2
√
‖w0 + w1‖2 + ‖w0 − w1‖2 (43)

(where we have used the Cauchy-Schwarz inequality). Moreover,

‖w0 + w1‖2 + ‖w0 − w1‖2 = (w0 + w1) · (w0 + w1) + (w0 − w1) · (w0 − w1) (44)

= w0 · w0 + w1 · w1 + w0 · w0 + w1 · w1 (45)

= 2‖w0‖2 + 2‖w1‖2 (46)

= 4. (47)

Combining these equations, we get

1

4
〈ψ|A0B0 +A0B1 +A1B0 −A1B1|ψ〉 ≤

1

4

√
2
√

4 =
1√
2
, (48)

as required.

2.3 XOR games

The CHSH game is from a class of games that are, commonly referred to as XOR games, which are
defined are nonlocal games where: the output alphabets are {0, 1}, and V (a, b, s, t) = f(a⊕ b, s, t)
for some function f : {0, 1} × S × T → {0, 1}. Thus, for any questions, the payoff is the same for
the output (0, 0) as it is for the output (1, 1), and the payoff is the same for the output (0, 1) as it
is for the output (1, 0).

It turns out that the XOR games have nice structural properties and are amenable to an analysis
similar to that of CHSH.

These games will be discussed in further detail later on.
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3 The Magic Square game

Considering the system of six equations in nine variables v1, . . . , v9:

v1 ⊕ v2 ⊕ v3 = 0 (49)

v4 ⊕ v5 ⊕ v6 = 0 (50)

v7 ⊕ v8 ⊕ v9 = 0 (51)

v1 ⊕ v4 ⊕ v7 = 0 (52)

v2 ⊕ v5 ⊕ v8 = 0 (53)

v3 ⊕ v6 ⊕ v9 = 1. (54)

This is most easily conceptualized as the parities of the rows and columns of the following 3 × 3
table of variables

v1 v2 v3

v4 v5 v6

v7 v8 v9

There is no simultaneous solution to these equations (in other words, there is no way to fill in the
entries of the above table with bits so that the parity along all rows and the first two columns is
even, whereas the parity along the third column is odd).

The magic square game is one in which: one of the six equations is specified to Alice as input
and she is required to give an assignment of bits to the variables in that equation as output (so we
can take S = {1, 2, 3, 4, 5, 6} and A = {0, 1}3); one of the nine variables is specified Bob as input
and he is required to give an assignment to that variable that is consistent with Alice’s (so we can
take T = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B = {0, 1}). There are 18 possible questions (the questions
arise from a proper subset of S × T because, for example, if s specifies the first equation, then
t ∈ {1, 2, 3}).

There is no classical strategy that attains success probability 1. The best winning probabiiity
that can be attained is 17

18 (because 17 out of the 18 instances of (s, t) can be satisfied).
It is remarkable that there is as an entangled strategy that attains success probability 1. The

six equations can be equivalently written in multiplicative form, where the variables take values in
{+1,−1} and their products are +1 for the first eight equations and −1 for the ninth equation.

The entangled strategy is based on an operator solution to the equations, such as

I ⊗ Z Z ⊗ I Z ⊗ Z
X ⊗ I I ⊗X X ⊗X
X ⊗ Z Z ⊗X Y ⊗ Y

where the variables are assigned 4 × 4 matrices, the matrices in each row/column commute, and
the products are +I and −I.

The entangled state3 ψ = ( 1√
2
|00〉+ 1√

2
|11〉)⊗( 1√

2
|00〉+ 1√

2
|11〉) (which is a maximally entangled

state).

3To clarify who has which qubit, we can write the entangled state as
ψ = ( 1√

2
|00〉A1B1 + 1√

2
|11〉A1B1)⊗ ( 1√

2
|00〉A2B2 + 1√

2
|11〉A2B2) = 1√

4

∑
k∈{00,01,10,11} |k〉A ⊗ |k〉B .

10



Alice’s strategy is to measure the observables in the row or column she is assigned and output
their value. The fact that the observables in each row/column commute imply that the outcomes of
these measurements are well-defined. The products along the rows/columns imply that the parity
of the bits Alice outputs are correct (in fact, this would hold for any two-qubit state that Alice is
applies the measurements on). Bob measures the transpose of the observable corresponding to the
variable he is assigned.

For example, if Alice is asked the first equation (v1 ⊕ v2 ⊕ v3 = 0) and Bob is asked the second
variable (v2) then Alice measures with respect to the observables I ⊗Z, Z ⊗ I, Z ⊗Z and outputs
the three bits and Bob measures with respect to the observable (Z ⊗ I)T = Z ⊗ I and outputs the
bit. The two ±1-valued bits are consistent because their product is +1 with probability

〈ψ|(Z ⊗ I)⊗ (Z ⊗ I)T|ψ〉 = 1
4Tr
(
(Z ⊗ I)(Z ⊗ I)

)
(55)

= 1
4Tr(I ⊗ I) (56)

= 1. (57)

4 Odd Cycle game

Consider a cyclic graph with an odd number of vertices. Note that this graph is not 2-colorable.
The Odd Cycle game is related to this. For some odd n ≥ 3, let S = T = Zn and A = B = {0, 1}.
The distribution π on the questions is the uniform distribution on the following subset of S × T :

{(s, t) ∈ S × T : t = s or t = s+ 1 mod n}. (58)

The payoff is defined as

V (a, b|s, t) =


1 if t = s and a⊕ b = 0

1 if t = s+ 1 and a⊕ b = 1

0 otherwise.

(59)

Intuitively, Alice and Bob are each asked for colors of vertices of the n-cycle graph. If they are
asked the same vertex they must return the same color to win. If they are asked adjacent vertices
then they must return different colors. And they are always asked for either the same vertex or
adjacent vertices.

This payoff function can be expressed as

V (a, b|s, t) =

{
1 if a⊕ b = f(s, t)

0 otherwise,
(60)

where

f(s, t) =

{
0 if t = s

1 if t = s+ 1.
(61)

The classical value of this game is 1 − 1
2n . The strategy that attains this value is to take an

almost-2-coloring of the vertices—one that violates all but one edge—and for Alice and Bob to
each return bits from that. This strategy wins for all but one of the of the 2n possible questions

11



(s, t) ∈ S × T . To check the optimality of this strategy, not that the only better strategy would be
one that wins on all possible questions. It is straightforward to check that if such a strategy exists
then the n-cycle graph is 2-colorable, which is a contradiction.

We next describe a quantum strategy that performs better than the above classical strategy. It
is based on the entangled state

|ψ〉 = 1√
2
|00〉 − 1√

2
|11〉. (62)

This state has a nice form if local rotations are applied to it. That is, for

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (63)

(
R(θA)⊗R(θB)

)(
1√
2
|00〉 − 1√

2
|11〉

)
(64)

= cos(θA + θB)
(

1√
2
|00〉 − 1√

2
|11〉

)
+ sin(θA + θB)

(
1√
2
|01〉+ 1√

2
|10〉

)
. (65)

The protocol for Alice is: on input s ∈ Zn, apply the rotation R
(
s(π2 −

π
2n)
)
, measure in the

computational basis and output the resulting bit. The protocol for Bob is: on input t ∈ Zn, apply
the rotation R

(
π
4n − t(

π
2 −

π
2n)
)
, measure in the computational basis and output the resulting bit.

If t = s then the resulting state is

cos( π4n)
(

1√
2
|00〉 − 1√

2
|11〉

)
+ sin( π4n)

(
1√
2
|01〉+ 1√

2
|10〉

)
(66)

and the probability that a = b is cos2( π4n) If t = s+ 1 then the resulting state is

cos(π2 −
π
4n)
(

1√
2
|00〉 − 1√

2
|11〉

)
+ sin(π2 −

π
4n)
(

1√
2
|01〉+ 1√

2
|10〉

)
(67)

and the probability that a = b is cos2(π2 −
π
4n) = sin2( π4n) = 1 − cos2( π4n). Therefore, the success

probability of this strategy is cos2( π4n) = 1− (π4 )2 1
n2 +O( 1

n4 ). As a specific example, for n = 5, we
have ωc(G) = 0.9 and ωq(G) ≥ 0.9755 . . . .

Is the above entangled strategy optimal? We will revisit this question in section 6.2.

5 Correlations for XOR games and Tsirelson’s correspondence

Recall that an entangled strategy for an XOR game consists of an entangled state |ψ〉 ∈ HA ⊗HB
and sets of binary observables {As ∈ B(HA) : s ∈ S} and {Bt ∈ B(HB) : t ∈ T}.

Associated with each strategy for an XOR game, is a |S| × |T | correlation matrix Q defined as

Qs,t = 〈ψ|As ⊗Bt|ψ〉, (68)

for each question pair (s, t) ∈ S×T . Qs,t ∈ [−1,+1] and represents the bias of a⊕b towards 0. The
correlation matrix describes the behaviour4 that the strategy attains. For a given nonlocal game,
and strategy, the value attained by the strategy is

βq(G) =
∑

(s,t)∈S×T

π(s, t)(−1)f(s,t)Qs,t. (69)

4A more general notion of correlation matrix can also be defined that is relevant for games beyond XOR games.
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For question sets S and T , we can also define a vector system as two sets of unit vectors in
some Rm

{|vs〉 : s ∈ S} and {|ws〉 : t ∈ T}. (70)

Tsirselson showed that, for any question sets S and T , there is an entangled strategy attaining
a correlation matrix Q if and only is there is a vector system such that Qs,t = 〈vs|wt〉 for all
(s, t) ∈ S × T . Therefore, an alternate way of defining the entangled value of an XOR game is as
the supremium over all vector systems of∑

(s,t)∈S×T

π(s, t)(−1)f(s,t)〈vs|wt〉. (71)

5.1 Converting from an entangled strategy to a vector system

Note that

〈ψ|As ⊗Bt|ψ〉 =
(
〈ψ|As ⊗ I

) (
I ⊗Bt|ψ〉

)
(72)

and

〈ψ|As ⊗ I =
(
As ⊗ I|ψ〉

)∗
. (73)

Therefore, 〈ψ|As ⊗ Bt|ψ〉 is the inner product between vectors As ⊗ I|ψ〉 and I ⊗ Bt|ψ〉. Thus, it
suffices to set

|vs〉 = As ⊗ I|ψ〉 (74)

|wt〉 = I ⊗Bs|ψ〉, (75)

for all s ∈ S and t ∈ T .
Note that if the local dimension of the entanglement is d then the vector system is in Cd2 ≡ R2d2

.

5.2 Converting from a vector system to an entangled strategy

This is the more remarkable direction. The construction is based of a sequence of binary observables
U1, . . . , Um with the property that, for all j 6= k, Uj and Uk anticommute (i.e., UjUk = −UkUj).
For m = 6, a construction in terms of operators acting on C25

U1 = Z ⊗ I ⊗ I ⊗ I ⊗ I (76)

U2 = X ⊗ Z ⊗ I ⊗ I ⊗ I (77)

U3 = X ⊗X ⊗ Z ⊗ I ⊗ I (78)

U4 = X ⊗X ⊗X ⊗ Z ⊗ I (79)

U5 = X ⊗X ⊗X ⊗X ⊗ Z (80)

U6 = X ⊗X ⊗X ⊗X ⊗X, (81)

and this generalizes to any m in terms of operators on C`, where ` = 2m−1.
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For any α = (α1, α2, . . . , αm) ∈ Rm, with ‖α‖ = 1, define the operator Lα as

Lα =
m∑
k=1

αkUk. (82)

Define the maximally entangled state |ψ〉 on C` as

|ψ〉 =
1√
`

∑
k∈Z`

|k〉 ⊗ |k〉. (83)

Lemma 5.1. For each unit vector α ∈ Rm, Lα is a binary observable, and for each pair of unit
vectors α, β ∈ Rm,

〈ψ|Lα ⊗ LTβ |ψ〉 = α · β. (84)

Proof. Since each Hj is Hermitian and each αj is real-valued, Lα is Hermitian. Also,

(Lα)2 =

(
m∑
j=1

αjMj

)2

(85)

=
m∑
j=1

m∑
k=1

αjαkMjMk (86)

=
m∑
j=1

α2
jL

2
j +

∑
j<k

(
αjαkLjLk + αkαjLkLj

)
(87)

=

m∑
j=1

α2
jI (88)

= I, (89)

where we have used the fact that, for j 6= k, LjLk+LkLj = 0. Therefore, Lα is a binary observable.
Next, for α, β ∈ Rm with ‖α‖ = ‖β‖ = 1,

〈ψ|Lα ⊗ LTβ |ψ〉 =
1

`
Tr(LαLβ) (90)

=
1

`

m∑
j=1

m∑
k=1

Tr(αjβkMjMk) (91)

=
1

`

m∑
j=1

Tr(αjβkI) +
1

`

m∑
j<k

Tr(αjβkLjLk + αkβjLkLj) (92)

=
1

`
αjβj`+

1

`

m∑
j<k

αjβkTr(LjLk − LjLk) (93)

=

m∑
j=1

αjβj (94)

= α · β. (95)
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From the above lemma, it is clear how to convert a vector system in Rm into an entangled
strategy. The entangled state is |ψ〉, Alice’s observables are

{L|vs〉 : s ∈ S} (96)

and Bob’s observables are

{LT|wt〉 : t ∈ T}. (97)

Note that the local dimension of |ψ〉 is ` = 2m−1, exponentially larger than m. If fact, this is
not the optimal construction: there is a construction where this dimension is ` = 2d(m−1)/2e and it
can be proven that this is optimal (in the sense that the dimension cannot be reduced any further).

6 Disentangling strategies by “rounding”

Rounding is a method that converts an entangled XOR-strategy with success probability 1 − δ
to a classical strategy with success probability at least 1 −

√
δ. Note that the classical strategy

will generally have lower success probability than the entangled success probability, but it will
nevertheless be large if δ is small.

We frequently view the consequences of rounding in the contrapositive form, where it can be
used to prove interesting upper bounds on the best possible entangled strategy. If an upper bound
on the best classical strategy is already known to be 1 − ε then it can be deduced that the best
quantum strategy cannot exceed 1− ε2; otherwise, rounding the quantum would lead to a classical
strategy that contradicts the known upper bound. We consider such upper bounds in section 6.2.

6.1 Rounding procedure

We begin by explaining how the rounding procedure works for a nondegenerate XOR game G =
(S, T, π, f). Suppose we have a vector system in Rm for S ⊗ T achieving 〈vs|wt〉 = Qs,t for all
(s, t) ∈ S × T . Recall that the vector system implies that there is a quantum strategy attaining
success probability

ωq(G) =
∑

(s,t)∈S×T

π(s, t)
1 + (−1)f(s,t)〈us|vt〉

2
. (98)

The rounding procedure that we now describe next leads to a probabilistic classical strategy
(where Alice and Bob use shared randomness). However, by convexity, this probabilistic strategy
can be converted to a deterministic strategy without reducing its success probability.

The probabilistic classical strategy is based on a uniformly random unit vector |r〉 ∈ Rm. (Since
the surface of the unit ball in Rm is compact, it has a uniform measure.) We assume that both
Alice and Bob have a copy of |r〉 = (r1, r2, . . . , rm). The procedure for Alice is: on input s ∈ S,
output {

0 if 〈r|vs〉 ≥ 0

1 if 〈r|vs〉 < 0.
(99)
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Similarly, the procedure for Bob is: on input t ∈ T , output{
0 if 〈r|wt〉 ≥ 0

1 if 〈r|wt〉 < 0.
(100)

Fig. 1 illustrates the different regions in Rm that arise for a given |vs〉 and |wt〉, where the angle
between |vs〉 and |wt〉 is θ ∈ [0, π] (thus 〈vs|wt〉 = cos θ). The disk orthogonal to |vs〉 is the region
where 〈r|vs〉 = 0; one side of the disk is where 〈r|vs〉 > 0; the other side is where 〈r|vs〉 < 0.
Similarly for the disc orthogonal to |wt〉. The two discs together partition the sphere into the

Figure 1: The different regions for a⊕ b depending on where λ is.

regions for |r〉 that result in a⊕ b = 0 and those that result in a⊕ b = 1.
The probability that this classical procedure results in a⊕ b = 0 for a particular (s, t) ∈ S × T

is = 1− θ
π . Therefore, the success probability for question (s, t) is

pc(s, t) := Pr[a⊕ b = f(s, t)] =

{
1− θ

π if f(s, t) = 0
θ
π if f(s, t) = 1.

(101)

We analyze the success probability of the entangled strategy on question (s, t) in two cases. In the
case where f(s, t) = 0,

pq(s, t) =
1 + cos θ

2
=

1 + cos
(
π(1− pc(s, t))

)
2

=
1− cos

(
πpc(s, t)

)
2

= sin2
(
π
2 ps(s, t)

)
. (102)

In the case where f(s, t) = 1,

pq(s, t) =
1− cos θ

2
=

1− cos
(
πpc(s, t)

)
2

= sin2
(
π
2 ps(s, t)

)
. (103)

The left side of Fig. 2 plots the relationship between pq(s, t) (vertical axis) and pc(s, t) (horizontal
axis).

For the entangled strategy and its rounded classical strategy, the success probabilities are

pq =
∑

(s,t)∈S×T

π(s, t)pq(s, t) (104)

pc =
∑

(s,t)∈S×T

π(s, t)pc(s, t), (105)
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Figure 2: Relationship between pq(s, t) and pc(s, t) and relationship between ωq(G) and ωc(G).

respectively. We cannot apply Eq. (103) directly here, to relate pq to pc because the function
p 7→ sin2(π2 p) is not concave and therefore need not apply to convex combinations. Instead, we can
take the minimal concave function that upper bounds the curve, g : [0, 1] → [0, 1] as depicted in
the right side of Fig. 2, defined as

g(x) =

{
γ1x if 0 ≤ x ≤ γ2

sin2(π2x) if γ2 < x ≤ 1,
(106)

where γ1 ≈ 1.1382 and γ2 ≈ 0.74202, and relate ωq(G) to ωc(G) as

ωq(G) =
∑

(s,t)∈S×T

π(s, t)pq(s, t) (107)

≤
∑

(s,t)∈S×T

π(s, t)g
(
pc(s, t)

)
(108)

≤ g

( ∑
(s,t)∈S×T

π(s, t)pc(s, t)

)
(109)

≤ g(ωc(G)). (110)

6.2 Revisiting the upper bounds for the CHSH and Odd Cycle games

Returning to the Odd Cycle game of section 4, since the classical value is 1− 1
2n , the quantum value

is at most sin2(π2 (1 − 1
2n)) = cos2( π4n), which exactly matches the success probability obtained by

the entangled strategy in section 4—therefore that is an optimal strategy and ωq(G) = cos2( π4n).
This approach also provides an alternative proof that the strategy for CHSH in section 2.2 is

optimal (since cos2(π2
3
4) =

(
1 + 1√

2

)
/2).

Finally, it should be noted that rounding only produces upper bounds. For example, for the
XOR game where f(s, t) = (s1 ∧ t1)⊕ (s2 ∧ t2), it is known that ωq(G) = ωc(G) = 3

4 , so entangled
success probability cos2( π4n) is not attainable.
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7 Characterizing perfect strategies for the Magic Square game

Recall from section 3 that any operator solution to the magic square constraints with binary
observables acting on Cd can be converted into an entangled protocol using a maximally entangled
state with local dimension d. What we show here is that any entangled strategy for the Magic
Square game has this form. In fact, this characterization carries over to all Binary Constraint
System (BCS) games, but we focus on the Magic Square game here for simplicity.

Theorem 7.1. For any perfect entangled strategy for the Magic Square game using an entangled
state in Cd ⊗Cd, there exist binary observables A1, . . . , A9 ∈ B(Cd) such that, for each variable vj
occurring in Alice’s constraint, she measures with respect to the corresponding binary observable Aj
and, for the variable vt that Bob is queried, he measures with respect to (At)

T , where the transpose
is with respect to the Schmidt basis of the entangled state.

Prior to proving Theorem 7.1, we prove a technical lemma about states with full Schmidt rank.

7.1 A basic property of states with full Schmidt rank

Recall that every state |ψ〉 ∈ Cd ⊗ Cd has a Schmidt decomposition of the form

|ψ〉 =
d∑

k=1

λk|φk〉 ⊗ |γk〉, (111)

where |φ1〉, . . . , |φd〉 and |γ1〉, . . . , |γd〉 are orthonormal bases for Cd and (without loss of generality)
λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. The Schmidt coefficients λ1, λ2, . . . , λd in the above form are unique and
the Schmidt rank of |ψ〉 of such a decomposition is the number of non-zero Schmidt coefficients,
counting multiciplicity (i.e., the maximum k ∈ {1, . . . , d} such that λk > 0). We say that |ψ〉 ∈
Cd ⊗ Cd has full Schmidt rank if its Schmidt rank is d. The following lemma concerns states with
full Schmidt rank.

Lemma 7.2. If |ψ〉 ∈ Cd ⊗ Cd has Schmidt decomposition

|ψ〉 =

d∑
k=1

λk|k〉 ⊗ |k〉, (112)

such that λ1 ≥ λ2 ≥ · · · ≥ λd > 0 (i.e., |ψ〉 has full Schmidt rank) and A,B ∈ Cd×d such that
A⊗ I|ψ〉 = I ⊗B|ψ〉 then B = AT .

Proof. Since A⊗ I|ψ〉 = I ⊗B|ψ〉,

d∑
k=1

λk(A|k〉)⊗ |k〉 =

d∑
k=1

λk|k〉 ⊗ (B|k〉). (113)

The Schmidt decomposition has the property that the space associated with each Schmidt coefficient
is unique. Thus, if the multiplicity of the first Schmidt coefficient is r (i.e., λ1 = · · · = λr > λr+1)
then

span
(
A|1〉, . . . , A|r〉

)
= span

(
|1〉, . . . , |r〉

)
= span

(
B|1〉, . . . , B|r〉

)
. (114)
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Therefore, A and B have the block structure

A =

[
A(1) 0

0 A′

]
B =

[
B(1) 0

0 B′

]
, (115)

where A(1) and B(1) act on span
(
|1〉, . . . , |r〉

)
. From Eq. (113), we have

λ1

r∑
k=1

(A|k〉)⊗ |k〉 = λ1

r∑
k=1

|k〉 ⊗ (B|k〉), (116)

which implies that (
A(1) ⊗ I

)
|ψ(1)〉 =

(
I ⊗B(1)

)
|ψ(1)〉, (117)

where

|ψ(1)〉 =
1√
r

r∑
k=1

|k〉 ⊗ |k〉. (118)

Since |ψ(1)〉 is the maximally entangled state (in Cr ⊗ Cr), applying Lemma 1.1 from section 1.6,
we obtain (

I ⊗
(
A(1)

)T )|ψ(1)〉 =
(
I ⊗B(1)

)
|ψ(1)〉, (119)

which implies B(1) =
(
A(1)

)T
.

By continuing this process for the other Schmidt coefficients (more formally, this would be by
induction), we deduce that A and B have block decompositions (in the computational basis) of the
form

A =


A(1) 0 0 · · ·

0 A(2) 0 · · ·
0 0 A(3) · · ·
...

...
...

. . .

 B =


B(1) 0 0 · · ·

0 B(2) 0 · · ·
0 0 B(3) · · ·
...

...
...

. . .

 (120)

(where A(j) and B(j) act on the space associated with the jth distinct Schmidt coefficient) and
B(j) = (A(j))T . Therefore B = AT .

Corollary 7.3. Let |ψ〉 =
∑d

k=1 λk|k〉 ⊗ |k〉 be a state with full Schmidt rank, A,B ∈ Cd×d be
unitary, and 〈ψ|A⊗B|ψ〉 = 1. Then B = AT .

Proof. Since (A ⊗ I)|ψ〉 and (I ⊗ B)|ψ〉 are two unit vectors with inner product 1, it follows that
(A⊗ I)|ψ〉 = (I ⊗B)|ψ〉 and we can apply Lemma 7.2.
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7.2 Proof of Theorem 7.1

For each t ∈ {1, 2, . . . , 9} Bob is returning a bit, so there is a binary observable associated with t.
Therefore, we can picture Bob’s strategy as a matrix of binary observables

B1 B2 B3

B4 B5 B6

B7 B8 B9

(121)

On Alice’s side, it’s more complicated. For each constraint s ∈ {1, 2, . . . , 6}, Alice returns three
bits, and therefore performs an eight-outcome measurement. In general, a POVM measurement
can be performed; however, we assume5 that this is a projective measurement, with eight complete
orthogonal projectors: Π000, Π001, Π010, Π011, Π100, Π101, Π110, Π111. From these projectors, we
can define these binary observables

A
(s)
1 = Π000 + Π001 + Π010 + Π011 −Π100 −Π101 −Π110 −Π111 (122)

A
(s)
2 = Π000 + Π001 −Π010 −Π011 + Π100 + Π101 −Π110 −Π111 (123)

A
(s)
3 = Π000 −Π001 + Π010 −Π011 + Π100 −Π101 + Π110 −Π111. (124)

These are three commuting binary observables, and A
(s)
1 can be interpreted as the first bit that

Alice outputs, A
(s)
2 the second bit and A

(s)
3 the third bit. With some relabeling of the subscripts,

the measurements of Alice’s side are of the form

A
(1)
1 A

(1)
2 A

(1)
3

A
(4)
1 A

(5)
2 A

(6)
3

A
(2)
4 A

(2)
5 A

(2)
6

A
(4)
4 A

(5)
5 A

(6)
6

A
(3)
7 A

(3)
8 A

(3)
9

A
(4)
7 A

(5)
8 A

(6)
9

(125)

To interpret this, A(1) is the observable that Alice associates with v1 if it arises in the context of
constraint 1 (v1 ⊕ v2 ⊕ v3 = 0); whereas A(4) is the observable that Alice associates with v1 if it
arises in the context of constraint 4 (v1 ⊕ v4 ⊕ v7 = 0). In general, it is conceivable that Alice and
uses different observables in the two cases. We will next prove that this cannot occur for a perfect
strategy.

We have that, for all j ∈ {1, 2, . . . , 9} and Alice and Bob always return consistent answers for
vj , which implies (for the constraints s and s′ that contain variable vj)

〈ψ|A(s)
j ⊗Bj |ψ〉 = 1 = 〈ψ|A(s′)

j ⊗Bj |ψ〉, (126)

which, by Corollary 7.3, implies A
(s)
j = (Bj)

T = A
(s′)
j . This permits us to denote the observable

simply as Aj .

5The general case in handled in Ref. [7].
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Therefore, Alice and Bob’s strategies are, respectively, based on binary observables

A1 A2 A3

A4 A5 A6

A7 A8 A9

(A1)T (A2)T (A3)T

(A4)T (A5)T (A6)T

(A7)T (A8)T (A9)T ,
(127)

and we have that they are commuting within each row and column.
Must these observables satisfy the constraints? Consider the first constraint, that A1A2A3 = I.

Note that the probability that, for this constraint, the product of Alice’s three output bits is +1 is
given by

1 + 〈ψ|(A1A2A3)⊗ I|ψ〉
2

. (128)

This is 1 if and only if 〈ψ|(A1A2A3)⊗I|ψ〉 = 1, which, by Corollary 7.3, implies A1A2A3 = IT = I.
The other constraints are handled similarly. This completes the proof of Theorem 7.1.

7.3 Generalization to arbitrary binary constraint systems

It is straightforward to extend the proof techniques to arbitrary binary constraint system games.
The details can be found in [7].

Theorem 7.4. For any binary constraint system (BCS) with n binary variables and m constraints,
there exists a perfect entangled strategy using an entangled state in Cd ⊗ Cd if and only there
exist binary observables A1, . . . , An ∈ B(Cd) (corresponding to the n variables) such that, for each
constraint, the observables corresponding to its variables commute and their product is +I or −I
(appropriately, depending on the value of the constraint).

8 Rigidity of Magic Square game (exact case)

It can be shown for various games that, in a certain sense, all entangled strategies that achieve
maximum success probability for them have a specific form. For example, this can be shown for the
CHSH game and also for the Magic Square game. Here we show this for the Magic Square game.

Theorem 8.1. For any perfect strategy for the Magic Square game, there is an orthonormal basis
with respect to which the operators are of the form

(I ⊗ Z)⊗ Im (Z ⊗ I)⊗ Im (Z ⊗ Z)⊗ Im
(X ⊗ I)⊗ Im (I ⊗X)⊗ Im (X ⊗X)⊗ Im
(X ⊗ Z)⊗ Im (Z ⊗X)⊗ Im (Y ⊗ Y )⊗ Im

(129)

and the entangled state is of the form

|ψ〉 =
(

1√
2
|00〉A1B1 + 1√

2
|11〉A1B1

)
⊗
(

1√
2
|00〉A2B2 + 1√

2
|11〉A2B2

)
⊗ |φ〉A3B3 (130)

for some arbitrary state |φ〉A3B3 ∈ Cm ⊗ Cm.

Therefore, the strategy for the Magic Square game in section 3 is unique (up to a basis change
and an additional register that is ignored by the measurements)!
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Proof. Recall that the commutativity constraints of the magic square game imply that any two
operators in the same row or column must commute. What about two observables that are not in
the same row or columns, such as A2 and A4? It can be shown that they must anticommute (i.e.,
A2A4 = −A4A2). To see why this is so, note that

A3 = A1A2 (131)

A6 = A4A5 (132)

so the last column implies −I = A3A6A9 = (A1A2)(A4A5)A9. Similarly, we have

A7 = A1A4 (133)

A8 = A2A5 (134)

so the last row implies −I = A7A8A9 = (A1A4)(A2A5)A9. Combining the above, we have
A1A2A4A5A9 = −A1A4A2A5A9, which implies A2A4 = −A4A2.

By symmetry, any two observables that are not in the same row or column must anticommute.
Whenever two binary observables anticommute they have a special form, given by the following

lemma.

Lemma 8.2. If A and B are binary observables acting on Cd that anticommute (i.e., AB = −BA)
then d must be even and there exists a unitary U with respect to which

U∗AU = Z ⊗ Im (135)

U∗BU = X ⊗ Im, (136)

where X and Z are the 2×2 Pauli matrices and Im denotes the m×m identity operator for m = d
2 .

Proof. Since A is a binary observable, there exists a coordinate system in which A and B have
block structure

A =

[
Im1 0
0 −Im2

]
B =

[
B11 B12

B21 B22

]
. (137)

The anticommutativity implies that B11 = −B11 = 0 and B22 = −B22 = 0. Since B is Hermitian,
B21 = B∗12. The fact that B2 = I implies that

B12B
∗
12 = Im1 (138)

B∗12B12 = Im2 , (139)

which implies that m1 = m2 and B12 is unitary (one way of seeing this is that m1 = Tr(B12B
∗
12) =

Tr(B∗12B12) = m2). Thus (setting C = B12) we have

B =

[
0 C
C∗ 0

]
(140)

for a unitary C. If we set

U =

[
I 0
0 C∗

]
(141)
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then

U∗AU =

[
I 0
0 −I

]
= Z ⊗ Im (142)

U∗BU =

[
0 I
I 0

]
= X ⊗ Im. (143)

Lemma 8.3. A commutes with Z ⊗ Im and X ⊗ Im if and only if A = I ⊗ B for some m ×m
matrix B.

Proof. Commuting with Z ⊗ I implies that A has block structure

A =

[
A11 0
0 A22

]
(144)

and commuting with X ⊗ I implies that A11 = A22. Therefore, setting B = A11, we have

A =

[
B 0
0 B

]
= I ⊗B. (145)

We now return to the proof of Theorem 8.1. Since A2 and A4 anticommute, they can be
expressed as A2 = Z ⊗ In and A4 = X ⊗ In. Since A1 commutes with A2 and A4, we have
A1 = I ⊗B. Similarly, we have A5 = I ⊗ C.

So far, the structure of the four observables A1, A2, A4, A5 is the following.

I ⊗B Z ⊗ In
X ⊗ In I ⊗ C

Since A1 and A5 anticommute, we must have B = Z ⊗ Im and C = X ⊗ Im (m = n
2 ) in some

coordinate system. Therefore the table becomes

I ⊗ (Z ⊗ Im) Z ⊗ (I ⊗ Im)

X ⊗ (I ⊗ Im) I ⊗ (X ⊗ Im)

Finally, we can fill in the other entries of the table from the constraints as

I ⊗ Z ⊗ Im Z ⊗ I ⊗ Im Z ⊗ Z ⊗ Im
X ⊗ I ⊗ Im I ⊗X ⊗ Im X ⊗X ⊗ Im
X ⊗ Z ⊗ Im Z ⊗X ⊗ Im Y ⊗ Y ⊗ Im

The next step is to show that the entanglement is of the correct form. Consider what happens
if both Alice and Bob both measure with respect to the Z⊗ I ⊗ Im observable. Since their answers
must be consistent, it must hold that

〈ψ|(Z ⊗ I ⊗ Im)⊗ (Z ⊗ I ⊗ Im)|ψ〉 = 1, (146)
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so (Z⊗I⊗Im)⊗(Z⊗I⊗Im)|ψ〉 = |ψ〉. Therefore, the first qubit of Alice and the first qubit of Bob
are in a state that is invariant under Z ⊗ Z. Similarly, by considering what happens if Alice and
Bob each measure with respect to the X ⊗ I ⊗ Im observable, the first qubit of Alice and the first
qubit of Bob are in a state that is invariant under X ⊗X. The only 2-qubit state that is invariant
under both Z ⊗ Z and X ⊗X is 1√

2
|00〉+ 1√

2
|11〉.

By a similar argument considering the observables I⊗Z⊗ Im and I⊗X⊗ Im, it can be argued
that Alice and Bob’s respective second qubits are also in state 1√

2
|00〉+ 1√

2
|11〉.

This completes the proof of Theorem 8.1.

9 Binary linear system games

A binary linear system game (BLS game) consists of n {0, 1}-valued variables v1, . . . , vn and m
constraints, each of which specifying whether a mod-2 sum of a subset of the variables is 0 or 1.
In multiplicative form, the variables are A1, . . . , An and each constraint specifies whether or not a
product of a subset of the variables is I or −I.

The Magic Square is an example of such a game. Illustrated in Figure 3 is the Magic Square,
Magic Pentagram, and Four Lines game. From Theorem 7.4, there is a perfect strategy for such a
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A4 A5 A6

A7 A8 A9
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Figure 3: Structure of three BLS games: (a) magic square (left), (b) magic pentagram (middle), and (c)
four-lines (right). Each straight line indicates a product constraint on its variables of +I for single lines, and
−I for double lines.

game if and only if the multiplicative form of the game has an operator solution, where the variables
are assigned to matrices such that, for each equation, the operators associated with its variables:

• commute; and

• have product equal to +I or −I (as per the equation).

9.1 Analysis of BLS games with mutiplicity 2

A BLS game has multiplicity 2 if every variable appears in exactly two constraints. The Magic
Square, Magic Pentagram, and Four Lines game (figure 3) all have multiplicity 2.

Ref. [1] shows an elegant way of analyzing any BLS game of multiplicity 2, to either find a
perfect strategy or show that none exists. We refer to [1] for the details, and provide only a brief
sketch here.

The idea is to first construct a constraint graph associated with a BLS game, defined as follows.
Each constraint in the BLS corresponds to a vertex and each variable corresponds to an edge
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connecting the two vertices corresponding to the constraints where it appears. For example: for
the Magic Square, the graph is K3,3 (the complete bipartite graph on two sets of size 3); for Magic
Pentagram, the graph is K5 (the complete graph on 5 vertices); and for the Four Lines, the graph
is K4. Each node of the constraint graph is labelled +1 or −1, depending if the associated product
is +I or −I.

If the graph is not connected then each connected component corresponds to a separate BLS
game, and the original game has a perfect strategy if and only if each of it connected components
has a perfect strategy. Henceforth, we only consider BLS games where the constraint graph is
connected.

Given any operator solution to a BLS, if the value of Aj is multiplied by −1 then it is a solution
to a new BLS where the two constraints containing Aj are sign flipped (between +I and −I). By
a series of such moves, any BLS can be converted to one in which there is either a single node with
−1 label or no nodes with −1 labels. In the first case there is a trivial classical solution (set each
variable to +1). The second case is the nontrivial case (where there is no classical solution).

What [1] shows is that (in the nontrivial case):

• If the constraint graph is planar then there is no operator solution. This is shown by proving
that there is a systematic way of reducing the equations I = −I, a contradiction. The details
of this are in section III.A of [1].

• If the constraint graph is not planar then there is an operator solution. This is shown using the
fact that every nonplanar graph contains K3,3 or K5 as a topological minor6 and that there
are operator solutions for those two constraint graphs. The details of this are in section III.B
of [1].

9.2 Analysis of BLS games with mutiplicity ≤ 2

Suppose that each variable appears in at most two constraints, but at least one variable appears
in only a single constraint. We can reduce this to a BLS where the multiciplity of each variable
is exactly 2 as follows. If the original system has variables A1, . . . , An, let the new system have
variables A1, . . . , An, B1, . . . , Bn. For each constraint, say, AiAjAk = (−1)bI in the original BLS,
let the new BLS have that constraint plus its “twin” BiBjBk = (−1)bI. So far, we have essentially
two copies of the original BLS. Also, for each variable Ai that has multiplicity 1 in the original
BLS, let the new BLS also include the constraint AiBi = I (which increases the multiplicity of
both Ai and Bi from 1 to 2).

The new system is a BLS with multiplicity exactly 2 for each variable. Also, there is a solution
to the original BLS if and only if there is a solution to the new BLS. To see why this is so, first
suppose that the original BLS has an operator solution. Then, setting each Bi = Ai, results in a
solution to the new BLS. For the other direction, if there is a solution to the new system then, by
simply discarding B1, . . . , Bn, we obtain a solution to the original system.

Therefore, each such BLS can be analyzed by first converting it to one with multiplicity exactly 2
and then applying the techniques in section 9.1.

6Defined in Def. 25 of [1].
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10 Rigidity of CHSH (extremal case)

In this section, we prove the following.

Theorem 10.1. For any entangled strategy for the CHSH game that attains the maximum possible
success probability of

(
1 + 1√

2

)
/2, there is an orthonormal basis with respect to which Alice and

Bob’s observables are of the form

A0 = Z ⊗ Im (147)

A1 = X ⊗ Im (148)

B0 = H ⊗ Im (149)

B1 = (ZHZ)⊗ Im (150)

and the entangled state is of the form

|ψ〉 =
(

1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉 (151)

for some arbitrary state |Φjunk〉 ∈ Cm ⊗ Cm.

10.1 Preliminary: a special property of two-outcome POVM measurements

In general, a POVM measurement can be simulated by a projective measurement in la larger Hilbert
space (the so-called Stinespring dilation). For example, these three operators on C2

E1 =

(
2
3 0

0 0

)
, E2 =

( 1
6

1√
3

1√
3

1
2

)
, E3 =

( 1
6

−1√
3

−1√
3

1
2

)
(152)

are the elements of a POVM measurement, and this measurement can be simulated by these
projective measurements in C3

Π1 =


2
3 0

√
2

3

0 0 0
√

2
3 0 1

3

 , Π2 =


1
6

−1√
12

−1√
18

−1√
12

1
2

1√
6

−1√
18

1√
6

1
3

 , Π3 =


1
6

1√
12

−1√
18

1√
12

1
2

−1√
6

−1√
18

−1√
6

1
3

 , (153)

where the qubit to be measured is in span(|0〉, |1〉) and the projectors act on the larger space
span(|0〉, |1〉, |2〉). It turns out that, for this example, it is impossible to construct the projectors in
the original space span(|0〉, |1〉) (i.e., the dimension increase in necessary). In fact, it is not even
possible to construct a probabilistic mixture of projectors on span(|0〉, |1〉) that simulate the above
POVM measurement.

Why do we care about this? In section 7.1, we have some results that apply for projective
measurements on entangled states with full Schmidt rank. For any entangled strategy, we can,
without loss of generality, assume that the entanglement used has full Schmidt rank. However, the
local measurements can, in general, be POVM measurements. If we dilate the measurements so as
to be projective then we introduce additional dimensions in the local spaces and the entanglement
will not have full Schmidt rank for these larger local spaces. So it seems that we can either consider
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the entanglement to be of full Schmidt rank and the measurements to be POVMs or drop the full
Schmidt rank property and assume projective measurements.

For the special case of two-outcome measurements, we can have the best of both worlds. This
is because any two-outcome POVM measurement can be simulated as a probabilistic mixture of
two-outcome projective measurements.

To see why this is so, let E0, E1 be the elements of an arbitrary two-outcome POVM mea-
surement. Since E0 ≥ 0, we can write E0 as a diagonal matrix (in some coordinate system) so
that

E0 =


µ1

µ2

. . .

µd

 and E1 = I − E0 =


1− µ1

1− µ2

. . .

1− µd

 , (154)

where µ1, µ2, . . . , µd ∈ [0, 1]. Intuitively, performing this measurement is equivalent to first gen-
erating Π0 as a diagonal matrix where entry (k, k) is set to 1 with probability µk, and to 0 with
probability 1 − µk (independently for each k). And then Π1 = I − Π0. Then the projective
measurement (Π0,Π1) is applied.

The result is what we can nickname the “Two-outcome POVMs are boring Lemma”:

Lemma 10.2. For any two-outcome POVM measurement on space Cd, there exists an ensemble
of binary observables {A(r) : r ⊆ {1, 2, . . . , d}} and a probability measure on the set of all subsets of
{1, 2, . . . , d}, such that sampling r ⊆ {1, 2, . . . , d} and then measuring according to the observable
A(r) is equivalent to performing the original POVM measurement.

This will be very useful for the CHSH game where Alice and Bob’s perform two-outcome
measurements. However, it should be remembered that, for general nonlocal games, there is no
such lemma when the number of outcomes is more than two.

10.2 Proof of Theorem 10.1

Lemma 10.2 enables us to prove the rigidity of CHSH in the extremal case quite easily.

Recalling Eq. (38), if A
(r)
0 , A

(r)
1 , B

(r)
0 , B

(r)
1 are the observables as a function of the randomly

generated r ∈ Ω then, for each r ∈ Ω that arises with non-zero probability, it must hold that

1

4
〈ψ|A(r)

0 ⊗B
(r)
0 +A

(r)
0 ⊗B

(r)
1 +A

(r)
1 ⊗B

(r)
0 −A

(r)
1 ⊗B

(r)
1 |ψ〉 =

1√
2
. (155)

(This is by an averaging argument: since the right side is always at most 1/
√

2, if, for some r the
value was less than 1/

√
2 then the weighted average over all r would be less than 1/

√
2.) Henceforth,

to reduce clutter, we omit the (r) superscripts. This is equivalent to the following expression

〈ψ|
[

1√
2
A0 ⊗ I

1√
2
A1 ⊗ I

]
1√
2
I ⊗ B0 +B1√

2

1√
2
I ⊗ B0 −B1√

2

 |ψ〉 = 1, (156)
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where the bracketed items are block matrices consisting of two square blocks, stacked horizontally
or vertically. It is straightforward to verify that the block matrices

MA =


1√
2
A0 ⊗ I

1√
2
A1 ⊗ I

 and MB =


1√
2
I ⊗ B0 +B1√

2

1√
2
I ⊗ B0 −B1√

2

 (157)

satisfy M∗AMA = I = M∗BMB and are therefore isometries from Cd to C2d. If we define vectors
|v〉 = MA|ψ〉 and |w〉 = MB|ψ〉 then we have ‖v‖ = ‖w‖ = 1 and 〈v|w〉 = 1, from which it follows
that |v〉 = |w〉. Therefore,

A0 ⊗ I|ψ〉 = I ⊗ B0 +B1√
2
|ψ〉 (158)

A1 ⊗ I|ψ〉 = I ⊗ B0 −B1√
2
|ψ〉. (159)

Since |ψ〉 has full Schmidt rank, by Lemma 7.2, we have

B0 +B1√
2

= AT0 and
B0 −B1√

2
= AT1 , (160)

where the transpose is with respect to the Schmidt basis coordinate system. By direct calculation,(
B0 +B1√

2

)(
B0 −B1√

2

)
=
B1B0 −B0B1

2
= −

(
B0 −B1√

2

)(
B0 +B1√

2

)
, (161)

which implies that A0 and A1 anticommute. Therefore, by Lemma 8.2, there exists a unitary U
such that

U∗A0U = Z ⊗ Im (162)

U∗A1U = X ⊗ Im. (163)

We also have (using the fact that (U∗AU)T = UTAT (UT )∗)

(UT )B0(UT )∗ = (UT )
AT0 +AT1√

2
(UT )∗ =

Z +X√
2
⊗ Im = H ⊗ Im (164)

(UT )B0(UT )∗ = (UT )
AT0 −AT1√

2
(UT )∗ =

Z −X√
2
⊗ Im = (ZHZ)⊗ Im. (165)

In summary, there exists a local unitary coordinate system transformation of the form U ⊗ UT so
that the local observables are

A0 = Z ⊗ Im (166)

A1 = X ⊗ Im (167)

B0 = H ⊗ Im (168)

B1 = (ZHZ)⊗ Im. (169)
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Also, the entanglement used is a state |ψ〉 ∈ Cd such that

〈ψ|
(A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1

4

)
⊗ Im|ψ〉 =

1√
2
. (170)

Since

(A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1

4

)
⊗ Im =

1√
2


1
2 0 0 1

2

0 −1
2

1
2 0

0 1
2 −1

2 0
1
2 0 0 1

2

⊗ Im (171)

has eigenvalues 1√
2
, 0, 0, − 1√

2
, it follows that |ψ〉 is a 1√

2
-eigenvector, which is(

1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉. (172)

This completes the proof of Theorem 10.1.

11 Robust rigidity of CHSH (approximately extremal case)

In this section, we prove the following, which shows that every protocol that achieves success prob-
ability close to optimal, is essentially close to the strategy in section 2.1, in some local coordinate
systems. The first proof of this (albeit with bounds that are less qualitatively tight) is in [14].

Theorem 11.1 ([14]). For any entangled strategy (|ψ〉, A0, A1, B0, B1) with local dimension d for
the CHSH game that attains success probability of at least

(
1 + 1√

2
− ε
)
/2, and local isometries

VA, VB : Cd → C2 ⊗ Cd (= C2d) such that:

•
∥∥∥(VA ⊗ VB)|ψ〉 −

(
1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉

∥∥∥ ∈ O(
√
ε)

•
∥∥∥(VA ⊗ VB)(A0 ⊗ I)|ψ〉 − (Z ⊗ I)

(
1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉

∥∥∥ ∈ O(
√
ε)

•
∥∥∥(VA ⊗ VB)(A1 ⊗ I)|ψ〉 − (X ⊗ I)

(
1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉

∥∥∥ ∈ O(
√
ε)

•
∥∥∥(VA ⊗ VB)(I ⊗B0)|ψ〉 − (I ⊗H)

(
1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉

∥∥∥ ∈ O(
√
ε)

•
∥∥∥(VA ⊗ VB)(I ⊗B1)|ψ〉 − (I ⊗ (ZHZ))

(
1√
2
|00〉+ 1√

2
|11〉

)
⊗ |Φjunk〉

∥∥∥ ∈ O(
√
ε)

for some arbitrary state |Φjunk〉 ∈ Cd ⊗ Cd.

To compare with Theorem 10.1, note that VAA0V
∗
A and VAA1V

∗
A need not be close to Z⊗Im and

X⊗Im as operators (on C2d). One reason for this is that, on the part local spaces corresponding to
Schmidt coefficients zero, A0 and A1 can be arbitrary, and need not approximately anticommute.
In the case of Theorem 10.1, by working with entangled states of full rank, we effectively truncated
the local spaces so that there are no zero Schmidt coefficients. We can also do that in our present
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context; however, there may be some nonzero Schmidt coefficients that are nevertheless very small,
and A0 and A1 may be far from anticommuting on the corresponding spaces.

Another issue is that, even if ‖A0A1 +A1A0‖ is small in the operator norm, there need not exist
anticommuting observables Ã0 and Ã1 such that ‖A0 − Ã0‖ and ‖A1 − Ã1‖ are small (see [19]).

Our approach to proving Theorem 11.1 uses techniques similar to those in the original proof [14],
along with techniques in [18]. We utilize a special norm (actually a semi-norm) that is relevant to
our setting, which is explained in the next section.

11.1 Inner products and norms relative to a bipartite quantum state

Here we define measures of distance between two isometries U, V : Cd → Cd′ for d ≤ d′ that are
relevant when they are applied to one component of a bipartite state |ψ〉 ∈ Cd ⊗ Cd. Thus, it is
the distance between the states U ⊗ I|ψ〉 and V ⊗ I|ψ〉 that we care about.

The inner product between U⊗I|ψ〉 and V ⊗I|ψ〉 is 〈ψ|U∗V ⊗I|ψ〉, and this expression simplifies
as in the following lemma.

Lemma 11.2. 〈ψ|U∗V ⊗ I|ψ〉 = Tr(U∗V σ), where σ = Tr2

(
|ψ〉〈ψ|

)
(the reduced density operator

of state |ψ〉).

The proof of Lemma 11.2 is left as an exercise for the reader.
With the above in mind, the following definition is natural.

Definition 11.3. Relative to a density operator σ, define the semi-inner product

〈U, V 〉σ = Tr(U∗V σ). (173)

(Note the resemblance to the Frobenius inner product defined in section 1.5.) We can also define
the corresponding semi-norm7 as follows.

Definition 11.4. Relative to a density operator σ, define the semi-norm

‖W‖σ =
√
〈W,W 〉σ. (174)

A useful way of thinking about the meaning of ‖U − V ‖σ is as the Euclidean distance between
U ⊗ I|ψ〉 and V ⊗ I|ψ〉.

Exercise 11.5. Show that ‖U − V ‖σ is the Euclidean distance between U ⊗ I|ψ〉 and V ⊗ I|ψ〉.

We can relate the norm to the inner product by the following (where <(ζ) = 1
2(ζ + ζ), which is

real part of ζ ∈ C).

Lemma 11.6.

<
(
〈U, V 〉σ

)
= 1− 1

2‖U − V ‖
2
σ. (175)

Proof. The proof is straightforward using the fact that

<
(
〈U, V 〉σ

)
= 1

2

(
〈U, V 〉σ + 〈V,U〉σ

)
(176)

and 〈U,U〉σ = 1 = 〈V, V 〉σ.

7We use the terminology semi-norm and semi-inner product, because it is possible for a non-zero W to have the
property that ‖W‖σ = 0.
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11.2 Approximate anticommuting

Here we show that, if a strategy for CHSH is close to optimal then its observables are close to
anticommuting (where close is with respect to the norm defined in the previous section). The
following is from [18].

Theorem 11.7 ([18]). Let A0, A1, B0, B1 ∈ Cd×d and |ψ〉 ∈ Cd ⊗ Cd be a strategy for CHSH that
attains bias at least 1√

2
− ε. Then, for σ = Tr2|ψ〉〈ψ|,∥∥A1A0 +A0A1

∥∥2

σ
≤ 32

√
2 ε (177)∥∥B0B1 +B1B0

∥∥2

σ
≤ 32

√
2 ε. (178)

Proof. Our starting condition is

1
4〈ψ|A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1|ψ〉 ≥ 1√

2
− ε. (179)

Using the identity(
A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1

2

)2

(180)

= I ⊗ I +

(
A1A0 −A0A1

2

)
⊗
(
B0B1 −B1B0

2

)
, (181)

we can deduce

〈ψ|
(
A1A0 −A0A1

2

)
⊗
(
B0B1 −B1B0

2

)
|ψ〉 (182)

= 〈ψ|
(
A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1

2

)2

|ψ〉 − 1 (183)

≥
(
2( 1√

2
− ε)

)2 − 1 (184)

≥ 1− 4
√

2 ε (185)

(where, in Eq. (184), we are using the fact that 〈ψ|M |ψ〉2 ≤ 〈ψ|M2|ψ〉 for any Hermitian M).
Applying the Cauchy-Schwarz inequality and the fact that ‖A1A0−A0A1

2 ‖ ≤ 1, we have

〈ψ|
(
A1A0 −A0A1

2

)2

⊗ I |ψ〉 ≥
(
1− 4

√
2ε
)2 ≥ 1− 8

√
2ε. (186)

Using the fact that, for any unit vectors |v〉 and |w〉,
∥∥ |v〉+|w〉

2

∥∥2
+
∥∥ |v〉−|w〉

2

∥∥2
= 1, it follows that

〈ψ|
(
A1A0 +A0A1

2

)2

⊗ I |ψ〉 ≤ 8
√

2 ε. (187)

We can similarly derive

〈ψ| I ⊗
(
B0B1 +B1B0

2

)2

|ψ〉 ≤ 8
√

2 ε. (188)
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Since ∥∥A1A0 +A0A1

∥∥2

σ
= 〈ψ|(A1A0 +A0A1)2 ⊗ I|ψ〉 (189)∥∥B0B1 +B1B0

∥∥
σ

= 〈ψ|I ⊗ (B0B1 +B1B0)2|ψ〉, (190)

the conditions of the theorem are proven.

It is useful to also express the distance between A0A1 and −A1A0 and via the inner product
〈·, ·〉σ in the following corollary.

Corollary 11.8. Let A0, A1, B0, B1 ∈ Cd×d and |ψ〉 ∈ Cd⊗Cd be a strategy for CHSH that attains
bias at least 1√

2
− ε. Then, for σ = Tr2|ψ〉〈ψ|,

<〈−A1A0, A0A1〉σ ≥ 1− 16
√

2 ε (191)

<〈−B1B0, B0B1〉σ ≥ 1− 16
√

2 ε. (192)

11.3 Canonical form for approximately anticommuting observables

Here, we show an analogue of Lemma 8.2 for the case of approximately anticommuting binary
observables: namely, that in some coordinate system A0 and A1 are close to Z ⊗ Id and X ⊗ Id;
however, we need to double the dimension of the space on which the operators act (i.e., add one
qubit). We first do this by a unitary change of basis, which requires us to extend A0 and A1 to
observables in the larger space. Then we modify or change of basis to an isometry so as to transform
the original A0 and A1. (Similar results hold for B0 and B1.)

11.3.1 Canonical form via a unitary transformation

Our coordinate system transformation is based on UA on Alice’s side (and a similarly defined UB
on Bob’s side), which is easily described by the following circuit, illustrated in figure 4. To get

C2 H • H •

Cd A0 A1

Figure 4: Definition of UA : C2 ⊗ Cd → C2 ⊗ Cd.

some intuition about what this does, consider the case where A0 and A1 actually anticommute and
hence, by Lemma 8.2, are expressible as Z ⊗ Id/2 and X ⊗ Id/2 (respectively) in some coordinate
system. In that case, it is a simple exercise to show that the circuit simplifies to two controlled-NOT
gates and has the property that, when the first qubit is initialized to state |0〉, it performs a swap
between the first qubit and the first qubit of the second register—so the net effect is similar to a
swap gate.

Under the coordinate system transform induced by UA, Lemma 11.9 roughly states that A0

becomes Z ⊗ Id and Lemma 11.10 states that A1 becomes an operator close to X ⊗ Id. Due to
the additional qubit, A0 and A1 are extended to operators acting on the larger space. A natural
extension is as I⊗A0 and I⊗A1. However, Lemma 11.9 is actually based on the extension Z⊗A0

instead of I⊗A0; ignore this distinction for the time being (it is resolved in the next section, where
our coordinate system transformation is by isometries, so no extension is needed).
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Lemma 11.9.

U∗A(Z ⊗ Id)UA = Z ⊗A0. (193)

Proof. The circuit diagram for U∗A(Z ⊗ Id)UA is illustrated in figure 5, and we show that this
is equivalent to Z ⊗ A0. We begin by noting that the net effect of the three middle gates (the

C2 H • H • Z • H • H

Cd A0 A1 A1 A0

Figure 5: U∗
A(Z ⊗ Id)UA expressed as a circuit.

controlled-A1, Z ⊗ Id, controlled-A1 sequence) is to compute the operation specified by the block
matrix [

Id 0
0 A1

] [
Id 0
0 −Id

] [
Id 0
0 A1

]
=

[
Id 0
0 −Id

]
= Z ⊗ Id. (194)

Next, working outward from these gates to include the two adjacent Hadamard gates, results in a
subcircuit that computes X ⊗ Id. Next, including the two controlled-A0 gates, we obtain the block
matrix [

Id 0
0 A0

] [
0 Id
Id 0

] [
Id 0
0 A0

]
=

[
0 A0

A0 0

]
= X ⊗A0 (195)

Finally, conjugating by the outer Hadamard gates, we obtain Z ⊗A0.

Lemma 11.10.

‖U∗A(X ⊗ Id)UA − I ⊗A1‖2ρ ≤ cε, (196)

where ρ = |0〉〈0| ⊗ σ and c = 16
√

2.

Proof. We begin by expressing E = U∗A(X ⊗ Id)UA in the form of a 2× 2 block matrix. The circuit
diagram for E is illustrated in figure 6, First, note that the net effect of the three middle gates (the

C2 H • H • X • H • H

Cd A0 A1 A1 A0

Figure 6: E = U∗
A(X ⊗ Id)UA expressed as a circuit.

controlled-A1, X ⊗ Id, controlled-A1 sequence) is to compute[
Id 0
0 A1

] [
0 Id
Id 0

] [
Id 0
0 A1

]
=

[
0 A1

A1 0

]
= X ⊗A1. (197)

Next, working outward from these gates to include the two adjacent Hadamard gates, results in a
subcircuit that computes Z⊗A1. Next, including the two controlled-A0 gates, we obtain the block
matrix [

Id 0
0 A0

] [
A1 0
0 −A1

] [
Id 0
0 A0

]
=

[
A1 0
0 −A0A1A0

]
. (198)
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Finally, conjugating by the outer Hadamard gates, we obtain

E =

[
1√
2
Id

1√
2
Id

1√
2
Id − 1√

2
Id

][
A1 0

0 −A0A1A0

][
1√
2
Id

1√
2
Id

1√
2
Id − 1√

2
Id

]
(199)

=
1

2

[
A1 −A0A1A0 A1 +A0A1A0

A1 +A0A1A0 A1 −A0A1A0

]
. (200)

We are interested in how well E approximates

I ⊗A1 =

[
A1 0
0 A1

]
, (201)

which we calculate as

〈E, I ⊗A1〉ρ = 1
2Tr

([
A1 −A0A1A0 A1 +A0A1A0

A1 +A0A1A0 A1 −A0A1A0

][
A1 0

0 A1

][
σ 0

0 0

])
(202)

= 1
2Tr
(
(I −A0A1A0A1)σ

)
(203)

= 1
2 + 1

2Tr
(
−A0A1A0A1σ

)
(204)

= 1
2 + 1

2

〈
−A1A0, A0A1

〉
σ
. (205)

Therefore,

<〈E, I ⊗A1〉ρ = 1
2 + 1

2<
〈
−A1A0, A0A1

〉
σ
≥ 1

2 + 1
2(1− cε) = 1− 1

2cε. (206)

It follows that

‖E − I ⊗A1‖2ρ = 2
(

1−
(
1− 1

2cε
))

= cε. (207)

11.3.2 Canonical form via an isometric transformation

The coordinate system change in the previous section is expressed in terms of local unitary operators
UA, UB : C2 ⊗ Cd → C2 ⊗ Cd; however, a more natural way of expressing our canonical form is in
terms of local isometries VA, VB : Cd → C2 ⊗ Cd.

We begin by rewriting Eq. (193) as

(Z ⊗ Id)UA = UA(Z ⊗A0) (208)

and Eq. (196) as

‖(X ⊗ Id)UA − UA(I ⊗A1)‖2ρ ≤ cε, (209)

where ρ = |0〉〈0| ⊗ σ and c = 16
√

2.
Define the isometry S : Cd → C2 ⊗ Cd as S = |0〉 ⊗ Id. Expressed as a block matrix,

S =

[
Id
0d

]
. (210)
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Define VA, VB : Cd → C2 ⊗ Cd as

VA = UAS (211)

VB = UBS. (212)

Since

UA(Z ⊗A0)S = UA(Z ⊗A0)(|0〉 ⊗ Id) = UA(|0〉 ⊗A0) = UASA0 = VAA0, (213)

we can deduce from Eq. (208) (by multiplying both sides on the right by S) that

(Z ⊗ Id)VA = (Z ⊗ Id)UAS = UA(Z ⊗A0)S = VAA0. (214)

So, in particular, we have

‖(Z ⊗ Id)VA − VAA0‖2σ = 0. (215)

Similary, since UA(I ⊗A1)S = UA(|0〉⊗A1) = UASA1 = VAA1, we can deduce from Eq. (209) that

‖(X ⊗ Id)VA − VAA1‖2σ ≤ cε. (216)

From this (and similar relationships involving B0 and B1), it follows that∥∥∥(VA ⊗ VB)(A0 ⊗ Id)|ψ〉 −
(
(Z ⊗ Id)⊗ (I ⊗ Id)

)
(VA ⊗ VB)|ψ〉

∥∥∥ ∈ O(
√
ε) (217)∥∥∥(VA ⊗ VB)(A1 ⊗ Id)|ψ〉 −

(
(X ⊗ Id)⊗ (I ⊗ Id)

)
(VA ⊗ VB)|ψ〉

∥∥∥ ∈ O(
√
ε) (218)∥∥∥(VA ⊗ VB)(Id ⊗B0)|ψ〉 −

(
(I ⊗ Id)⊗ (Z ⊗ Id)

)
(VA ⊗ VB)|ψ〉

∥∥∥ ∈ O(
√
ε) (219)∥∥∥(VA ⊗ VB)(Id ⊗B1)|ψ〉 −

(
(I ⊗ Id)⊗ (X ⊗ Id)

)
(VA ⊗ VB)|ψ〉

∥∥∥ ∈ O(
√
ε). (220)

11.4 Form of the entangled state

Since we have (with some rearranging of the registers)

〈ψ|(V ∗A ⊗ V ∗B)
((Z ⊗ Z + Z ⊗X +X ⊗ Z −X ⊗X)⊗ (Id ⊗ Id)

4

)
(VA ⊗ VB)|ψ〉 ≥ 1√

2
− ε, (221)

it follows that the first two qubits of (VA ⊗ VB)|ψ〉 are in a state that is O(ε)-close (in Euclidean
distance) to a maximum eigenvector of

Z ⊗ Z + Z ⊗X +X ⊗ Z −X ⊗X
4

. (222)

This maximum eigenvector is the maximally entangled state that arises in the standard CHSH
strategy in symmetrized form8 which is

(I ⊗R)
|00〉+ |11〉√

2
= cos

(π
8

) |00〉 − |11〉√
2

+ sin
(π

8

) |01〉+ |10〉√
2

, (223)

8The symmetrized form is where Alice and Bob both employ observables Z and X, instead of Bob employing H
and ZHZ. The conversion between the two protocols is via R (i.e., H = RZR and ZHZ = RXR).
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where

R =

(
cos(π8 ) sin(π8 )
sin(π8 ) − cos(π8 )

)
. (224)

Therefore, ∥∥∥(VA ⊗ VB)|ψ〉 −
((
I ⊗R

)(
1√
2
|00〉+ 1√

2
|11〉

))
⊗ |Φjunk〉

∥∥∥ ∈ O(
√
ε) (225)

for some arbitrary state |Φjunk〉 ∈ Cd ⊗ Cd.

11.5 Completion of the robust rigidity proof (Theorem 11.1)

The difference between Eqns. (225), (217), (218), (219), and (220) and the conditions in Theo-
rem 11.1 is merely that the former equations are in terms of the symmeterized canonical strategy
for CHSH; whereas the theorem is stated in terms of the “standard” canonical form. If we change
the isometry on Bob’s side from VB to (R⊗Id)VB, we obtain the conditions as stated in the theorem.

11.6 An alternate approach using the Gowers-Hatami Theorem

See [18].

12 Nonlocal games with quantum input

The main purpose of this section is to exhibit a nonlocal game where the success probability only
arises in the limit of infinite entanglement. That is, for some fixed nonlocal game G, there exists
no finite d such that there is an optimal strategy using entanglement in Cd ⊗Cd; there is always a
better strategy using a larger d.

Although there exists such a nonlocal game our in framework (as defined back in section 1.3),
what we do here is extend the nonlocal game model and show that a fairly simple game exists in
the extended model with the aforementioned property.

The extended model is a variant of the nonlocal game model, where the inputs are bipartite
quantum states. As with our original definition, there are finitely many possible inputs; however,
rather than being a finite subset of S × T , the inputs are quantum states from a finite subset
{|φ0〉, . . . , |φm−1〉}, where |φ0〉, . . . , |φm−1〉 ∈ C` ⊗C`. The outputs are classical (a, b) ∈ A×B (for
finite sets A and B). (In our example, ` = 3, these are two possible inputs from C` ⊗ C`, and the
outputs are single bits.).

When we consider entangled strategies for quantum-input games, there can be a resource en-
tangled state, which is some state |ψ〉AB ∈ Cd ⊗ Cd. Note that this resource entanglement is
distinguished from any entanglement that might be embodied by the input data that Alice and
Bob receive. Thus, for a general entangled strategy, Alice and Bob are performing local measure-
ments on |φk〉AB ⊗ |ψ〉AB, where |φk〉AB is the input data, and k ∈ {0, . . . ,m − 1} is unknown to
them.
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12.1 A simple illustrative example of a quantum-input nonlocal game

The quantum-input nonlocal game presented here helps illustrate our definitions.
Consider the quantum-input nonlocal game where the inputs are qubits, the outputs are bits,

and the possible input states are

|φ0〉AB = 1√
2
|0〉A|0〉B + 1√

2
|1〉A|1〉B (226)

|φ1〉AB = 1√
2
|0〉A|0〉B − 1√

2
|1〉A|1〉B, (227)

where Alice receives the first qubit as her input and Bob receives the second qubit as his input. Let
a, b ∈ {0, 1} denote Alice and Bob’s respective output bits. The winning condition is defined as:

a⊕ b =

{
0 if the input is |φ0〉
1 if the input is |φ1〉.

(228)

For the above example, it is not difficult to prove that neither Alice nor Bob can acquire any
information about k from their local measurements. Moreover, the most trivial strategy, where
they measure in the computational basis succeeds with probability only 1

2 .
Nevertheless, there is a simple strategy, that requires no resource entanglement: Alice and Bob

each measure their qubit in the Hadamard basis.

12.2 A quantum-input nonlocal game that requires infinite entanglement

Consider the quantum-input nonlocal game (that originated in [15] and is a simplification of the
earlier result in [13]) where the inputs are qutrits, the outputs are bits, and the possible input
states are

|φ0〉AB = 1√
2
|0〉A|0〉B + 1

2

(
|1〉A|1〉B + |2〉A|2〉B

)
(229)

|φ1〉AB = 1√
2
|0〉A|0〉B − 1

2

(
|1〉A|1〉B + |2〉A|2〉B

)
. (230)

Let a, b ∈ {0, 1} denote Alice and Bob’s respective output bits. The winning condition is defined
as:

a⊕ b =

{
0 if the input is |φ0〉
1 if the input is |φ1〉.

(231)

At first glance, this game may look like a slight variant of the quantum-input nonlocal game of
the previous section; however, the following two theorems show that this game has a remarkable
property.

Theorem 12.1. For any ε > 0, there exists an extangled strategy attaining success probability at
least 1− ε.

Theorem 12.2. The local dimension of the resource entanglement required to attain success prob-
ability 1− ε approaches ∞ as ε→ 0.

Prior to proving these theorems, we introduce a concept called embezzlement in the next section.
Following this, we will prove the theorems.
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12.3 Embezzlement of entanglement

It is well known that an entangled quantum state cannot be produced by local operations alone.
Embezzlement [17] is a process where an entangled state is produced by local operations from a
catalyst state in a manner in which the catalyst is almost undisturbed. Associated with each such
process is a precision parameter ε > 0 and the catalyst is preserved within fidelity 1− ε.

The entanglement entropy of the combined state that is produced cannot exceed that of the
catalyst. The name embezzlement reflects the fact that the protocol “steals” entanglement from
the catalyst in order to produce entanglement elsewhere, but in a manner that is difficult to detect.
A formal definition of embezzlement (of a 1√

2
|00〉+ 1√

2
|11〉 state) is as follows.

Definition 12.3. For ε ≥ 0, an ε-approximate embezzlement strategy for 1√
2
|00〉+ 1√

2
|11〉 is a triple

(UA, UB, |ψ〉AB) where UA, UB ∈ C2 ⊗ Cd×d are unitary and |ψ〉 ∈ Cd ⊗ Cd such that the fidelity
between

|φideal〉AB =
(

1√
2
|00〉AB + 1√

2
|11〉AB

)
⊗ |ψ〉AB (232)

and

|φactual〉AB = (UA ⊗ UB)
(
|00〉AB ⊗ |ψ〉AB

)
(233)

is at least 1− ε.

The above definition is for the target state 1√
2
|00〉AB + 1√

2
|11〉AB; there is a similar definition

any other target state9.

12.3.1 Strategy for embezzling 1√
2
|00〉+ 1√

2
|11〉

Here we show that, for any ε > 0, there exists a simple construction of an ε-approximate embezzle-
ment strategy for 1√

2
|00〉+ 1√

2
|11〉. Our construction uses entanglement dimension exp

(
O(1/ε)

)
.

Let m ∈ N be given (we will set the value of m as a function of ε later). For each k ∈
{0, 1, . . . ,m}, define the 2-qubit bipartite state

|Θk〉 = cos
( kπ

4m

)
|00〉AB + sin

( kπ
4m

)
|11〉AB, (234)

where Alice has the first qubit and Bob has the second qubit.
Note that |Θ0〉 = |00〉AB and |Θm〉 = 1√

2
|00〉AB + 1√

2
|11〉AB. Also, for all k ∈ {1, . . . ,m},

〈Θk|Θk−1〉 = cos(π/4m) > 1− c/m2, (235)

for some constant c > 0.
Let Alice and Bob’s shared entanglement consist of m qubits each, in states |Θ1〉, . . . , |Θm〉.

I.e., their shared state is |Ψ〉AB = |Θ1〉 ⊗ · · · ⊗ |Θm〉.
We will define local unitaries UA and UB (each acting on m+ 1 qubits) such that

(UA ⊗ UB)|00〉AB ⊗ |Ψ〉AB =
(
|00〉AB + |11〉AB

)
⊗ |Ψ′〉AB, (236)

9In fact, [17] considers a notion of a “universal” embezzling state.
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where 〈Ψ|Ψ′〉 > 1−c/m. Let UA and UB each be the right cyclic shift (of the m+1 qubits), i.e., the
mapping on computational basis states |x0, x1, x2, . . . , xm〉 7→ |xm, x0, x1, . . . , xm−1〉. Then, since

(UA ⊗ UB)|Θ0〉 ⊗ |Θ1〉 ⊗ · · · ⊗ |Θm〉 = |Θm〉 ⊗ |Θ0〉 ⊗ · · · ⊗ |Θm−1〉, (237)

it follows that

(UA ⊗ UB)|00〉AB ⊗ |Ψ〉AB =
(
|00〉AB + |11〉AB

)
⊗ |Ψ′〉AB, (238)

where |Ψ′〉AB = |Θ0〉 ⊗ · · · ⊗ |Θm−1〉. Note that

〈Ψ|Ψ′〉 = 〈Θ1|Θ0〉 · · · 〈Θm|Θm−1〉 >
(
1− c/m2

)m
> 1− c/m. (239)

In order to obtain fidelity 1− ε, it suffices to set m = c/ε in the above, in which case the local
dimension of the catalyst state is 2c/ε = exp

(
O(1/ε)

)
.

12.3.2 Entanglement cost of embezzling 1√
2
|00〉+ 1√

2
|11〉

Here we show that, in order to attain success probability ε > 0, the local dimension of the catalyst
must be exp

(
Ω(1/

√
ε)
)

(i.e., ≥ exp
(
c/
√
ε
)

for some constant c > 0).
Our proof is based on the continuity of the von Neumann entropy function as embodied in the

so-called Fannes inequality, which states that, for any density operators ρ, σ ∈ Cd×d,

|S(ρ)− S(σ)| ≤ δ log d+O
(
δ log(1/δ)

)
, (240)

where S(·) is the von Neumann entropy function, and δ = |ρ − σ|1 (the trace distance between δ
and σ). Note that, for any fixed d, the right side of Eq (240) approaches zero as δ → 0 (where we
use the fact that limδ→0 δ log(1/δ) = 0). Intuitively, Eq. (240) says that, as two states approach
each other in trace distance, their von Neumann entropies also approach each other.

If terms of fidelity, if the fidelity between ρ and σ is ≥ 1− ε then their trace distance δ satisfies
δ ≤

√
1− (1− ε)2 ≤

√
2ε. Therefore, two states being close to each other in terms of fidelity also

have von Neumann entropies close to each other.
Now consider the states

ρ = TrB

(
|φideal〉〈φideal|AB

)
(241)

σ = TrB

(
|φactual〉〈φactual|AB

)
, (242)

where |φideal〉AB and |φactual〉AB are as in defnition 12.3. That is, ρ is the density operator of the
idealized state that the embezzlement strategy is approximating, but with all the data on Bob’s side
traced out. And σ is the density operator of the actual state that is the output of the embezzlement
strategy, again with all the data on Bob’s side traced out. We now show that, for catalyst state
|ψ〉AB,

S(ρ) = 1 + S
(

TrB
(
|ψ〉〈ψ|AB

))
(243)

S(σ) = S
(

TrB
(
|ψ〉〈ψ|AB

))
. (244)
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Eq. (243) holds because

ρ =

(
1
2 0

0 1
2

)
⊗ TrB

(
|ψ〉〈ψ|AB

)
(245)

and Eq. (244) holds because local unitary operations UA and UB do not affect the Schmidt
coefficients—and hence do not affect the value of S(·).

Therefore, for an ε-approximate embezzlement strategy, the left side of inequality (240) is 1
whereas, the right side approaches 0 as ε → 0. How is that possible? It is possible, because of
the dimensional factor log d in Eq. (240). As ε → 0, it must be the case the d → ∞ in order for
Eq. (240) to hold. Quantitatively, we have

1 ≤
√
ε log d+O(

√
ε log ε), (246)

from which d ≥ exp
(
Ω(1/

√
ε)
)

can be deduced.

12.4 Proof of Theorem 12.1

Here we prove Theorems 12.1 from section 12.2.
We can express the inputs to the game in section 12.2 in terms of two qubits rather than trits:

|φ0〉AB = 1√
2
|00〉AB|00〉AB + 1√

2
|11〉AB

(
1√
2
|00〉AB + 1√

2
|11〉AB

)
(247)

|φ1〉AB = 1√
2
|00〉AB|00〉AB − 1√

2
|11〉AB

(
1√
2
|00〉AB + 1√

2
|11〉AB

)
. (248)

This is equivalent to the game in section 12.2.
A way of interpreting the states in Eqns. (247)(248) is that the first qubit of Alice/Bob indicates

whether or not their second qubit is entangled or in a state |0〉. This suggests the following strategy,
based on embezzlement. Let (UA, UB, |ψ〉AB) be an an ε-approximate embezzlement strategy and
let Alice and Bob’s resource-entanglement be |ψ〉AB. The initial state of the system (the input data
and the resource-entanglement) is

|φk〉AB|ψ〉AB =
(

1√
2
|00〉AB|00〉AB + (−1)k 1√

2
|11〉AB

(
1√
2
|00〉AB + 1√

2
|11〉AB

))
|ψ〉AB (249)

where k ∈ {0, 1} is unknown to Alice and Bob. First, Alice (respectively, Bob) performs a controlled-
UA (resp. controlled-UB), controlled on her (resp. his) first qubit being in state |0〉. Thus Alice and
Bob’s unitary operations are [

UA 0
0 I

]
and

[
UB 0
0 I

]
. (250)

The system after this operation is in state that is approximately(
1√
2
|00〉AB

(
1√
2
|00〉AB + 1√

2
|11〉AB

)
+ (−1)k 1√

2
|11〉AB

(
1√
2
|00〉AB + 1√

2
|11〉AB

))
|ψ〉AB (251)

=
(

1√
2
|00〉AB + (−1)k 1√

2
|11〉AB

)(
1√
2
|00〉AB + 1√

2
|11〉AB

)
|ψ〉AB (252)

within fidelity 1 − ε/2. Next, Alice and Bob measure their first qubits in the Hadamard basis,
to produce outputs a and b such that a ⊕ b = k with probability 1 − O(

√
ε). The smaller the
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proximity parameter ε of their embezzlement strategy, the closer the success probability is to 1.
This completes the proof of Theorem 12.1.

Note that the above strategy requires entanglement dimension approaching∞ as ε→ 0. So far,
we have not ruled out the possibility of there being a different strategy for the game that attains
the same success probability with entanglement size bounded by a constant; however, we next give
a proof of Theorem 12.2.

12.5 Proof of Theorem 12.2

Consider any protocol for the game in section 12.2. Without loss of generality, this measurement
can be expressed as a pair of local unitaries VA and VB followed by Alice and Bob each measuring
the first qubit of their local system. The initial state of the system is |φk〉AB|ψ〉AB, where |φk〉AB
is the input state (with k ∈ {0, 1} unknown) and |ψ〉AB is the resource entanglement.

Also, after applying VA ⊗ VB, but before measuring, the state is of the form

(VA ⊗ VB)|φk〉AB|ψ〉AB (253)

= α00|00〉AB|S00〉AB + α01|01〉AB|S01〉AB + α10|10〉AB|S10〉AB + α11|11〉AB|S11〉AB, (254)

for some states |S00〉AB, |S01〉AB, |S10〉AB, |S11〉AB, and some α00, α01, α10, α11 ≥ 0 such that
α2

00 +α2
01 +α2

10 +α2
11 = 1. Since the probability that the protocol succeeds is at least 1− ε, it must

hold that {
α2

00 + α2
11 ≥ 1− ε and α2

01 + α2
10 ≤ ε if k = 0

α2
00 + α2

11 ≤ ε and α2
01 + α2

10 ≥ 1− ε if k = 1.
(255)

Suppose that, instead of measuring this state, Alice and Bob each apply Z gates to their first
qubits. Then the state becomes |µ〉AB, where

|µ〉AB =
(
(ZA ⊗ I)⊗ (ZB ⊗ I)

)
(VA ⊗ VB)|φk〉AB|ψ〉AB (256)

= α00|00〉AB|S00〉AB + α01|01〉AB|S01〉AB − α10|10〉AB|S10〉AB − α11|11〉AB|S11〉AB. (257)

Note that {
〈µ|VA ⊗ VB

(
|φk〉AB|ψ〉AB

)
= α2

00 + α2
11 − α2

01 − α2
10 ≥ 1− 2ε if k = 0

〈µ|VA ⊗ VB
(
−|φk〉AB|ψ〉AB

)
= −α2

00 − α2
11 + α2

01 + α2
10 ≥ 1− 2ε if k = 1.

(258)

Therefore, applying V ∗A ⊗ V ∗B to |µ〉AB yields{
|φk〉AB|ψ〉AB within fidelity 1− 2ε if k = 0

−|φk〉AB|ψ〉AB within fidelity 1− 2ε if k = 1.
(259)

To summarize, for k ∈ {0, 1},(
V ∗A ⊗ V ∗B)((ZA ⊗ I)⊗ (ZB ⊗ I)

)
(VA ⊗ VB)|φk〉AB|ψ〉AB = (−1)k|φk〉AB|ψ〉AB (260)

within fidelity 1− 2ε.
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It follows that if we apply the local operations
(
V ∗A⊗V ∗B)((ZA⊗ I)⊗ (ZB ⊗ I)

)
(VA⊗VB) to the

superpostion (
1√
2
|φ0〉AB + 1√

2
|φ1〉AB

)
|ψ〉AB (261)

then we obtain as output (
1√
2
|φ0〉AB − 1√

2
|φ1〉AB

)
|ψ〉AB (262)

within fidelity 1−
√

2 2ε = 1−
√

8ε.
But, since

1√
2
|φ0〉AB + 1√

2
|φ1〉AB = |00〉AB|00〉AB (263)

1√
2
|φ0〉AB − 1√

2
|φ1〉AB = |11〉AB

(
1√
2
|00〉AB + 1√

2
|11〉AB

)
, (264)

the local operations are mapping |00〉AB|00〉AB|ψ〉AB to |11〉AB
(

1√
2
|00〉AB+ 1√

2
|11〉AB

)
|ψ〉AB within

fidelity 1 −
√

8ε. Therefore, we have a
√

8ε-approximate embezzling10 strategy. Therefore, by the
lower bound in section 12.3.2, the local dimension of the resource entanglement |ψ〉AB must satisfy
d ≥ exp

(
Ω(1/

√
ε)
)
. This completes the proof of Theorem 12.2.

12.6 Note about related results for nonlocal games with classical input

The above sections showed that there is a quantum-input nonlocal game, based on the idea of quan-
tum embezzlement, which has the property that its maximum success probability only occurs in the
limit of infinite entanglement. Does this have any impact on the standard nonlocal game framework
(where the inputs are classical)? In Ref. [10], such a classical game (based on embezzlement) is
obtained, albeit a game with three players, rather than two

13 States in tensor products of infinite dimensional Hilbert spaces

The idea that nonlocal games can exist that attain their maximum success probability only in
the limit of infinite entanglement (i.e., only in the limit of strategies with ever increasing finite
entanglement) suggests that the notion of “infinite entanglement” merits exploration. For example,
with infinite entanglement, can “perfect embezzlement” (definition 12.3 with ε = 0) be performed?
Can the quantum-input nonlocal game defined in section 12.2 be won with success probability 1?
It turns out that the answer depends on how infinite entanglement is defined. In this section, and
the next, we explore two models of infinite entanglement.

First, suppose that we extend the framework that has been considered so far by allowing our
Hilbert spaces to be infinite dimensional. Every Hilbert space H has an orthonormal basis, which
is a set of the form {|eγ〉 ∈ H : γ ∈ Γ} such that:

• For all γ1, γ2 ∈ Γ,

〈eγ1 |eγ2〉 =

{
1 if γ1 = γ2

0 if γ1 6= γ2.
(265)

10Technically, to meet the definition of embezzlement, we should also apply local X gates to convert the |11〉AB in
the output to |00〉AB , which is easy to do.
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• For all v ∈ H, there exist unique coefficients αγ ∈ C (for all γ ∈ Γ) such that

v =
∑
γ∈Γ

αγ |eγ〉, (266)

where the infinite sum is defined as the limit of the sums over finite subsets of Γ (where
convergence is defined in terms of the Hilbert space norm). Note that Eq. (266) implies that∑

γ∈Γ

|αγ |2 = ‖v‖2. (267)

When a Hilbert space has an orthonormal basis of finite or countably infinite size, it is called
separable. It makes sense to have Hilbert spaces that are not separable, i.e., where Γ is uncountably
infinite; however, for such spaces, every particular element is a linear combination of some countably
infinite subset of the orthonormal basis elements. This holds because the left side of Eq. (267)
cannot converge if more than a countably infinite number of the coefficients αγ are nonzero (we no
not prove this here).

Suppose that we have two separate systems, one with Hilbert space HA and orthonormal basis
{|eγ〉 : γ ∈ Γ} and the other with Hilbert space HB and orthonormal basis {|e′γ′〉 : γ′ ∈ Γ′}. Then
the compound system has Hilbert space HA ⊗HB associated with it, whose orthonormal basis is
{|eγ〉 ⊗ |e′γ′〉 : γ ∈ Γ and γ′ ∈ Γ′}.

Every state |ψ〉 ∈ HA ⊗HB has a Schmidt decomposition of the form

|ψ〉 =
∑
k∈N

αk|φk〉 ⊗ |µk〉, (268)

where |φ1〉, |φ2〉, · · · ∈ HA are orthonormal, |µ1〉, |µ2〉, · · · ∈ HB are orthonormal, and∑
k∈N
|αk|2 = 1. (269)

Note that the number of Schmidt coefficients is countable, even if HA and HB have uncountably
infinite dimension; a proof of this is in Appendix A of [5].

This can be deemed as “infinitely entangled” if it has infinite Schmidt rank (i.e., infinitely many
of the αk are nonzero), or if its entanglement entropy, defined as∑

k∈N
|αk|2 log |αk|2, (270)

is infinite.
It turns out that perfect embezzlement is not possible with such a catalyst state. A rough sketch

of the proof of this is that |00〉AB|ψ〉AB has Schmidt coefficients λ1, λ2, λ3 . . . , whereas
(

1√
2
|00〉AB+

1√
2
|11〉AB

)
|ψ〉AB has Schmidt coefficients 1√

2
λ1,

1√
2
λ1,

1√
2
λ2,

1√
2
λ2, . . . , and local operations cannot

affect the Schmidt coefficients. In a similar spirit, it can be proved that no entangled state in the
tensor product of two Hilbert spaces (however large their dimension) can be used to play the game
in section 12.2 with success probability 1.
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So far, we have some negative results, indicating what this infinite entanglement cannot accom-
plish. It turns out that we can accomplish interesting things with states that can be informally
thought of as(

1√
2
|00〉AB + 1√

2
|11〉AB

)
⊗
(

1√
2
|00〉AB + 1√

2
|11〉AB

)
⊗
(

1√
2
|00〉AB + 1√

2
|11〉AB

)
⊗ · · · , (271)

by which we mean Alice and Bob each have a countably infinite number of qubits and, for each
k ∈ N, Alice’s k-th qubit is entangled with Bob’s k-th qubit. However, such as state does not have
a Schmidt decomposition of the form of Eq. (268). In fact, such a state cannot be expressed as a
vector in the tensor product of any two Hilbert spaces HA and HB (even if they are uncountably
infinite dimensional). We need a different formalism to capture states like the above (as well as
some other interesting states), which we develop in the next section.

14 Abstract states on C*-algebras

Our goal here is to explain a notion of entanglement that goes beyond the scope of what can be
expressed in the tensor product model. It is natural to express this notion using an object called
a C*-algebra (but we do not need to use the theory of C*-algebras in a deep way).

For readers unfamiliar with C*-algebras (which will be formally defined in section 14.1), let us
begin by considering what they are in broad terms and how one is naturally led to such an object
by the mathematics of quantum information.

First, it is clear that much of the mathematics that arises in quantum information concerns
Hilbert spaces and linear operators acting on them. And a Hilbert space is a vector space with a
norm and additional structure arising from the norm (such as being topologically complete).

In the context of linear algebra, an object called an algebra (or sometimes a linear algebra)
is an abstraction that captures the structure of linear operators on a vector space, but without
the explicit presence of a vector space. A C*-algebra can be viewed as simply an analogue of an
algebra, but for operators on a Hilbert space rather than for operators on a vector space. In other
words, a C*-algebra is an abstraction that captures the structure of a set of operators acting on a
Hilbert space, but without the explicit presence of a Hilbert space.

Information about the theory of C*-algebras can be found in [2, 8, 11]. The next few subsections
is a brief primer on C*-algebras as they pertain to our notions of entanglement.

14.1 Definition of a C*-algebra

A C*-algebra A is a set with the following properties:

• A is an algebra. This means it is a vector space that also has a multiplication operation,
where a(bc) = (ab)c, and a(b+ c) = ab+ ac, for all a, b, c ∈ A.

• A also has a *-map, such that a∗∗ = a, (a+λb)∗ = a∗+λb∗, and (ab)∗ = b∗a∗, for all a, b ∈ A
and λ ∈ C. An algebra with such a *-map is called a ∗-algebra.

• A also has a norm ‖ · ‖ satisfying ‖a‖ ≥ 0 (with equality if and only if a = 0), ‖a + b‖ ≤
‖a‖+ ‖b‖, and ‖ab‖ ≤ ‖a‖‖b‖, for all a, b, c ∈ A; and A is complete with respect to the norm.
An algebra with such a norm is called a Banach algebra.
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• The norm and *-map satisfy ‖a∗a‖ = ‖a‖2, for all a ∈ A.

All the C*-algebras that we are interested in are unital, which means they have a multiplicative
identity, that we denote as I.

14.1.1 Example 1: the concrete C*-algebra of operators on a Hilbert space

For a Hilbert space H, define B(H) as the set of all bounded linear operators on H, where a linear
operator A is bounded if

sup
|ψ〉∈H
‖|ψ〉‖=1

∥∥A|ψ〉∥∥ is finite. (272)

The set B(H) is a C*-algebra. More generally, any subset A ⊆ B(H) that is closed with respect
to the algebraic operations (i.e., linear combinations, product, and the *-map) and closed with
respect to the norm is a C*-algebra.

14.1.2 Example 2: the CAR algebra

The so-called CAR algebra is named as an abbreviation of “canonical anti-commutation relations”
(see [8] for the standard mathematical construction of this algebra).

Here, we show how to construct the CAR algebra in terms of infinite tensor products of Pauli
operators of finite weight, where the Pauli operators are I = ( 1 0

0 1 ), X = ( 0 1
1 0 ), Z = ( 1 0

0 −1 ),
W = ( 0 −1

1 0 ) = XZ, and the weight of such an infinite tensor product is the number of instances
of X, Z, or W . For example, I ⊗ X ⊗W ⊗ I ⊗ Z ⊗ I ⊗ I ⊗ · · · has weight 3. We can denote
each such operator as XaZb, where a, b ∈ {0, 1}∗, where it is understood that each string is padded
on the right with an infinite sequence of 0s. Thus, XaZb = (Xa1 ⊗ Xa2 ⊗ · · · )(Zb1 ⊗ Zb2 ⊗ · · · ).
The above example is XaZb, where a = 011 ≡ 011000 . . . and b = 00101 ≡ 00101000 . . . . Define
the set of generators G = {XaZb : a, b ∈ {0, 1}∗} and CG to be the set of all (finite) linear
combinations11 of elements of G. CG is closed under multiplication and is a ∗-algebra. (Note that
{±XaZb : a, b ∈ {0, 1}∗} ⊂ CG is a multiplicative group that we can think of as an infinite version
of the Pauli group; however, G itself is not closed under multiplication.)

For each element A ∈ CG, there is an m ∈ N and M ∈ C2m×2m such that A = M ⊗ I ⊗ I ⊗ · · · .
Define a norm on CG as ‖A‖ = ‖M‖ (i.e., the spectral norm of M as an operator on C2m). The
CAR algebra is the completion of CG with respect to this norm.

Note that, in the aforementioned description of the elements of the generating set G as XaZb,
we have used N as the index set for the bits of a = a1a2 . . . and b = b1b2 . . . ; however, any countably
infinite set may be used. It is sometimes convenient to use Z as the index set, which corresponds
to thinking of the infinite tensor products of Paulis as two-way infinite strings.

14.1.3 Positive elements

We say that a ∈ A is positive, denoted a ≥ 0, if there exists b ∈ A such that a = b∗b. Note that, for
the case of concrete C*-algebra of operators on a Hilbert space, this is consistent with the standard
definition of positive semidefinite.

11This is well-defined because there are finitely many terms, each of which has all but finitely many factors of I.
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14.1.4 ∗-isomorphisms and ∗-automorphisms

Definition 14.1. A ∗-isomorphism from A1 to A2 (C*-algebras) is a map π : A1 → A2 that
preserves the algebraic structure and the norm. That is, π(a+λb) = π(a)+λπ(b), π(ab) = π(a)π(b),
π(a∗) = π(a)∗, and ‖π(a)‖ = ‖a‖, for all a, b ∈ A1 and λ ∈ C.

It can be shown that all ∗-isomorphisms are injective.
A remarkable result, commonly known as the GNS Theorem12, is that every C*-algebra can be

viewed as a subset of the bounded operators on some Hilbert space in the following sense.

Theorem 14.2 (Gelfand, Naimark [9]; Segal [16]). For any C*-algebra A, there exists a Hilbert
space H and a ∗-isomorphism π : A → B(H).

However, it should be noted that, in general, the underlying Hilbert space can be more difficult
to describe directly than the C*-algebra.

Definition 14.3. A *-automorphism of a C*-algebra A is a ∗-isomorphism from A to itself.

An example of a ∗-automorphism α : A → A is conjugation by some unitary u ∈ A (where
unitary means uu∗ = u∗u = I). That is, αu(a) = u∗au. These are called inner automorphisms.
Automorphisms that are not inner are called outer automorphisms. An example of an outer
automorphism for the CAR algebra is the “bilateral-shift of the qubits” operation that maps XaZb

(where a, b : Z→ {0, 1}) toXa′Zb
′
, where a′j = aj+1 and b′j = bj+1. More generally any permutation

of the index set corresponds to a ∗-automorphism.

14.2 Definition of a state

Let us first note that a desirable property of a “state” is to assign meaningful values to all potential
POVM measurement elements; in other words, given a state, the notion of a POVM measurement
on it should be well-defined.

Definition 14.4. An (abstract) state on a C*-algebra A is a linear functional s : A → C with two
additional properties:

• s is positive. By this we mean that, for a ∈ A, if a ≥ 0 then s(a) ≥ 0.

• s is unital. By this we mean that s(I) = 1.

Note that, in the case of a concrete C*-algebra A ⊆ B(H), for any unit vector |ψ〉 ∈ H, defining
s : A → C as

s(A) = 〈ψ|A|ψ〉 (273)

results in a state in the sense of definition 14.4. Also, for a density operator ρ ∈ B(H), defining

s(A) = Tr(Aρ) (274)

results in a state in the sense of definition 14.4.

12There are different statements of this theorem, which all imply the statement given here.
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14.3 Definition of a POVM measurement

Given a C*-algebraA, a POVM measurement for the system is a1, . . . , am ∈ A such that a1, . . . , am ≥
0 and

∑
k ak = I. (It is also possible to define POVM measurements with an infinite number of

outcomes, but we do not do so here.)
Given a state s : A → C, applying such a POVM to this state results in an outcome k ∈

{1, . . . ,m}, where the respective outcome probabilities are s(a1), . . . , s(am).
This measurement is destructive in the sense that the state no longer exists after the measure-

ment is performed. In fact there is not even a well-defined “collapsed state”.

14.4 Definition of a reversible operation

In order to have a full-fledged model of information processing, we also need to include dynamics,
such as the unitary operations that arise in conventional quantum information13.

14.4.1 Inner automorphisms (as reversible operations on states)

The simplest kind of reversible operation that we can define in the context of C*-algebraic registers
are the unitary operations. What is the effect of applying a unitary u ∈ A to a state s : A → C?

Definition 14.5. For a unitary u ∈ A, applying u to an input state s : A → C produces as output
the state s′ : A → C, where

s′(a) = s(u∗au). (275)

It is not difficult to show that, in the general case of an abstract C*-algebra, the output s′

satisfies the condition of being a state.
Note that definition 14.5 makes sense in the concrete case, where s(A) = 〈ψ|A|ψ〉, and U is a

unitary operator on H. Intuitively, there are two equivalent ways of viewing

s′(A) = 〈ψ|U∗AU |ψ〉. (276)

We can view the state vector as changing from |ψ〉 to U |ψ〉; or we can imagine that the state
vector stays put but the measurement operator changes from A to U∗AU (this latter perspective
is sometimes referred to as the “Heisenberg picture”).

14.4.2 Outer automorphisms (as reversible operations on states)

Not all reversible operations are of the form of definition 14.5. In general, we can take any ∗-
automorphism π : A → A and obtain a reversible operation as follows.

Definition 14.6. For a ∗-automorphism π : A → A, applying π to an input state s : A → C
produces as output the state s′ : A → C, where

s′(a) = s(π(a)). (277)

13There are other kinds of operations, such as channels, or other notions of measurement that produce an output
state in addition to classical information. It is interesting to consider these, though they can in principle be modelled
in terms of unitary operations on larger systems and POVM measurements. For simplicity, we focus on only POVM
measurements and reversible operations here.
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A unitary operation is a special case of a ∗-automorphism defined as π(a) = u∗au. Any ∗-
automorphism that can be so expressed is called an inner automorphism; otherwise, it is called an
outer automorphism.

Recall that, for the CAR algebra, the “bilateral left shift of the qubits” (explained in sec-
tion 14.1.4) is an example of an outer automorphism. Intuitively, it can be thought of as shifting
all the qubits left by one position.

14.5 Definition of a register

We now have the ingredients to define a register associated with a C*-algebra. In operational terms:

• The system can be set to any abstract state on the C*-algebra.

• The state can be modified by applying any ∗-automorphism.

• The state can be measured by applying a POVM measurement to it.

There is no well-defined residual state after a POVM measurement, so this particular operational
framework requires a reset after a measurement in order to be meaningful. (There are various ways
of enhancing the framework to include a well-defined “collapsed state” after a measurement, but
we do not pursue this here.)

14.6 Definition of a compound register

If A and B are two C*-algebraic registers with associated C*-algebras A and B then we can consider
the compound register (A,B), which is the joint system. The C*-algebra associated with (A,B) is
the tensor product of A and B, which requires some discussion.

In general, there are multiple ways of defining the tensor product of two C*-algebras. Each
tensor product is defined as the completion of the ∗-algebra generated by the set of formal tensor
products

A⊗ B = {a⊗ b : a ∈ A and b ∈ B}, (278)

according to some norm on A ⊗ B (note that A ⊗ B itself is not a C*-algebra). For general C*-
algebras, there are different choices for this norm, each resulting in a different tensor product
C*-algebra; however, for the CAR algebra, all of these norms coincide, so there is a unique tensor
product for the CAR algebra (this follows from the CAR algebra being “hyperfinite”, which is
defined in [8]).

Here we define the min-norm, resulting in the min tensor product14, denoted as A ⊗min B
(another tensor product, called the max tensor product is important in the context of other C*-
algebras, and will be introduced later, when they become relevant to us).

Definition 14.7. For C*-algebras A and B, define the min-norm on A⊗B as, for any x ∈ A⊗B,

‖x‖min = sup
{
‖(πA ⊗ πB)(x)‖ : πA : A → B(HA) and πB : A → B(HB)

}
(279)

where πA ⊗ πB : A ⊗ B → B(HA ⊗ HB) is the ∗-homomorphism satisfying (πA ⊗ πB)(A ⊗ B) =
πA(A) ⊗ πB(B), and the supremum is over all Hilbert spaces HA and HB and ∗-homomorphisms
πA : A → B(HA) and πB : B → B(HB).

14Also known as the spatial tensor product.
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Note that the supremum is over a non-empty set because, by the GNS Theorem (Theorem 14.2),
there exist ∗-homomorphisms πA : A → B(HA) and πB : B → B(HB), for some Hilbert spaces HA
and HB.

A final remark here is that compound registers consisting of more than two components can
also be defined as a straightforward extension to the above. In particular, all of the tensor products
on C*-algebras are associative, e.g., (A⊗min B)⊗min C = A⊗min (B ⊗min C).

14.6.1 Product states

Given abstract states sA : A → C (on register A) and sB : B → C (on register B), define the product
state sA ⊗ sB : A⊗min B → C (on register (A,B)) as (sA ⊗ sB)(a ⊗ b) = sA(a)sB(b) for all a ∈ A
and b ∈ B. This extends to the full domain A⊗min B by the linearity and continuity of s′.

14.6.2 Localized reversible operations

Suppose that A and B are registers with respective C*-algebras A and B. Let s : A ⊗min B → C
be a state on the compound register (A,B). Let π : A → A be a ∗-automorphism representing a
reversible operation on A. Then applying π to the joint system is defined as follows. We can extend
π to π ⊗ I : A ⊗min B → A ⊗min B defined as (π ⊗ I)(a ⊗ b) = π(a) ⊗ b, for all a ∈ A and b ∈ B.
Then the local operation π changes s to s′ : A⊗min B → C, where s′(x) = s

(
(π ⊗ I)(x)

)
.

14.6.3 Partial trace

Given a state s : A ⊗min B → C, define the partial trace TrB[s] : A → C as TrB[s](a) = s(a ⊗ I)
and TrA[s] : B → C as TrA[s](b) = s(I ⊗ b).

Note that s : A ⊗min B → C is a product state if and only if s(a ⊗ b) = TrB[s](a)TrA[s](b) for
all a ∈ A and b ∈ B.

14.6.4 Localized measurements

Here we address what happens if a POVM measurement on register A is performed in the context
of the compound register (A,B). Let a1, . . . , am ∈ A be a POVM measurement for register A.
Applying this measurement to the state s : A⊗min B → C produces two items: a classical outcome
k ∈ {1, . . . ,m}, where each k arises with probability s(ak ⊗ I); and a corresponding residual
quantum state on B, which is sk : B → C defined as sk(b) = s(ak ⊗ b)/s(ak ⊗ I), for all b ∈ B.

14.7 Embezzlement in the C*-algebraic model

Here we show how to perform perfect embezzlement, as well as coherent embezzlement, in the
C*-algebraic model. Intuitively, the idea is simple: informally take the state(

|00〉AB
)⊗∞(|00〉AB

)(
1√
2
|00〉AB + 1√

2
|11〉AB

)⊗∞
(280)

and Alice and Bob each perform a left shift of their qubits. The middle pair of qubits changes
from state |00〉 to state 1√

2
|00〉+ 1√

2
|11〉, while all the other qubits remain in the same state. This

cannot be formalized in terms of state vectors in tensor products of Hilbert spaces; however, it can
be formalized as abstract states on tensor products of C*-algebras.
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14.7.1 Expressing
(

1√
2
|00〉+ 1√

2
|11〉

)⊗∞
as an abstract state

We first define a state that can be intuitively thought of as a countably infinite tensor product of
states of the form |φ+〉 = 1√

2
|00〉+ 1√

2
|11〉. As noted in section 13, it is impossible to express such a

state as a vector in the tensor product of two Hilbert spaces (even if the Hilbert spaces are allowed
to have uncountably infinite dimension). However, as was essentially pointed out in [12], such a
state can be defined as an abstract state of two CAR-algebra registers sφ+ : A⊗min A → C. Set

sφ+((XaZb)⊗ (Xa′Zb
′
)) =

∞∏
j=1

〈φ+|(XajZbj )⊗ (Xa′jZb
′
j )|φ+〉 =

∞∏
j=1

δaj ,a′jδbj ,b′j , (281)

where δ is the Kronecker delta function. In [12], such a state is described as an example of the
notion of an “infinitely entangled state” and several of the properties of this state are explained.

14.7.2 Expressing |00〉⊗∞ as an abstract state

We also define an abstract state s00 : A⊗minA → C that corresponds to an infinite tensor product
of |00〉 = |0〉 ⊗ |0〉 states as

s00((XaZb)⊗ (Xa′Zb
′
)) =

−∞∏
j=−1

〈00|(XajZbj )⊗ (Xa′jZb
′
j )|00〉 =

−∞∏
j=−1

(1− aj)(1− a′j). (282)

Notice that are using the index set −N = {−1,−2, . . . } here (so as to be disjoint from the indices
used in the definition of sφ+ in section 14.7.1.

14.7.3 Embezzlement strategy

The resource-entanglement is scatalyst = s00 ⊗ sψ+ (the combination of s00 and sψ+). That is,

scatalyst((X
aZb)⊗ (Xa′Zb

′
)) =

−∞∏
j=−1

(1− aj)(1− a′j)
∞∏
j=1

δaj ,a′jδbj ,b′j , (283)

where a, b, a′, b′ : (−N) ∪ N→ C.
The initial state is |00〉 and the target state is |φ+〉.
If we express the combination of initial state and resource-entanglement by placing the |00〉

state “between” the s00 and sψ+ components of the resource state—using index value 0—then we
obtain

sinitial((X
aZb)⊗ (Xa′Zb

′
)) =

−∞∏
j=0

(1− aj)(1− a′j)
∞∏
j=1

δaj ,a′jδbj ,b′j , (284)

where a, b, a′, b′ : Z→ C.
In this same ordering, the final state should be

sfinal((X
aZb)⊗ (Xa′Zb

′
)) =

−∞∏
j=−1

(1− aj)(1− a′j)
∞∏
j=0

δaj ,a′jδbj ,b′j , (285)

which is accomplished by Alice and Bob each performing a bilateral left shift of the qubit positions.
These are localized ∗-automorphisms, which are explained is section 14.4.2.
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14.7.4 Coherent Embezzlement strategy

The proof of Theorem 12.1 is a reduction from an embezzlement strategy to a strategy for the
quantum-input game in section 12.2. In our current C*-algebraic framework, we can perform
embezzlement with success probability 1 (i.e., 1− ε, with ε = 0). In this case, that reduction yields
a strategy for coherent embezzlement with success probability 1−O(

√
ε) = 1.

15 Binary linear system games with infinite dimensional operator
solutions

We now return to BLS games. A binary linear system game (BLS game) consists of n {0, 1}-valued
variables v1, . . . , vn and m constraints, each of which specifies whether a mod-2 sum of a subset
of the variables is 0 or 1. In multiplicative form, the variables are ±1-valued and each constraint
specifies whether or not a product of a subset of the variables is 1 or −1.

Recall that an operator solution to a BLS game is defined as follows.

Definition 15.1. An operator solution to a BLS game is a sequence of Hermitian operators
A1, . . . , An on a Hilbert space H such that:

• For all j, A2
j = I (that is, Aj is a binary observable).

• If variables vj and vk appear in the same constraint then Aj and Ak commute (we call this
local compatibility).

• For each constraint of the form vk1vk2 . . . vkr = (−1)b, the observables satisfy

Ak1Ak2 · · ·Akr = (−1)bI (286)

(we call this constraint satisfaction).

In section 1.4, we explained that a BLS game has a perfect strategy using entanglement in the
tensor product of Hilbert spaces model if and only if it has a finite dimensional operator solution
(i.e., where the Hilbert space in the above definition is finite dimensional).

Here we consider the case where a BLS game has an infinite dimensional operator solution (i.e.,
where the Hilbert space in the above definition is finite dimensional). We will first show that in
this case there is a perfect strategy in a commuting operator model of entanglement (which will
be defined), and then that this can be translated into a perfect strategy in the C*-algebraic model
(where the joint state is in the max-tensor product of the two registers, which will also be defined).
This work is based on [6].

15.1 Solution Group of a BLS game

The definition of an operator solution is similar to a presentation of a group (where the group
operation is multiplication), namely a set of generators and a set equations that they satisfy. One
respect in which an operator solution differs from a group presentation is in the presence of −I.
Although I very naturally corresponds to the group identity (that we’ll refer to as 1), −I does not
directly correspond to a meaningful element of an abstract group (there is no −1). It turns out
that we can capture the properties of −1 that are relevant for our purposes by introducing a new

51



generator J with these properties: J2 = 1, J commutes with all the other generators, and J 6= 1.
A group presentation is defined in terms of equalities, not inequalities, so we need to set aside the
J 6= 1 condition for now, in the following definition (but the J 6= 1 condition will come up later).

Definition 15.2. The solution group of a BLS game is a sequence generators g1, . . . , gn, J such
that:

• For all j, g2
j = 1.

• If variables vj and vk appear in the same constraint then gjgkgjgk = 1 (i.e., gj and gk
commute).

• For each constraint of the form vk1vk2 . . . vkr = (−1)bI, we have

gk1gk2 · · · gkr = Jb. (287)

• J2 = 1 and, for all j, gjJgjJ = 1 (i.e., J and gj commute).

It turns out that solution group of the Magic Square game has finite size, but, in general, the
solution group of a BLS game can be finite or countably infinite.

For the BLS game in part (c) of figure 3, there is no perfect strategy and this can be proven
by showing that there is no operator solution. The proof that there is no operator solution is by
deriving I = −I from the equations, a contradiction. In the language of solution groups, this is a
proof that the solution group of that game has the property that J = 1.

In fact, we show in the following lemma that, for any BLS game, if its solution group has the
property J = 1 then it has no operator solution. In contrapositive form, the statement is: if there
is an operator solution then J 6= 1.

Lemma 15.3 ([6]). If a BLS game has a commuting operator solution then its solution group has
the property that J 6= 1.

Proof. Note that any operator solution to a BLS game is a representation of its solution group that
maps J to −I. It follows that, if J = 1 in the solution group, then it’s operator solution has the
property that −I = I, a contradiction.

15.2 Definition of a commuting operator strategy

Definition 15.4. A commuting operator scenario is a triple (H,A,B), where H is a Hilbert space
and A,B ⊆ B(H) are two C*-algebras such that every operator in A commutes with every operator
in B.

Note that, whenever H has a tensor product structure H = HA ⊗ HB, A = B(HA) ⊗ I and
B = I ⊗B(HB) are mutually commuting, so we have a commuting operator scenario.

Definition 15.5. A commuting operator strategy for a nonlocal game exists in the context of a
commuting operator scenario (H,A,B), and consists of a state |ψ〉 ∈ H and measurement operators
for Alice in A and measurement operators for Bob in B.
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15.3 Operator solution implies a perfect commuting operator strategy

Our main result here is the following.

Theorem 15.6 ([6]). If a BLS game has an operator solution then there exists a perfect commuting-
operator strategy for the game.

Due to Lemma 15.3, it suffices to prove the following lemma.

Lemma 15.7 ([6]). If a BLS game has the property that, in its solution group, J 6= 1 then there is
a perfect commuting-operator strategy for the game.

Prior to proving Lemma 15.7, we establish the following definitions. Let G denote any group
whose size is finite or countably infinite.

Definition 15.8. The group algebra of G is the ∗-algebra of formal linear combinations of group
elements

CG =

{
m∑
j=1

αjgj : m ∈ N, g1, . . . , gm ∈ G, and α1, . . . , αm ∈ C

}
, (288)

where multiplication is in terms of the group multiplication, i.e.,(
m∑
j=1

αjgj

)(
m∑
k=1

α′kg
′
k

)
=

m∑
j=1

m∑
k=1

αjα
′
k (gjg

′
k), (289)

and the *-operation is in terms of group inverses, i.e.,(
m∑
j=1

αjgj

)∗
=

m∑
j=1

αj(gj)
−1. (290)

Definition 15.9. `2(G) denotes the Hilbert space

`2(G) =

{∑
g∈G

λg|g〉 :
∑
g∈G
|λg|2 is finite

}
. (291)

Note that, CG is defined in terms of true linear combinations of group elements (so the sums are
finite); whereas the “linear combinations” arising in `2(G) are actually square summable sequences
(so the sums are possibly infinite).

The group algebra CG acts on `2(G) in the following two natural ways: as multiplication from
the left; and as multiplication from the right. In each case, CG ⊆ B(`2(G)) can acquire the spectral
norm from `2(G) and the resulting closure is a C*-algebra.

Definition 15.10. The left regular C*-algebra of G, denoted as C∗λ(G), is the C*-algebra of
operators acting on `2(G) that is the closure of CG acting on `2(G) by left multiplication (i.e.,
g|h〉 7→ |gh〉).

Definition 15.11. The right regular C*-algebra of G, denoted as C∗ρ(G), is the C*-algebra of
operators acting on `2(G) that is the closure of CG acting on `2(G) by right multiplication (i.e.,
g|h〉 7→ |hg〉).
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Note that C∗λ(G), C∗ρ(G) ⊆ B(`2(G)) and they commute with each other, since |(g1h)g2〉 =
|g1(hg2)〉 for all g1, g2, h ∈ G.

Now we are ready to prove Lemma 15.7.

Proof of Lemma 15.7. Let G be the solution group of the BLS game. Let the commuting operator
scenario be

(
`2(G), C∗λ(G), C∗ρ(G)

)
(where `2(G), C∗λ(G), C∗ρ(G) are defined above). For clarity,

denote the generators of C∗λ(G) as Lg (g ∈ G), where Lg|h〉 = |gh〉; and denote the generators of
C∗ρ(G) as Rg (g ∈ G), where Rg|h〉 = |hg〉.

For the commuting operator strategy, set the resource state to

|ψ〉 =
|J〉 − |1〉√

2
. (292)

If Alice receives the constraint vk1 . . . vkm = (−1)b, she measures according to the binary observables
Lgk1

, . . . , Lgkm (which can be measured separately, since gk1 , . . . , gkm commute with each other).

Since gk1 · · · gkm = Jb, the product of the outcomes is equal to the outcome of measuring |ψ〉 with
respect to the binary observable LJb . Since LJb |ψ〉 = (−1)b|ψ〉, this outcome is +1 if b = 0 and −1
if b = 1. This implies that Alice’s output values satisfy the constraint.

If Bob receives variable vi, he measures with respect to observable Rgi . The outcome value will
be the same as Alice’s measurement with respect to the observable Lgi , since

RgiLgi |ψ〉 =
|giJgi〉 − |gigi〉√

2
(293)

=
|J〉 − |1〉√

2
(294)

= |ψ〉. (295)

This implies that Alice and Bob produce consistent values for the variable vi.

15.4 Commuting operator strategies vs. C*-algebraic strategies

In section 14.6, we defined compound registers in the C*-algebra framework in terms of the min-
tensor product of C*-algebras. Here, we show that any commuting-operator strategy can be con-
verted into a strategy with identical performance in the C*-algebra framework using the max-tensor
product.

First, we define the max-tensor product of two C*-algebras, A and B, as the completion of the
∗-algebra A⊗ B with respect to the max-norm, which is defined as follows.

Definition 15.12. For C*-algebras A and B, define the max-norm on A⊗B as, for any x ∈ A⊗B,

‖x‖max = sup
{
‖π(x)‖ : π : A⊗ B → B(H)

}
, (296)

where the supremum is over all Hilbert spaces H and ∗-homomorphisms π : A⊗ B → B(H).

Next we define what it means for two strategies to be equivalent.

Definition 15.13. Two strategies for nonlocal games with input sets S and T , and output sets A
and B are equivalent if, for all (s, t) ∈ S × T and (a, b) ∈ A×B, the probability of output (a, b) on
inputs (s, t) are the same.
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Clearly, if two strategies for a nonlocal game are equivalent then their success probability is the
same.

Now, we can formally state the result as follows.

Theorem 15.14. Let
{
H, |ψ〉, (Aa

s)s∈S,a∈A, (B
b
t)t∈T,b∈B

}
be a commuting operator strategy. Then

there exist C*-algebras A, B and an equivalent C*-algebraic strategy on registers with C*-algebras
A, B, and compound register with C*-algebra A⊗max B.

Prior to proving Theorem 15.14, we define a universal C*-algebra associated with the strategies
any nonlocal game with (finite) input sets S and T , and (finite) output sets A and B.

A universal C*-algebra is specified by a presentation, which is a set of variables that generate it
and a sequence of algebraic relationships among the generators. There is a natural ∗-algebra asso-
ciated with any presentation, which consists of all algebraic expressions in the generators modulo
the equivalence relation defined by the algebraic relationships. The ∗-algebra becomes a C*-algebra
by defining a max-norm on it as

‖x‖max = sup
{
‖π(x)‖ : π : A → B(H)

}
, (297)

where the supremum is over all Hilbert spaces H and all ∗-homomorphisms π : A → B(H).
It should be noted that, for some presentations (e.g., 〈a : a = a∗〉) the max norm is not well

defined (in the sense that the supremum is ∞). However, the presentations that we are interested
in arise from a commuting operator strategy and are of the form15

A =
〈
Aas (for s ∈ S, a ∈ A)

∣∣∣where ∀s, a, (Aas)
∗ = Aas , (Aas)

2 = Aas and, ∀s,
∑

aA
a
s = 1

〉
(298)

B =
〈
Bb
t (for t ∈ T , b ∈ B)

∣∣∣where ∀t, b, (Bb
t )
∗ = Bb

t , (Bb
t )

2 = Bb
t and, ∀t,

∑
bB

b
t = 1

〉
. (299)

For these presentations it can de deduced that the norm of each generator is 1, and from this it
follows that the max-norm is well-defined.

It turns out that A ⊗max B is equivalent to the presentation that is the union of the above
generators and relationships with these additional relationships: ∀s, t, a, b, AasBb

tA
a
sB

b
t = 1 (i.e.,

each Aas and Bb
t commute). The reason why it is appropriate to include these commutations is

that, in A⊗ B, for each A ∈ A and B ∈ B, A⊗ I and I ⊗B commute.

Proof of Theorem 15.14. Let
{
H, |ψ〉, (Aa

s)s∈S,a∈A, (B
b
t)t∈T,b∈B

}
be a given commuting-operator

strategy. Without loss of generality (by the Stinespring dilation), it can be assumed that, for
each s ∈ S and t ∈ T , (Aa

s)a∈A and (Bb
t)b∈B are projective measurements.

Define A and B as above, in Eqns. (298)and (299). Then the unique bounded linear mapping

π : A⊗max B → B(H) (300)

that satisfies, for all s ∈ S, t ∈ T , a ∈ A, b ∈ B,

π(Aas ⊗Bb
t ) = Aa

sB
b
t (301)

is a representation of A⊗max B.

15These presentations are for projective measurements which may appear more restrictive that POVM measure-
ments; however, they are not more restrictive, by the Stinespring dilation.
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Define the state s on A⊗max B as, for all x ∈ A⊗max B,

s(x) = 〈ψ|π(x)|ψ〉. (302)

This is a valid state because of the form of Eq. (302) (in particular, if x ≥ 0 then π(x) ≥ 0).
Consider the C*-algebraic strategy based on operators Aas ∈ A (for all s ∈ S, a ∈ A), Bb

s ∈ B
(for all t ∈ T , b ∈ B), and state s : A ⊗max B → C as defined in Eq. (302). This strategy is
equivalent to the original commuting operator strategy because, for all s ∈ S, t ∈ T, a ∈ A, b ∈ B,

s(Aas ⊗Bb
t ) = s(π(Aas ⊗Bb

t )) = 〈ψ|Aa
sB

b
t |ψ〉. (303)

Acknowledgments

I gratefully acknowledge guidance from Vern Paulsen and William Slofstra with the material on
C*-algebras in sections 14 and 15. In particular, William showed me how to prove Theorem 15.14.
I gratefully acknowledge the feedback from the students in the course, Jacob Barnett, Ian Davis,
Adina Goldberg, Junan Lin, Junqiao Lin, and Abel Molina, who pointed out errors and made
helpful suggestions. The remaining errors and lack or clarity are my responsibility.

References

[1] A. Arkhipov, Extending and characterizing quantum magic games, 2012, Manuscript available
at arXiv:1209.3819.

[2] W. Arveson, An invitation to C*-algebras, 1976.

[3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local
hidden-variable theories, Physical Review Letters 23 (1969), no. 15, 880–884.

[4] R. Cleve, P. Høyer, B. Toner, and J. Watrous, Consequences and limits of nonlocal strate-
gies, Proceedings of the 19th Annual IEEE Conference on Computational Complexity, 2004,
pp. 236–249.

[5] R. Cleve, L. Liu, and V. Paulsen, Perfect embezzlement of entanglement, Journal of Mathe-
matical Physics 58 (2017), 012204.

[6] R. Cleve, L. Liu, and W. Slofstra, Perfect commuting-operator strategies for linear system
games, Journal of Mathematical Physics 58 (2017), 012202.

[7] R. Cleve and R. Mittal, Characterization of binary constraint system games, Proceedings 41st
International Colloquium on Automata, Languages, and Programming (ICALP 2014), 2014,
pp. 320–331.

[8] K. R. Davidson, C*-algebras by example, 1983.

[9] I. M. Gelfand and M. A. Naimark, On the embedding of normed rings into the ring of operators
in Hilbert space, Matematiceskij sbornik 12 (1943), 197–213.

56



[10] Z. Ji, D. Leung, and T. Vidick, A three-player coherent state embezzlement game, 2018,
Manuscript available at arXiv:1802.04926.

[11] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, volume I,
1983.

[12] M. Keyl, D. Schlingemann, and R. Werner, Infinitely entangled states, Quantum Information
and Computation 3 (2003), no. 4, 281–306.

[13] D. Leung, B. Toner, and J. Watrous, Coherent state exchange in multi-prover quantum inter-
active proof systems, Chicago Journal of Theoretical Computer Science 2013 (2013), article
11.

[14] M. McKague, T. H. Yang, and V. Scarani, Robust self-testing of the singlet, Journal of Physics
A: Mathematical and Theoretical 45 (2012), no. 45, 455304.

[15] O. Regev and T. Vidick, Quantum XOR games, Proceedings of IEEE Conference on Compu-
tational Complexity (CCC 2013), 2013, pp. 144–155.

[16] I. E. Segal, Irreducible representations of operator algebras, Bulletin of the American Mathe-
matical Society 53 (1947), 73–88.

[17] W. van Dam and P. Hayden, Universal entanglement transformations without communication,
Physical Review A 67 (2003), no. 6, 060302.

[18] T. Vidick, UCSD summer school notes quantum multiplayer games, testing and rigidity, 2018,
Manuscript available at http://users.cms.caltech.edu/∼vidick/ucsd games.pdf.

[19] D. Voiculescu, Asymptotically commuting finite rank unitary operators without commuting
approximants, Acta Universitatis Szegediensis 45 (1983), 429–431.

57


	Review of some basic definitions
	Quantum states
	Measurements
	Nonlocal games
	Observables
	Frobenius inner product
	Maximally entangled states

	The CHSH game
	Entangled strategy for CHSH
	Optimality proof for CHSH (Tsirelson bound)
	XOR games

	The Magic Square game
	Odd Cycle game
	Correlations for XOR games and Tsirelson's correspondence
	Converting from an entangled strategy to a vector system
	Converting from a vector system to an entangled strategy

	Disentangling strategies by ``rounding"
	Rounding procedure
	Revisiting the upper bounds for the CHSH and Odd Cycle games

	Characterizing perfect strategies for the Magic Square game
	A basic property of states with full Schmidt rank
	Proof of Theorem 7.1
	Generalization to arbitrary binary constraint systems

	Rigidity of Magic Square game (exact case)
	Binary linear system games
	Analysis of BLS games with mutiplicity 2
	Analysis of BLS games with mutiplicity 2

	Rigidity of CHSH (extremal case)
	Preliminary: a special property of two-outcome POVM measurements
	Proof of Theorem 10.1

	Robust rigidity of CHSH (approximately extremal case)
	Inner products and norms relative to a bipartite quantum state
	Approximate anticommuting
	Canonical form for approximately anticommuting observables
	Canonical form via a unitary transformation
	Canonical form via an isometric transformation

	Form of the entangled state
	Completion of the robust rigidity proof (Theorem 11.1)
	An alternate approach using the Gowers-Hatami Theorem

	Nonlocal games with quantum input
	A simple illustrative example of a quantum-input nonlocal game
	A quantum-input nonlocal game that requires infinite entanglement
	Embezzlement of entanglement
	Strategy for embezzling 12| 00 "526930B +12| 11 "526930B 
	Entanglement cost of embezzling 12| 00 "526930B +12| 11 "526930B 

	Proof of Theorem 12.1
	Proof of Theorem 12.2
	Note about related results for nonlocal games with classical input

	States in tensor products of infinite dimensional Hilbert spaces
	Abstract states on C*-algebras
	Definition of a C*-algebra
	Example 1: the concrete C*-algebra of operators on a Hilbert space
	Example 2: the CAR algebra
	Positive elements
	*-isomorphisms and *-automorphisms

	Definition of a state
	Definition of a POVM measurement
	Definition of a reversible operation
	Inner automorphisms (as reversible operations on states)
	Outer automorphisms (as reversible operations on states)

	Definition of a register
	Definition of a compound register
	Product states
	Localized reversible operations
	Partial trace
	Localized measurements

	Embezzlement in the C*-algebraic model
	Expressing (to.12| 00 "526930B +12| 11 "526930B )to. as an abstract state
	Expressing | 00 "526930B  as an abstract state
	Embezzlement strategy
	Coherent Embezzlement strategy


	Binary linear system games with infinite dimensional operator solutions
	Solution Group of a BLS game
	Definition of a commuting operator strategy
	Operator solution implies a perfect commuting operator strategy
	Commuting operator strategies vs. C*-algebraic strategies


