Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 9 (2019)

Richard Cleve

QNC 3129

cleve@cs.uwaterloo.ca

© Richard Cleve 2015

Recap of:

Eigenvalue estimation problem (a.k.a. phase estimation)

Generalized controlled- $oldsymbol{U}$ gates

Example: $|1101\rangle|0101\rangle \rightarrow |1101\rangle U^{1101}|0101\rangle$

Eigenvalue estimation problem

U is a unitary operation on n qubits

 $|\psi\rangle$ is an eigenvector of U, with eigenvalue $e^{2\pi i\phi}$ ($0 \le \phi < 1$)

Input: black-box for

and a copy of $|\psi\rangle$

Output: ϕ (*m*-bit approximation)

- **Algorithm:** one query to generalized controlled-U gate
 - $O(n^2)$ auxiliary gates
 - Success probability $4/\pi^2 \approx 0.4$

Note: with 2m-qubit control gate, error probability is exponentially small $|_4$

Order-finding via eigenvalue estimation

Order-finding problem

Let *m* be an *n*-bit integer (*not* necessarily prime)

Def: $\mathbb{Z}_{m}^{*} = \{x \in \{1,2,...,m-1\} : \gcd(x,m) = 1\}$ a group (mult.)

Def: ord_m (a) is the minimum r > 0 such that $a^r = 1 \pmod{m}$

Order-finding problem: given m and $a \in \mathbb{Z}_m^*$ find $\operatorname{ord}_m(a)$

Example: $\mathbb{Z}_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$

The powers of 5 are: 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, ...

Therefore, $\operatorname{ord}_{21}(5) = 6$

Note: no *classical* polynomial-time algorithm is known for this problem—it turns out that this is as hard as factoring

Order-finding algorithm (1)

Define: U (an operation on n qubits) as: $U|y\rangle = |ay \mod m\rangle$

Define:
$$|\psi_1\rangle = \sum_{j=0}^{r-1} e^{-2\pi i(1/r)j} |a^j \mod m\rangle$$

Then
$$U|\psi_1\rangle = \sum_{j=0}^{r-1} e^{-2\pi i (1/r)j} |a^{j+1} \mod m\rangle$$

 $= \sum_{j=0}^{r-1} e^{2\pi i (1/r)} e^{-2\pi i (1/r)(j+1)} |a^{j+1} \mod m\rangle$
 $= e^{2\pi i (1/r)} |\psi_1\rangle$

Therefore $|\psi_1\rangle$ is an eigenvector of U

And knowing the eigenvalue is equivalent to knowing 1/r, from which r can be determined

Order-finding algorithm (2)

corresponds to the mapping:

$$|x\rangle|y\rangle \mapsto |x\rangle|a^xy \bmod m\rangle$$

Moreover, this mapping can be implemented with $O(n^2 \log n)$ gates (n multiplications in "repeated squaring" algorithm)

The eigenvalue estimation algorithm yields a 2n-bit estimate of 1/r (using the above mapping and the state $|\psi_1\rangle$)

From this, a good estimate of r can be calculated by taking the reciprocal, and rounding off to the nearest integer

Exercise: why are 2n bits necessary and sufficient for this?

Big problem: how do we construct state $|\psi_1\rangle$ to begin with?

^{*} we're now using m for the modulus and setting the number of control qubits to 2n

Order-finding algorithm (3)

Solution to exercise: If $r \in \{1, 2, ..., m\}$, where m is an n-bit integer then a 2n-bit approximation of 1/r is necessary and sufficient to determine r

The obvious procedure is to check where x lands on the line and round to the nearest 1/r

The hardest case to distinguish is between 1/m vs 1/(m-1), where the gap is

$$\frac{1}{m-1} - \frac{1}{m} = \frac{1}{(m-1)m}$$

When $m=2^n$, this gap is $\frac{1}{(2^n-1)2^n} \approx \frac{1}{2^{2n}}$

This is the basic idea why 2n bits precision is necessary and sufficient

Bypassing the need for $|\psi_1\rangle$ (1)

Note: if we let

$$|\psi_{1}\rangle = \sum_{j=0}^{r-1} e^{-2\pi i(1/r)j} |a^{j} \mod m\rangle$$

$$|\psi_{2}\rangle = \sum_{j=0}^{r-1} e^{-2\pi i(2/r)j} |a^{j} \mod m\rangle$$

$$\vdots$$

$$|\psi_{k}\rangle = \sum_{j=0}^{r-1} e^{-2\pi i(k/r)j} |a^{j} \mod m\rangle$$

$$\vdots$$

$$|\psi_{r}\rangle = \sum_{j=0}^{r-1} e^{-2\pi i(r/r)j} |a^{j} \mod m\rangle$$

then **any** one of these could be used in the previous procedure, yielding an estimate of k/r, from which r can be extracted

Bypassing the need for $|\psi_1\rangle$ (2)

What if k is chosen randomly and kept secret?

Let $r \in \{1, 2, ..., m\}$, where m is an n-bit integer and $k \in \{1, 2, ..., r\}$

Given x, a 2n-bit approximation of k/r, can we determine k, r?

The situation is now more complicated, though in principle we could still imagine checking where x lands on the line and round to the nearest k/r

The hardest case to distinguish is still between 1/m vs 1/(m-1), where the gap is around $1/m^2$

Of course, we cannot distinguish between these r/k: 1/2 = 2/4 = 3/6 = 4/8, but at least the procedure makes sense when gcd(k, r) = 1

But: is there an algorithm that finds k and r in time polynomial in n?

Bypassing the need for $|\psi_1\rangle$ (3)

Let $r \in \{1, 2, ..., m\}$, where m is an n-bits, $k \in \{1, 2, ..., r\}$, where gcd(k,r)=1

Question: given x, a 2n-bit approximation of k/r, is there an efficient algorithm to determine k, r? (i.e. by *efficient*, we mean time polynomial in n)

Answer: Yes, the *continued fractions algorithm** does exactly this!

^{*} For a discussion of the *continued fractions algorithm*, please see Appendix A4.4 in [Nielsen & Chuang]

Bypassing the need for $|\psi_1\rangle$ (4)

What is the probability that k and r are relatively prime?

Recall that k is randomly chosen from $\{1,...,r\}$

The probability that this occurs is $\phi(r)/r$, where ϕ is **Euler's totient** function (which is defined as the size of \mathbb{Z}_r^*)

It is known that $\phi(r) = \Omega(r/\log\log r)$, which implies that the above probability is at least $\Omega(1/\log\log r) = \Omega(1/\log n)$

Therefore, the success probability is at least $\Omega(1/\log n)$

Is this good enough? Yes, because it means that the success probability can be amplified to any constant < 1 by repeating $O(\log n)$ times (so still polynomial in n)

But we'd still need to generate a random $|\psi_k\rangle$ here ...

Bypassing the need for $|\psi_1\rangle$ (5)

Returning to the phase estimation problem, suppose that $|\psi_1\rangle$ and $|\psi_2\rangle$ have respective eigenvalues $e^{2\pi i \phi_1}$ and $e^{2\pi i \phi_2}$, and that $\alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle$ is used in place of an eigenvector:

What will the outcome of the measurement be?

It can be shown* that the outcome will be an estimate of

$$\begin{cases} \phi_1 \text{ with probability } |\alpha_1|^2 \\ \phi_2 \text{ with probability } |\alpha_2|^2 \end{cases}$$

^{*} Showing this is straightforward, but not entirely trivial

Bypassing the need for $|\psi_1\rangle$ (6)

Along these lines, using $\frac{1}{\sqrt{r}}\sum_{k=1}^r |\psi_k\rangle$ yields the same outcome as using a random $|\psi_k\rangle$ (but not being given k), where each $k\in\{1,...,r\}$ occurs with probability 1/r — this is a case that we've already solved

So now all we have to do is construct the state $\frac{1}{\sqrt{r}}\sum_{k=1}^{r}|\psi_{k}\rangle$

Since
$$\frac{1}{\sqrt{r}} \sum_{k=1}^{r} |\psi_k\rangle = \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \left(|1\rangle + \omega^{-1}|a\rangle + \omega^{-2}|a^2\rangle + \dots + \omega^{-(r-1)}|a^{r-1}\rangle \right)$$

$$+ \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \left(|1\rangle + \omega^{-2}|a\rangle + \omega^{-4}|a^2\rangle + \dots + \omega^{-2(r-1)}|a^{r-1}\rangle \right)$$

$$+ \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \left(|1\rangle + \omega^{-3}|a\rangle + \omega^{-6}|a^2\rangle + \dots + \omega^{-3(r-1)}|a^{r-1}\rangle \right)$$

$$+ \vdots \qquad \vdots \qquad \vdots$$

$$+ \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \left(|1\rangle + \omega^{-r}|a\rangle + \omega^{-2r}|a^2\rangle + \dots + \omega^{-r(r-1)}|a^{r-1}\rangle \right) = |1\rangle$$

its easy!

This is how the previous requirement for $|\psi_1\rangle$ is bypassed

Quantum algorithm for order-finding

Number of gates for $\Omega(1/\log n)$ success probability is: $O(n^2 \log n)$ (this is the cost of O(n) multiplications)

For any *constant* success probability, repeat $O(\log n)$ times and take the smallest resulting r' that satisfies the equation $a^{r'} = 1 \pmod{m}$

Reduction from factoring to order-finding

The integer factorization problem

Input: *m* (*n*-bit integer; we can assume it is composite)

Output: p, q (each greater than 1) such that pq = m

Note 1: no efficient (polynomial-time) classical algorithm is known for this problem

Note 2: given any efficient algorithm for the above, we can recursively apply it to fully factor m into primes* efficiently

^{*} A polynomial-time *classical* algorithm for *primality testing* exists

Factoring prime-powers

There is a straightforward *classical* algorithm for factoring numbers of the form $m = p^k$, for some prime p

What is this algorithm?

Therefore, the interesting remaining case is where m has at least two distinct prime factors

Numbers other than prime-powers

```
Proposed quantum algorithm (repeatedly do):
```

- 1. randomly choose $a \in \{2, 3, ..., m-1\}$
- 2. compute $g = \gcd(a, m)$
- 3. $\underline{if} g > 1 \underline{then}$ output g, m/gelse

```
compute r = \operatorname{ord}_m(a) (quantum part)
if r is even then
         compute x = a^{r/2} - 1 \mod m
         compute h = \gcd(x, m)
         if h > 1 then output h, m/h
```

Analysis:

we have $m \mid a^r - 1$

so
$$m \mid (a^{r/2}+1)(a^{r/2}-1)$$

thus, either $m \mid a^{r/2} + 1$ or $gcd(a^{r/2}+1,m)$ is a nontrivial factor of m

It can be shown that at least half of the $a \in \{2, 3, ..., m-1\}$ have even order and result in $gcd(a^{r/2}+1,m)$ being a nontrivial factor of m