Introduction to

Quantum Information Processing
QIC 710/ CS 768 / PH 767 / CO 681 / AM 871

Lecture 9 (2019)

Richard Cleve
QNC 3129
cleve@cs.uwaterloo.ca

© Richard Cleve 2015

mailto:cleve@cs.uwaterloo.ca

Recap of:

Eigenvalue estimation problem
(a.k.a. phase estimation)

Generalized controlled-U gates

a) T a)
b)] — U‘b)
a,) |a1>
) ')
b)) — R
R U_} Ut ...4m b
b, S

S O N

Example: [1101)/0101) = [1101)U"°"0101)

Eigenvalue estimation problem

U is a unitary operation on 7 qubits
) is an eigenvector of U, with eigenvalue ™ (0< ¢ < 1)

> m qubits

Input: black-box for and a copy of [y)

- n qubits

Output: ¢ (m-bit approximation)

Algorithm: + one query to generalized controlled-U gate
« O(n?) auxiliary gates
« Success probability 4/t% = 0.4

Note: with 2m-qubit control gate, error probability is exponentially small |4

Order-finding via

eigenvalue estimation

Order-finding problem

Let m be an n-bit integer (not necessarily prime)
Def: Z,"={x € {1,2,...,m—1} : gcd(x,m)=1} a group (mult.)

Def: ord,, (a) is the minimum » > 0 such that " =1 (mod m)

Order-finding problem: given m and a € Z,” find ord,, (@)

Example: %, = {1,2,4,5.8,10,11,13,16,17,19,20}

The powers of 5 are: 1, 5,4, 20, 16,17,1,5,4,20,16,17,1,5, ...
Therefore, ord,; (5) =6

Note: no classical polynomial-time algorithm is known for
this problem—it turns out that this is as hard as factoring

Order-finding algorithm (1)

Define: U (an operation on n qubits) as: U]y) = |ay mod m)
r—1

. =2mi(l/r)j 1
Define: \z/J1>=E i) Jmodm>
j=0
r-1
-2 1/
Then Uly,) Ee ()] ’+1modm>
j=0
r—1
_ eZm l/r —2m 1/r]+1 aj+1 mOdm>

j=0

(l/r)

W1>

Therefore |y,) is an eigenvector of U

And knowing the eigenvalue is equivalent to knowing 1/,
from which r can be determined

Order-finding algorithm (2)
corresponds to the mapping:
} 21 Quoits” X))+ [x)la*y mod m)

Moreover, this mapping can be

n qubits implemented with O(n2logn) gates
(n multiplications in “repeated squaring”
algorithm)

The eigenvalue estimation algorithm yields a 2n-bit estimate of 1/r (using
the above mapping and the state |y,))

From this, a good estimate of » can be calculated by taking the reciprocal,
and rounding off to the nearest integer

Exercise: why are 2n bits necessary and sufficient for this?

Big problem: how do we construct state [\y,) to begin with?

* we're now using m for the modulus and setting the number of control qubits to 2n 8

Order-finding algorithm (3)

Solution to exercise: If r € {1, 2, ..., m}, where m is an n-bit integer then
a 2n-bit approximation of 1/r is necessary and sufficient to determine r

The obvious procedure is to check where x lands on the line and round to
the nearest 1/r

|

eee |

o™ 1
H °, 8

X
¥
|
1
6

N = =

U R —t—

| =

W | = —t—

N | = ——
H

*
*
*

1
m m-—1

The hardest case to distinguish is between 1/m vs 1/(m—1), where the gap is
1 1 1

m—1 m (m—1)m

: : 1 !
When m =2, this gap is (@ — 120 2n

This is the basic idea why 2n bits precision is necessary and sufficient

Bypassing the need for |\/,) (1)

Note:if we let |y} = g 2 ‘aj mod m>
j=0

r—1

‘ w2> _ e-zm(z/r) il .j mod m>
. Jj=0
* r-1

‘?/}k> _ e—2m'(k/r)] J mOd m>
. Jj=0

then any one of these could be used in the previous procedure, yielding an
estimate of k/r, from which » can be extracted

What if k£ is chosen randomly and kept secret? 0

Bypassing the need for [\/,) (2)

What if k£ is chosen randomly and kept secret?

Letr € {1,2,...,m},where mis an n-bit integerand k € {1,2, ...,r}

Given x, a 2n-bit approximation of k/r, can we determine k, r ?

The situation is now more complicated, though in principle we could still
iImagine checking where x lands on the line and round to the nearest k/r

X

|v

|
I
7 1
8

QU R —t—
| ——
N N =
| W -t
—_ —t—
A —t—
O —t—
OV —t
NSRS
[y . .
W —f—
S —t—
S| Ot ——
~N| S T

|
|
1
6

)
O M e
Nl = -7

|
2
3

The hardest case to distinguish is still between 1/m vs 1/(m-1), where the
gap is around 1/m?

Of course, we cannot distinguish between these r/k: 1/2 =2/4 = 3/6 = 4/8,
but at least the procedure makes sense when gcd(k,r) =1

But: is there an algorithm that finds k and r in time polynomial in n? 11

Bypassing the need for |\ ,) (3)

Letr e {1,2,...,m},where mis an n-bits, k € {1, 2, ..., r}, where gcd(k,r)=1

Question: given x, a 2n-bit approximation of k/r, is there an efficient
algorithm to determine k, r? (i.e. by efficient, we mean time polynomial in n)

Answer: Yes, the continued fractions algorithm* does exactly this!

* For a discussion of the continued fractions algorithm, please see Appendix A4.4
in [Nielsen & Chuang]

12

Bypassing the need for |\/,) (4)

What is the probability that k£ and » are relatively prime?

Recall that k is randomly chosen from {1,..., 7}

The probability that this occurs is ¢(7)/r, where ¢ is Euler’s totient
function (which is defined as the size of Z")

It is known that ¢(7) = £2(#/loglogr), which implies that the above
probability is at least £2(1/loglog r) = £2(1/log n)

Therefore, the success probability is at least 2(1/1log n)

Is this good enough? Yes, because it means that the success probability
can be amplified to any constant < 1 by repeating O(log n) times
(so still polynomial in n)

But we’d still need to generate a random |y) here ... y

Bypassing the need for |\/,) (5)

Returning to the phase estimation problem, suppose that

;) and |y,) have respective eigenvalues ™% and e>™%,

and that o, |\y/{) + a,|W,) is used in place of an eigenvector:
0) &

Full)
oY1) T 0n|Wy)

What will the outcome of the measurement be?

0)1&
0) &

It can be shown* that the outcome will be an estimate of

, with probability |o.; |
¢, with probability o, |

* Showing this is straightforward, but not entirely trivial 14

Bypassing the need for |\/,) (6)

Along these lines, using \f EM yields the same outcome as using

a random |y) (but not belng glven k), where each k € {1, ..., r} occurs with
probability 1/r — this is a case that we’ve already solved

So now all we have to do is construct the state Li‘%)

V=1
1 1
Slnce—ZWk __(’1>_|_w—1‘a>_|_w—2‘a2>_|_,.._|_w—(r—1)‘ar—1>>
VT AT
1 1
+ 22 (0 + 07+ a?) w2)
1 1
+ NG (\1> +w3a) +w ba®) + -+ w_3(r_1)\ar_1>)
I

ii —r —2r| 2 o —r(r—=1),,r—1\\ _
+ﬁﬁ(\1>+w la) +w " a®) + -+ w a >>—|1>
its easy!

This is how the previous requirement for [y/¢) is bypassed 15

Quantum algorithm for order-finding

0)
0)
0)
0)
0)
1)

inverse QF T

!

] o] s

")

o0

U..

P

Upnly) =

Number of gates for Q(1/log n) success probability is: O(n? log n)

lay mod m)

(this is the cost of O(n) multiplications)

measure these qubits and apply
continued fractions algorithm
to determine (with constant
success probablllty) k'and r'

such that k'/r' = k/r

For any constant success probability, repeat O(log n) times and take the smallest
resulting ' that satisfies the equation ¢ =1 (mod m)

16

Reduction from factoring

to order-finding

The integer factorization problem

Input: m (n-bit integer; we can assume it is composite)

Output: p, g (each greater than 1) such that pg =m

Note 1: no efficient (polynomial-time) classical algorithm
Is known for this problem

Note 2: given any efficient algorithm for the above, we can
recursively apply it to fully factor m into primes* efficiently

* A polynomial-time classical algorithm for primality testing exists
18

Factoring prime-powers

There is a straightforward classical algorithm for factoring
numbers of the form m = p*, for some prime p

What is this algorithm?

Therefore, the interesting remaining case is where m has
at least two distinct prime factors

19

Numbers other than prime-powers

Proposed quantum algorithm (repeatedly do):

1. randomly choose a € {2, 3, ..., m—1}
2. compute g = ged(a,m)
3. ifg>1then
output g, m/g
else
compute r = ord,(Q)
if 7 is even then
compute x =a’”? -1 mod m
compute /= ged(x,m)
if 47> 1 then output /2, m/h

Analysis:

we have m|a’-1

so m|(a"*+1)(a’?-1)

thus, either m | a’? +1

or ged(a?+1,m)
is a nontrivial factor of m

It can be shown that at least half of the a € {2, 3, ..., m—1} have even
order and result in gcd(a’? +1,m) being a nontrivial factor of m

20

