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Schmidt decomposition
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Schmidt decomposition

Let |yñ be any bipartite quantum state: 

|yñ = (where we can assume n ≤m)åå
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Then there exist orthonormal states 
|µ1ñ, |µ2ñ, …, |µnñ and |j1ñ, |j2ñ, …, |jnñ such that

• |yñ =

• |j1ñ, |j2ñ, …, |jnñ are the eigenvectors of Tr1|yñáy|
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Theorem:
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Schmidt decomposition: proof (1)
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The density matrix for state |yñ is given by |yñáy|

Tracing out the first system, we obtain the density matrix of the second 
system, r = Tr1|yñáy|

Since r is a density matrix, we can express  r = ,

where |j1ñ, |j2ñ, …, |jnñ are orthonormal eigenvectors of r

Now, returning to |yñ, we can express |yñ =                      , where |n1ñ, |n2ñ, …, 
|nnñ are just some arbitrary vectors (not necessarily valid quantum states; 
for example, they might not have unit length, and we cannot presume 
they’re orthogonal)
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Schmidt decomposition: proof (2)
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Claim: ánc|nc′ ñ = pc     if c = c′ 
0 if c ¹ c′ 

Proof of Claim: Compute the partial trace Tr1 of |yñáy| from

(linearity)
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Schmidt decomposition: proof (3)

Normalize the |ncñ by setting c
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Then áµc|µc′ ñ = 1 if c = c′ 
0 if c ¹ c′ 

and |yñ =
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The story of bit commitment
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Bit-commitment

• Alice has a bit b that she wants to commit to Bob:
• After the commit stage, Bob should know nothing about b, but Alice 

should not be able to change her mind
• After the reveal stage, either: 

– Bob should learn b and accept its value, or 
– Bob should reject Alice�s reveal message, if she deviates from the 

protocol

commit stage

reveal stage

bit b
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Simple physical implementation

• Commit: Alice writes b down on a piece of paper, locks it in a safe, sends 
the safe to Bob, but keeps the key

• Reveal: Alice sends the key to Bob, who then opens the safe
• Desirable properties:

– Binding: Alice cannot change b after commit
– Concealing: Bob learns nothing about b until reveal

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols, such as 
coin-flipping, and �zero-knowledge proof systems�
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Complexity-theoretic implementation

Based on a one-way function* f : {0,1}n à {0,1}n and a hard-
predicate h : {0,1}n à {0,1}  for f

Commit: Alice picks a random x Î{0,1}n, sets y = f(x) and c = bÅh(x)
and then sends y and c to Bob

Reveal: Alice sends x to Bob, who verifies that y = f(x) and then sets 
b = cÅh(x)

This is (i) perfectly binding and (ii) computationally concealing, based on 
the hardness of predicate h

* should be one-to-one
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Quantum implementation (1)
• Inspired by the success of QKD, one can try to use the properties of 

quantum mechanical systems to design an information-theoretically 
secure bit-commitment scheme

• One simple idea:
– To commit to 0, Alice sends a random sequence from {|0ñ, |1ñ}
– To commit to 1, Alice sends a random sequence from {|+ñ, |−ñ}
– Bob measures each qubit received in a random basis
– To reveal, Alice tells Bob exactly which states she sent in the 

commitment stage (by sending its index 00, 01, 10, or 11), and Bob 
checks for consistency with his measurement results

Typical commitment to 0: |0ñ|1ñ|1ñ|0ñ|0ñ|1ñ|0ñ|1ñ|0ñ|0ñ|0ñ|1ñ|0ñ|1ñ|1ñ|0ñ

Typical commitment to 1: |−ñ|−ñ|+ñ|−ñ|+ñ|+ñ|+ñ|−ñ|+ñ|+ñ|−ñ|+ñ|−ñ|−ñ|+ñ|−ñ

Intuition:
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Quantum implementation (2)

A paper appeared in 1993 proposing a quantum bit-commitment 
scheme and a proof of security
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Impossibility proof (I)
• Not only was the 1993 scheme shown to be insecure, but it was later 

shown that no such scheme can exist!
• To understand the impossibility proof, recall the Schmidt decomposition:

[Mayers ‘96][Lo & Chau ‘96]

Let |yñ be any bipartite quantum state: 

|yñ =

Then there exist orthonormal states 
|µ1ñ, |µ2ñ, …, |µnñ and |j1ñ, |j2ñ, …, |jnñ such that 

|yñ =
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Eigenvectors of Tr1|yñáy|



14

Impossibility proof (II)
• Corollary: if |y0ñ, |y1ñ are two bipartite states such that           
Tr1|y0ñáy0| = Tr1|y1ñáy1| then there exists a unitary U (acting on 
the first register) such that (UÄI )|y0ñ = |y1ñ

• Proof:

• Protocol can be �purified� so that Alice’s commit states are |y0ñ & |y1ñ
(where she sends the second register to Bob)

• By applying U to her register, Alice can change her commitment from 
b = 0 to b = 1 (by changing |y0ñ to |y1ñ)
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We can define U so that U |µcñ = |µ¢cñ for c = 1,2,...,n █
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Separable states
(very briefly)
(brief)
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Separable states
• product state if  r = s Äx

• separable state if

• entangled = not separable

A bipartite (i.e. two register) state r is a:

Question: which of the following states are separable?

( )( ) ( )( )1100110011001100 2
1

2
1

2 --+++=ρ

(i.e. a probabilistic mixture of 
product states)

(p1 ,…,pm ³ 0)

( )( )110011002
1

1 ++=ρ

Since mixed states might be expressible as a mixture in several different 
ways, determining whether they are separable is tricky

⇢ =
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j=1

pj�j⌦⇠j
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Continuous-time evolution
(very briefly)



18

Continuous-time evolution
Although we’ve expressed quantum operations in discrete terms, in real 
physical systems, the evolution is continuous

|0ñ

|1ñ
Let H be any Hermitian matrix and t Î R

(unitary)

Then           is unitary — why?eiHt

, where H = U
†
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H is called a Hamiltonian


