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Quantum key distribution
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Private communication

• A provably secure (classical) scheme exists for this, the one-time pad
• The one-time pad requires Alice & Bob to share a secret key: k Î {0,1}n, 

uniformly distributed (secret from Eve)

Alice Bob

k1k2 … kn k1k2 … kn

Eve

Scenario: Alice and Bob would like to communicate privately in the presence 
of an eavesdropper Eve
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Private communication

• Alice sends c =mÅk (the bit-wise Å) to Bob 
• Bob computes cÅk, which is (mÅk)Åk = m

k1k2 … kn k1k2 … kn

One-time pad protocol:

This is secure because, what Eve sees is c, and c is uniformly distributed, 
regardless of what m is

m1m2…mn

But how do Alice and Bob set up the secret key to begin with?
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Key distribution scenario

Note: for security, Alice and Bob must never reuse the key bits
E.g., if Alice encrypts both  m and  m'  using the same key k then 
Eve can deduce mÅm' = cÅc' 

Key distribution problem: set up a large number of secret key bits

Simple, but cumbersome approaches:
• Alice and Bob get together and flip coins
• Alice and Bob use a trusted third party
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Key distribution based on 
computational hardness

Public key cryptosystems (e.g., RSA)

Bob generates two keys:
• a public key (for encryption)
• a secret (private) key (for decryption)

The security of many such schemes is based on the presumed computational 
difficulty of factoring integers—hence breakable with quantum computers!

Other schemes (e.g., elliptic curve cryptography schemes) are also 
breakable by quantum computers

Since the decryption function is essentially the inverse of the encryption, in 
principle, it is possible to decrypt using only the public key; however, 
decryption using only the public key is (presumed) computationally hard
(functions with this property are called trapdoor one-way functions)

Using a public key cryptosystem, Alice can choose the key, encrypt it using 
Bob’s  public key and send it to Bob (who can then decrypt the message)
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Quantum key distribution (QKD)
• A protocol that enables Alice and Bob to set up a secure* secret key, 

provided that they have:
– A quantum channel, where Eve can read and modify messages
– An authenticated classical channel, where Eve can read messages, but 

cannot tamper with them (the authenticated classical channel can be 
simulated by Alice and Bob having a very short classical secret key)

• There are several protocols for QKD, and the first one proposed is called 
�BB84� [Bennett & Brassard, 1984]:
– BB84 is �easy to implement� physically, but �difficult� to prove secure
– [Mayers, 1996]: first true security proof (quite complicated)
– [Shor & Preskill, 2000]: �simple� proof of security

* information-theoretic security
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BB84
• First, define:

• Alice begins with two random n-bit strings a, b Î {0,1}n

• Alice sends the state  |yñ = |ya1b1
ñ|ya2b2

ñ… |yanbn
ñ to Bob

• Note: Eve may see these qubits (and tamper with them)
• After receiving  |yñ,  Bob randomly chooses b' Î {0,1}n and measures 

each qubit as follows:
– If b'i = 0 then measure qubit  in basis {|0ñ, |1ñ}, yielding outcome a'i
– If b'i = 1 then measure qubit  in basis {|+ñ, |−ñ}, yielding outcome a'i

|y00ñ = |0ñ
|y10ñ = |1ñ

|y01ñ = |+ñ = |0ñ + |1ñ
|y11ñ = |−ñ = |0ñ − |1ñ

|y00ñ

|y10ñ
|y01ñ

|y11ñ
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BB84
• Note:

– If b'i = bi then a'i = ai

– If b'i ≠ bi then Pr[a'i = ai] = ½
• Bob informs Alice when he has performed his                     

measurements (using the public channel)

• Next, Alice reveals b and Bob reveals b' over the public channel

• They discard the cases where b'i ≠ bi and they will use the remaining 
bits of a and a' to produce the key

• Note:
– If Eve did not disturb the qubits then the key can be just a (= a' )
– The interesting case is where Eve may tamper with  |yñ while it is sent 

from Alice to Bob  

|y00ñ

|y10ñ
|y01ñ

|y11ñ
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BB84
• Intuition:

– Eve cannot acquire information about  |yñ without disturbing it, which will 
cause some of the bits of a and a' to disagree

– It can be proven* that: the more information Eve acquires about a, the 
more bit positions of a and a' will be different

• From Alice and Bob’s remaining bits, a and a' (where the positions 
where b'i ≠ bi have already been discarded):
– They take a random subset and reveal them in order to estimate the 

fraction of bits where a and a' disagree
– If this fraction is not too high then they proceed to distill a key from the bits 

of a and a' that are left over (around n /4 bits)

|y00ñ

|y10ñ
|y01ñ

|y11ñ

* To prove this rigorously is nontrivial
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BB84
• If the error rate between a and a' is below some threshold (around 11%) 

then Alice and Bob can produce a good key using techniques from 
classical cryptography:
– Information reconciliation (�distributed error correction�) 

produces shorter a and a' such that:
(i) a = a', and 
(ii) Eve doesn�t acquire much information about a and a' in the process

– Privacy amplification
produces shorter a and a' such that Eve’s information about a and a' is small

• There are already commercially available implementations of BB84, 
though assessing their true security is a subtle matter 
(since their physical mechanisms are not ideal)
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The Lo-Chau key exchange protocol: 
easier to analyze, though harder to 
implement
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Sufficiency of Bell states
If Alice and Bob can somehow generate a series of Bell states between 
them, such as |f+ñ|f+ñ...|f+ñ, (where |f+ñ = |00ñ + |11ñ) then it suffices for them 
to measure these states to obtain a secret key 

Intuitively, this is because there is nothing that Eve can �know� about 
|f+ñ = |00ñ + |11ñ that will permit her to predict a future measurement that 
she has no access to

Eve

?
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Key distribution protocol based on |f+ñ

Preliminary idea: Alice creates several |f+ñ states and sends the second 
qubit of each one to Bob

If they knew that that they possessed state |f+ñ|f+ñ ... |f+ñ then they 
could simply measure each qubit pair (say, in the computational basis) 
to obtain a shared private key

We might as well assume that Eve is supplying the qubits to 
Alice and Bob, who somehow test whether they’re |f+ñ

Since Eve can access the qubit channel, she can measure, or otherwise 
disturb the state in transit (e.g., collapse to |00ñ or |11ñ, known to her)

Question: how can Alice and Bob test the validity of their states?
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Testing |00ñ + |11ñ states (1)
Alice and Bob can pick a random subset of their |f+ñ states (say, half of 
them) to test, and then forfeit those

|f+ñ |f+ñ |f+ñ |f+ñ |f+ñ |f+ñ |f+ñ |f+ñ

test and discard these pairs
|f+ñ |f+ñ |f+ñ |f+ñ

Question: How do Alice and Bob �test� the pairs in this subset?

Due to Eve, they cannot use the quantum channel to actually measure 
them in the Bell basis ... but they can do individual measurements and 
compare results via the classical channel
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Testing |00ñ + |11ñ states (2)
The Bell state |f+ñ = |00ñ + |11ñ has the following properties:

(b) if both qubits are measured in the Hadamard basis the 
resulting bits will still be the same (since if HÄH |f+ñ = |f+ñ)

(a) if both qubits are measured in the computational basis
the resulting bits will be the same (i.e., 00 or 11)

Moreover, |f+ñ is the only two-qubit state that satisfies both properties 
(a) and (b)

Question: Why?
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Testing |00ñ + |11ñ states (3)

Example: if Eve slips in a state |00ñ and if Alice & Bob measure this pair in 
the Hadamard basis, they get the same bit with probability only ½ (so this
cheating is detected with probability ¼)

Problem: they can only measure in one of these two bases

Solution: they pick the basis randomly among the two types  (Alice 
decides by flipping a coin and announcing the result to Bob on the read-
only classical channel)

|f+ñ
|f–ñ
|y+ñ
|y–ñ

0               0
0               1
1               0
1               1

aÅb           aÅb
Basis:  computational Hadamard

|00ñ = |f+ñ +    |f–ñ1
Ö2

1
Ö2

If Eve slips in |µñ in place of |f+ñ then 
the probability of failing the test is

For                                      this is ¼ 

� 1� hµ|�+i2

2
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Testing |00ñ + |11ñ states (4)
Suppose there are n purported |f+ñ states and Alice and Bob test m of 

them (and are left with n–m key bits)

Suppose Eve slips in just one |00ñ state

Then the probability of this causing the test to fail (thereby detecting Eve) 

is only m/4n

Consider the extreme case, where Alice and Bob set m = n–1 (i.e., they 

test all but one), so the detection probability is (n–1)/4n = 1/4(1–1/n) £ 1/4

There is a much better approach …

Even in this extreme case, Eve can control the value of one key bit (without 

her being detected) with probability at least 3/4
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Better testing (1)
Think of a related (simpler) classical problem: detect if a binary array 
contains at least one 1

0 0 0 0 1 0 0 0

If one is confined to examining individual bits, this is difficult to do with 
very high probability making few tests

Suppose we have a primitive operation that tests the parity of any 
subset of bits

pick a random r Î {0,1}n and test if r×x = 0

If x ¹ 00...0  then this test detects this with probability ½  

Testing k such parities detects with probability 1– (½)k

Then the following procedure exposes a 1 with probability ½:
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Better testing (2)
Another way of interpreting this idea is to allow CNOT gates to be applied 
before a bit position is checked/discarded

Construct a circuit of CNOT gates in the following way:

Detects x ¹ 0000 with probability ½ by only discarding one bit  

In general, repeating this k times, detects with probability 1– (½)k  

while only discarding k bits

choose a random r Î {0,1}n and compute r×x in some bit position using 
CNOT gates

x1
x2

x4 r×x

example of circuit for r = 1011

x3
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Methodology of bilateral CNOTS (1)

The previous idea can be translated into the context of testing whether 
pairs Bell states are all |f+ñ or not

|f+ñ |f+ñ |f+ñ |f+ñ |f+ñ |f+ñ |f+ñ |f+ñ

1. Alice picks a random r Î {0,1}n and sends it to Bob
2. Alice and Bob perform various bilateral CNOT operations on their qubits

For r = 1011

�parity� of 
positions 1, 3, 4
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Methodology of bilateral CNOTS (2)

⌘
|f+ñ

|f+ñ

|f+ñ

|f+ñ

Note that two |f+ñ states remain unchanged when two CNOT gates are 
applied bilaterally across them as follows:

(This is a straightforward exercise to check)
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Methodology of bilateral CNOTS (3)

XaZe

|f+ñ

we can think of each purported |f+ñ
state as: (where a, e Î {0,1}n)

|f+ñ = |00ñ + |11ñ if ae = 00
XaZe I |f+ñ = |f–ñ = |00ñ – |11ñ if ae = 01

|y+ñ = |10ñ + |01ñ if ae = 10
|y–ñ = |10ñ – |01ñ if ae = 11

Since ⌦

The goal is to determine detect if a ¹ 00...0 or e ¹ 00...0

(We will consider general states—that are superpositions of states of the 
above form—later on)
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Methodology of bilateral CNOTS (4)

X

X
and

Note that:

X

X

X
⌘ ⌘

Xa1

Xa2
⌘

Xa1

Xa1+a2

Ze1

Ze2
⌘

Ze1

Ze1+e2

More generally:

Similarly:
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Methodology of bilateral CNOTS (5)

⌘

⌘

Xa1

Xa2

Ze1

Ze2|f+ñ

|f+ñ

Ze1

Ze2|f+ñ

|f+ñ

Xa1

Xa1+a2

|f+ñ

|f+ñ

Xa1

Xa1+a2Ze2

Ze1+e2

|f+ñ

|f+ñ

Xa1

Xa1+a2Ze2

Ze1+e2

⌘

bilateral 
CNOT
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Methodology of bilateral CNOTS (6)

|f+ñ

|f+ñ

|f+ñ

|f+ñ

|f+ñ

|f+ñ

|f+ñ

|f+ñ

⌘

XaZe = (Xa1 ⌦ · · ·⌦Xan)(Ze1 ⌦ · · ·⌦ Zen)

This detects a ¹ 00...0 with probability ½  

This test in Hadamard basis detects e ¹ 00...0 with probability ½  

By randomly selecting which one of these two tests to perform, can detect 
(a ¹ 00...0 or e ¹ 00...0) with probability ¼ 

Xr·a = Xr1a1+···+rnan
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Methodology of bilateral CNOTS (7)

Claim: The probability that an attack succeeds after m rounds is (¾)m

What happens if the process is repeated m times?
At iteration k:
Let the start state (for that iteration) be X aZ e⨂I |f+ñ⨂n–(k–1) for a, e ∈ {0,1}n–(k–1)

An attack is an initial state of the form  X aZ e⨂I |f+ñ⨂n for a, e ∈ {0,1}n

The outcome (for that iteration) is either an end state or a decision to abort
Case 1: a = e = 0…0 (“good” state)

Then Alice and Bob accept and the end state is |f+ñ⨂n–k

Case 2: a ≠ 0…0 or e ≠ 0…0 (“bad” state)
Then and Alice and Bob abort the protocol with probability ¼
If A and B do not abort*: end state is X aZ e⨂I |f+ñ⨂n–k for a, e ∈ {0,1}n–k

An attack succeeds if Alice and Bob do not abort and the final end state is 
X aZ e⨂I |f+ñ⨂n–m for a, e ∈ {0,1}n–m where a ≠ 0…0 or e ≠ 0…0

* Note: in case 2, a bad start state may become a good end state
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Conclusion of Lo-Chau scheme

Sacrificing (say) half the qubit pairs, Alice and Bob can establish a key that Eve has 
exponentially small information about

Unlike BB84, this protocol requires Alice and Bob to have quantum computers
—to store and perform nontrivial operations on states of several qubits

XaZe|�+i = (Xa1 ⌦ · · ·⌦Xan)(Ze1 ⌦ · · ·⌦ Zen)|�+i ⌦ · · ·⌦ |�+i
What if Eve provides a states that is not of the form 

?

If               is not close to 1 then the procedure has a good chance of aborting
if               is close to 1 then Alice and Bob can safely use it in place of       
to generate their secret key 

hµ|�+i2

hµ|�+i2 |�+i

Very rough idea: at every round the start state is a superposition of the form

and the procedure aborts with prob. 
1� hµ|�+i2

2


