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Grover's quantum

search algorithm




Quantum search problem

Given: a black box computing f: {0,1}"" — {0,1}

Goal: determine if f is satisfiable (if 3x € {0,1}" s.t. f(x) =1)

In positive instances, it makes sense to also find such a satisfying
assignment x

Classically, using probabilistic procedures, order 2™ queries are
necessary to succeed—even with probability % (say)

Grover’s quantum algorithm that makes only O(v/2") queries
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Applications of quantum search

The function f could be realized as a 3-CNF formula:
Flrnx, )=, vi,va)a(® v, v )a-alx v vi,)
Alternatively, the search could

be for a certificate for any
problem in NP

3-CNF-SAT

The resulting quantum
algorithms appear to be
quadratically more efficient FACTORING
than the best classical

algorithms known



Prelude to Grover’s algorithm:

two reflections = a rotation

Consider two lines with intersection angle 0:

reflection 2

s®

............................................. . G reflection 1

Net effect: rotation by angle 20, regardless of starting vector



Grover’s algorithm: description |

Basic operations used:
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Implementation?
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Grover’s algorithm: description |l
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1. construct state /|0...0)-)
2. repeat k times:

apply —HUOHUf to state
3. measure state, to get x € {0,1}”, and check if f(x)="1

(The setting of & will be determined later)



Grover’s algorithm: analysis |
Let A={x€{0,1}":f(X)=1} and B={x €{0,1}":f(x) =0}

and N=2" and a= |A| and b= |B| interesting case: a K N
Let |A) = Z lz) and |B) = Z z)
xEA xEB

Consider the space spanned by |4) and |B)

|4) € goal is to get close to this state




Grover’s algorithm: analysis |l

[4)
Algorithm: (—H UyH Uf)kH 0...0)

Observation:
Uy is areflection about |B): Ur|A) =— |A) and Uy|B) = |B)

Question: what is —-H Uy H ? Answer: a reflection about /|0...0)

Proof:

~HU,H(H|0...0)) =—H U,|0...0) =—H (-[0...0)) = H|0...0)
~HU,H(H|0...0))" =—HU,|0...0)'=-H|0...0)" =—(H]0...0))"
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Grover’s algorithm: analysis lli

Algorithm: (—H Uy HU,)*H|0...0)

Since —H Uy H Uy is a composition of two reflections, it is a rotation by 26,

where sin(0) =,/%/y so 0 = /9/y
When a =1, we want (2k+1)(1/VN) = n/2, so k= (n/4)VN

More generally, it suffices to set k = (n/4) \/N/qa E.g., half as many
iterations if a =4

Question: what if a is not known in advance? 10



Unknown number of solutions

1 solution 2 solutions 3 solutions
sinZ(k/\/ﬁ)

[E—

success
o probability

0 number of iterations x TVN/2

4 solutions 6 solutions 100 solutions

0 TNN/2

success probability
very close to zero!

Note that if we choose a random k in the range then the success probability
is the area under the curve (with normalized domain)

It turns out that this area is always > 0.43... y



Optimality of

Grover's algorithm




Optimality of Grover’s algorithm |

Theorem: any quantum search algorithm for f: {0,1}" — {0,1} must make
Q(v2m) queries to f (if f is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

) i 1))

and that a k—query algorithm is of the form

0...0)
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where Uy, Uy, U,, ..., Uy, are arbitrary unitary operations
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Define f,:{0,1}" > {0,1} as f, (X)=1iff X =7

Optimality of Grover’s algorithm i

Consider

0)=

Uy

Versus

|0

Uy

Ui

Ui

Uy

Uy

Us

Us

Uy

|\|’r,k>

Uy

E |\|!7;0>

We’'ll show that, averaging over all 7 € {0,1}", || |‘4’r,k> - |\|/,,’0> || <2k/\2"
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Optimality of Grover’s algorithm lil

Uy

Uy

|\|’r,k>

Us

Uy

|\Vr,i>

Uk

E |\|!7;0>

Note that W, = W,o) = (W) = Woa)) + (W) = [Woio)) + wee + ([Wi1) = [Wy0))

which implies

e = oo 1< 1o = W) 1+ e+ 1T = o) ]
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Optimality of Grover’s algorithm IV

Consider the difference between any two consecutive layers (i and i-1):

same unitary

|O>:: UO :n: Ul : |\|]r,i>
|O>__!_ UO E|‘V}f,i-l>
) (top layer)
ze{0,1}™m x€{0,1}M
Therefore || [y,;) - |v,.i1) || = [20;,|  (since only amplitude of |r) negated)
k-1
Therefore || [v,.;) - [w,0) || < ZQWM 16

1=0



Optimality of Grover’s algorithm V

Now, averaging over all 7 € {0,1}",

1 1
o Z k) — [r0)]] < on (Z 20m~> (we just showed this)
re{0,1}» re{0,1}

=

= on . 2( Z |047;,7~> (reordering sums)

i=0 re{0,1}n

1

< 2_n 2 ( n) (by Cauchy-Schwarz)

B Qk
\ /277,

Therefore, for some 7 € {0,1}", the number of queries k must be Q(\/Z_” )
in order to distinguish £, from the all-zero function

This completes the proof 17



