Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 4 (2019)

Richard Cleve

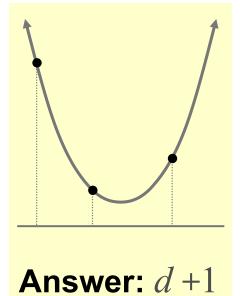
QNC 3129

cleve@uwaterloo.ca

Simple quantum algorithms in the query scenario

Query scenario

Input: a function *f*, given as a black box (a.k.a. oracle)


Goal: determine some information about f making as few queries to f (and other operations) as possible

Example: polynomial interpolation

Let: $f(x) = c_0 + c_1 x + c_2 x^2 + ... + c_d x^d$

Goal: determine c_0 , c_1 , c_2 , ..., c_d

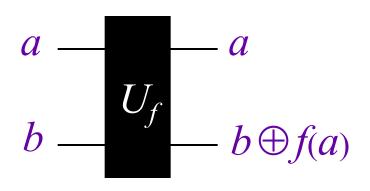
Question: How many *f*-queries does one require for this?

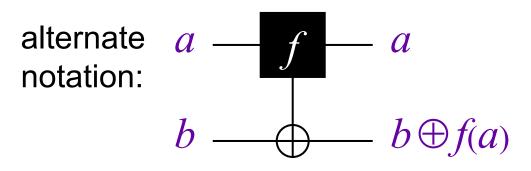
Deutsch's problem

Deutsch's problem

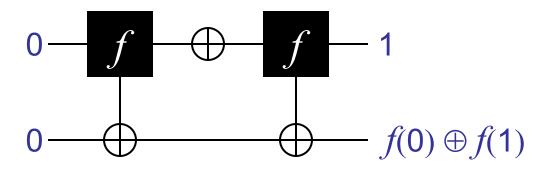
Let $f: \{0,1\} \rightarrow \{0,1\}$

There are *four* possibilities:

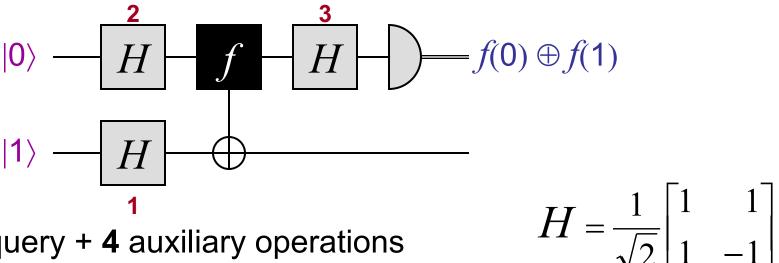

$\boldsymbol{\mathcal{X}}$	$f_1(x)$	\mathcal{X}	$f_2(x)$	\mathcal{X}	$f_3(x)$	\mathcal{X}	$f_4(x)$
0	0	0	1	0	0	0	1
1	0	1	1	1	1	1	0


Goal: determine whether or not f(0) = f(1) (i.e. $f(0) \oplus f(1)$)

Any classical method requires *two* queries

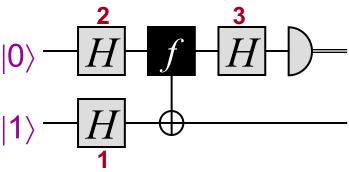

What about a quantum method?

Reversible black box for f



A classical algorithm: 0 (still requires 2 queries)

2 queries + 1 auxiliary operation


Quantum algorithm for Deutsch

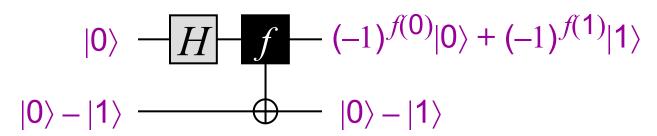
1 query + 4 auxiliary operations

Each of the three H operations can be seen as playing a different role ...

Quantum algorithm (1)

1. Creates the state $|0\rangle - |1\rangle$, which is an eigenvector of

$$\begin{cases} \textbf{NOT} \text{ with eigenvalue } -1 \\ \textbf{\textit{I}} \quad \text{with eigenvalue } +1 \end{cases}$$


This causes f to induce a **phase shift** of $(-1)^{f(x)}$ to $|x\rangle$

$$|x\rangle - f - (-1)^{f(x)}|x\rangle$$

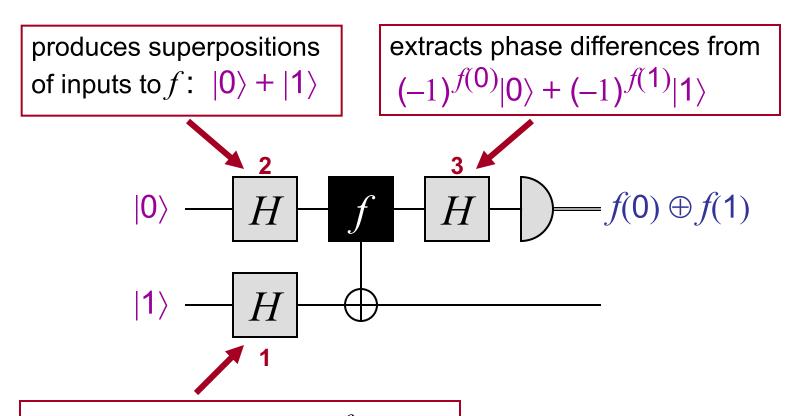
$$|0\rangle - |1\rangle - 0 - |0\rangle - |1\rangle$$

Quantum algorithm (2)

2. Causes f to be queried *in superposition* (at $|0\rangle + |1\rangle$)

X	$f_1(x)$	\boldsymbol{x}	$f_2(x)$	$\boldsymbol{\mathcal{X}}$	$f_3(x)$	$\boldsymbol{\mathcal{X}}$	$f_4(x)$
0	0	0	1	0	0	0	1 0
1	0	1	1 1	1	1	1	0
	. (10)	<u> </u>			. (10)		
$\pm (0\rangle + 1\rangle)$				$\pm (0\rangle - 1\rangle)$			

Quantum algorithm (3)


3. Distinguishes between $\pm (|0\rangle + |1\rangle)$ and $\pm (|0\rangle - |1\rangle)$

$$\pm (|0\rangle + |1\rangle) \leftarrow H \rightarrow \pm |0\rangle$$

$$\pm (|0\rangle - |1\rangle) \leftarrow H \rightarrow \pm |1\rangle$$

Summary of Deutsch's algorithm

Makes only one query, whereas two are needed classically

constructs eigenvector so f-queries induce phases: $|x\rangle \rightarrow (-1)^{f(x)}|x\rangle$

One-out-of-four search

One-out-of-four search

Let $f: \{0,1\}^2 \rightarrow \{0,1\}$ have the property that there is exactly one $x \in \{0,1\}^2$ for which f(x) = 1

Goal: find $x \in \{0,1\}^2$ for which f(x) = 1

What is the minimum number of queries *classically?* _____

Quantumly? ____

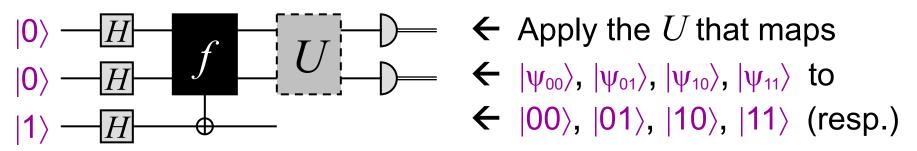
Quantum algorithm (I)

Black box for 1-4 search:

$$|x_{1}\rangle - f - |x_{1}\rangle$$

$$|x_{2}\rangle - |x_{2}\rangle$$

$$|y\rangle - |y \oplus f(x_{1}, x_{2})\rangle$$


Start by creating phases in superposition of all inputs to *f*:

$$|0\rangle$$
 H $|0\rangle$ H $|1\rangle$ H $|1\rangle$ H $|1\rangle$ $|1\rangle$

Output state of query?

$$((-1)^{f(00)}|00\rangle + (-1)^{f(01)}|01\rangle + (-1)^{f(10)}|10\rangle + (-1)^{f(11)}|11\rangle)(|0\rangle - |1\rangle)$$

Quantum algorithm (II)

Output state of the first two qubits in the four cases:

Case of
$$f_{00}$$
? $|\psi_{00}\rangle = -|00\rangle + |01\rangle + |10\rangle + |11\rangle$
Case of f_{01} ? $|\psi_{01}\rangle = +|00\rangle - |01\rangle + |10\rangle + |11\rangle$
Case of f_{10} ? $|\psi_{10}\rangle = +|00\rangle + |01\rangle - |10\rangle + |11\rangle$
Case of f_{11} ? $|\psi_{11}\rangle = +|00\rangle + |01\rangle + |10\rangle - |11\rangle$

What noteworthy property do these states have? Orthogonal!

Challenge Exercise: simulate the above U in terms of H, CNOT and NOT gates

one-out-of-N search?

Natural question: what about search problems in spaces larger than *four* (and without uniqueness conditions)?

For spaces of size *eight* (say), the previous method breaks down—the state vectors will not be orthogonal

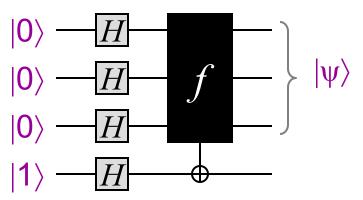
Later on, we'll see how to search a space of size N with $O(\sqrt{N})$ queries ...

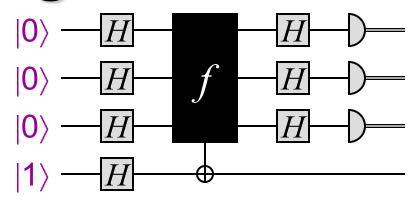
Constant vs. balanced

Constant vs. balanced

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be either constant or balanced, where

- constant means f(x) = 0 for all x, or f(x) = 1 for all x
- **balanced** means $\sum_{x} f(x) = 2^{n-1}$


Goal: determine whether f is constant or balanced


How many queries are there needed classically?

Example: if f(0000) = f(0001) = f(0010) = ... = f(0111) = 0 then it still could be either

Quantumly? ____

Quantum algorithm

Constant case: $|\psi\rangle = \pm \sum_{x} |x\rangle$

Why?

Balanced case: $|\psi\rangle$ is *orthogonal* to $\pm \sum_{x} |x\rangle$ *Why?*

How to distinguish between the cases? What is $H^{\otimes n}|\psi\rangle$?

Constant case: $H^{\otimes n}|\psi\rangle = \pm |00...0\rangle$

Balanced case: $H^{\otimes n} | \psi \rangle$ is orthogonal to $| \mathbf{0} ... \mathbf{00} \rangle$

Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced"

Probabilistic *classical* algorithm solving constant vs balanced

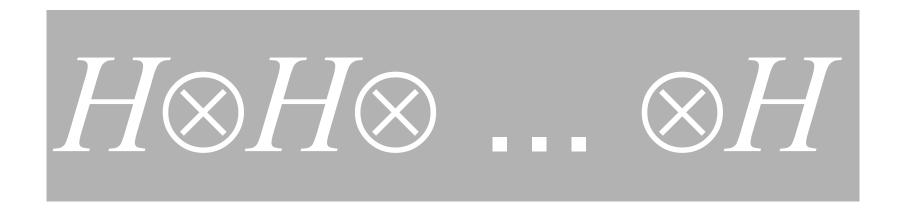
But here's a classical procedure that makes only **2** queries and performs fairly well probabilistically:

- 1. pick $x_1, x_2 \in \{0,1\}^n$ randomly
- 2. **<u>if</u>** $f(x_1) \neq f(x_2)$ **<u>then</u>** output balanced **<u>else</u>** output constant

What happens if f is constant? The algorithm always succeeds What happens if f is balanced? Succeeds with probability $\frac{1}{2}$

By repeating the above procedure k times: 2k queries and one-sided error probability $(\frac{1}{2})^k$

Therefore, for large n, $<< 2^n$ queries are likely sufficient


Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 5 (2019)

Richard Cleve

QNC 3129

cleve@uwaterloo.ca

About $H \otimes H \otimes ... \otimes H = H^{\otimes n}$

Theorem: for $x \in \{0,1\}^n$, $H^{\otimes n}|x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$ where $x \cdot y = x_1 y_1 \oplus \cdots \oplus x_n y_n$

Example:
$$H \otimes H = \frac{1}{2} \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$$

Proof: For all $x \in \{0, 1\}$, $H|x\rangle = |0\rangle + (-1)^x |1\rangle = \sum_{y=0}^{\infty} (-1)^{xy} |y\rangle$

Thus,
$$H^{\otimes n}|x_1...x_n\rangle = \left(\sum_{y_1=0}^1 (-1)^{x_1y_1}|y_1\rangle\right)\cdots\left(\sum_{y_n=0}^1 (-1)^{x_ny_n}|y_n\rangle\right)$$

$$= \sum_{y_1 \dots y_n} (-1)^{x_1 y_1 \oplus \dots \oplus x_n y_n} |y_1 \dots y_n\rangle \quad \blacksquare$$

Viewing $\{0,1\}^n$ as a vector space

 $\mathbb{Z}_2=\{0,1\}$ with addition and multiplication mod 2 is a *field* $\{0,1\}^n=\mathbb{Z}_2\times\cdots\times\mathbb{Z}_2$ is a n-dimensional vector space over \mathbb{Z}_2

The usual vector space notions like subspace and dimension make sense here

 $x \cdot y = x_1 y_1 \oplus \cdots \oplus x_n y_n$ is like a "dot product" of the vectors $x \cdot y = 0$ can be interpreted as the vectors being "**orthogonal**" but this notion of orthogonality has some weird properties, such as the possibility that $x \cdot x = 0$ even for non-zero vectors

Caution: for n-qubit systems, do not conflate the n-dimensional vector space $\{0,1\}^n$ with the 2^n -dimensional Hilbert space

Simon's problem

Quantum vs. classical separations

black-box problem	quantum	classical
constant vs. balanced	1 (query)	2 (queries)
1-out-of-4 search	1	3
constant vs. balanced	1	$\frac{1}{2} 2^n + 1$
Simon's problem		

(only for exact)

probabilistic)

Simon's problem

Let $f: \{0,1\}^n \to \{0,1\}^n$ have the property that there exists an $r \in \{0,1\}^n$ such that f(x) = f(y) iff $x \oplus y = r$ or x = y

Example:

\mathcal{X}	f(x)		
000	011		
001	101		
010	000		
011	010		
100	101		
101	011		
110	010		
111	000		

What is r is this case?

Answer: r = 101

A classical algorithm for Simon

Search for a *collision*, an $x \neq y$ such that f(x) = f(y)

- 1. Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ randomly (independently)
- 2. For all $i \neq j$, if $f(x_i) = f(x_j)$ then output $x_i \oplus x_j$ and halt

A hard case is where r is chosen randomly from $\{0,1\}^n - \{0^n\}$ and then the "table" for f is filled out randomly subject to the structure implied by r

How big does k have to be for the probability of a collision to be a constant, such as $\frac{3}{4}$?

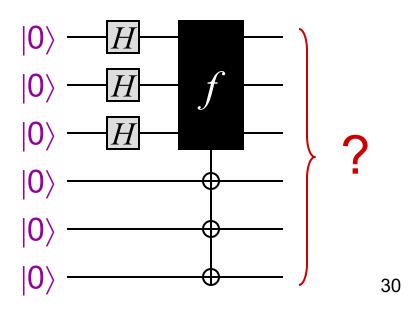
Answer: order $2^{n/2}$ (each (x_i, x_j) collides with prob. $O(2^{-n})$)

Classical lower bound

Theorem: any classical algorithm solving Simon's problem must make $\Omega(2^{n/2})$ queries

Proof is omitted here—note that the performance analysis of the previous algorithm does *not* imply the theorem

... how can we know that there isn't a *different* algorithm that performs better?


A quantum algorithm for Simon I

Queries: $\begin{vmatrix} x_1 \\ |x_2 \rangle \end{vmatrix} = f \begin{vmatrix} |x_1 \rangle \\ |x_2 \rangle \end{vmatrix}$

Not clear what *eigenvector* of target registers is ...

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

A quantum algorithm for Simon II

Answer: the output state is
$$=\sum_{x\in\{0,1\}^n}|x\rangle|f(x)\rangle$$

Let $T \subseteq \{0,1\}^n$ be such that **one** element from each matched pair is in T (assume $r \neq 00...0$)

Example: could take $T = \{000, 001, 011, 111\}$

Then the output state can be written as:

$$\sum_{x \in T} |x\rangle |f(x)\rangle + |x \oplus r\rangle |f(x \oplus r)\rangle$$

$$= \sum_{x \in T} (|x\rangle + |x \oplus r\rangle) |f(x)\rangle$$

X	f(x)		
000	011		
001	101		
010	000		
011	010		
100	101		
101	011		
110	010		
111	000		

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle + |x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain **some** information about r?

Try applying $H^{\otimes n}$ to the state, yielding:

$$\sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle + \sum_{y \in \{0,1\}^n} (-1)^{(x \oplus r) \cdot y} |y\rangle$$
$$= \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} \left(1 + (-1)^{r \cdot y}\right) |y\rangle$$

Measuring this state yields y with prob. $\begin{cases} (1/2)^{n-1} & \text{if } r \cdot y = 0 \\ 0 & \text{if } r \cdot y \neq 0 \end{cases}$

A quantum algorithm for Simon IV

Executing this algorithm k = O(n) times yields random $y_1, y_2, ..., y_k \in \{0,1\}^n$ such that $r \cdot y_1 = r \cdot y_2 = ... = r \cdot y_n = 0$

How does this help?

This is a system of k linear equations:

$$\begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \cdots & y_{kn} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra)

Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box $\Omega(2^{n/2})$ times, even to succeed with probability $\frac{3}{4}$
- There is a quantum algorithm that queries the black box only O(n) times, performs only O(n³) auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability ¾

black-box problem	quantum	classical
constant vs. balanced	1 (query)	2 (queries)
1-out-of-4 search	1	3
constant vs. balanced	1	4
Simon's problem	$O(n^3)$	$\Omega(2^{n/2})$

for success probability ≥3/4