Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 17–18 (2019)

Richard Cleve DC 2117 / QNC 3129

cleve@uwaterloo.ca

© Richard Cleve 2019

Grover's quantum search algorithm

Quantum search problem

Given: a black box computing $f: \{0,1\}^n \rightarrow \{0,1\}$

Goal: determine if f is **satisfiable** (if $\exists x \in \{0,1\}^n$ s.t. f(x) = 1)

In positive instances, it makes sense to also \emph{find} such a satisfying assignment x

Classically, using probabilistic procedures, order 2^n queries are necessary to succeed—even with probability $\frac{3}{4}$ (say)

Grover's *quantum* algorithm that makes only $O(\sqrt{2^n})$ queries

$$|x_{1}\rangle = U_{f}$$

$$|x_{n}\rangle = |x_{1}\rangle$$

$$|x_{n}\rangle = |x_{n}\rangle$$

$$|y \oplus f(x_{1},...,x_{n})\rangle$$

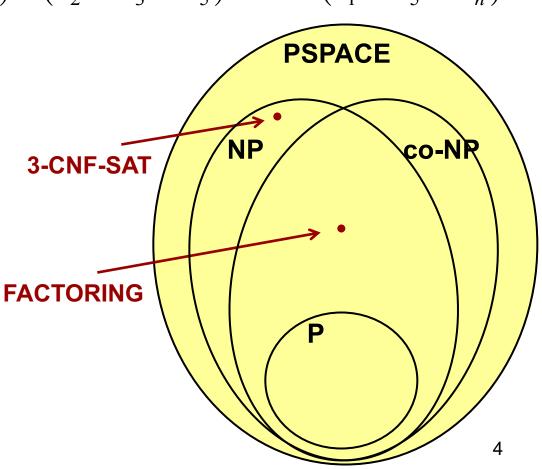
Applications of quantum search

The function f could be realized as a **3-CNF formula**:

$$f(x_1,...,x_n) = (x_1 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_2 \vee x_3 \vee \overline{x}_5) \wedge \cdots \wedge (\overline{x}_1 \vee x_5 \vee \overline{x}_n)$$

Alternatively, the search could be for a certificate for any problem in **NP**

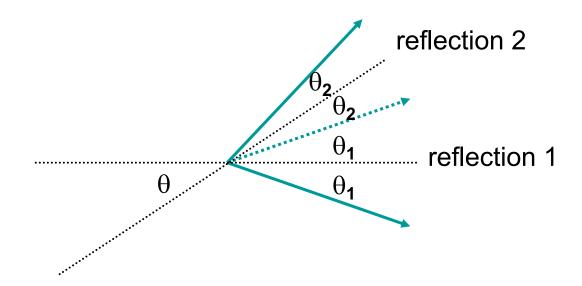
The resulting quantum algorithms appear to be *quadratically* more efficient than the best classical algorithms known



Prelude to Grover's algorithm:

two reflections = a rotation

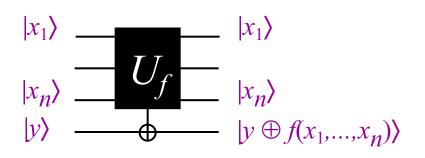
Consider two lines with intersection angle θ :



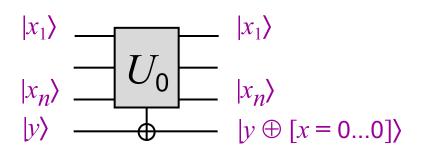
Net effect: rotation by angle 2θ , regardless of starting vector

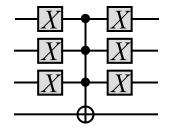
Grover's algorithm: description I

Basic operations used:

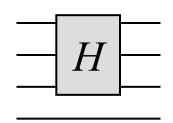


$$U_f|x\rangle|-\rangle = (-1)^{f(x)}|x\rangle|-\rangle$$

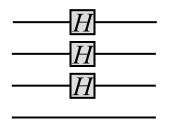




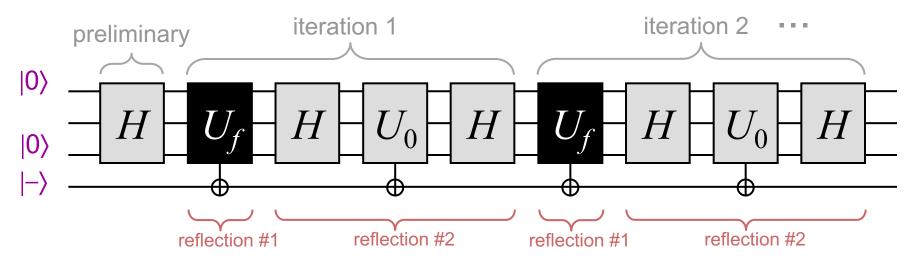
$$U_0|x\rangle|-\rangle = (-1)^{[x = 0...0]}|x\rangle|-\rangle$$



Hadamard



Grover's algorithm: description II



- 1. construct state $H|0...0\rangle|-\rangle$
- 2. repeat k times: apply $-HU_0HU_f$ to state
- 3. measure state, to get $x \in \{0,1\}^n$, and check if f(x)=1

(The setting of k will be determined later)

Grover's algorithm: analysis I

Let
$$A = \{x \in \{0,1\}^n : f(x) = 1\}$$
 and $B = \{x \in \{0,1\}^n : f(x) = 0\}$ and $N = 2^n$ and $a = |A|$ and $b = |B|$ interesting case: $a \ll N$

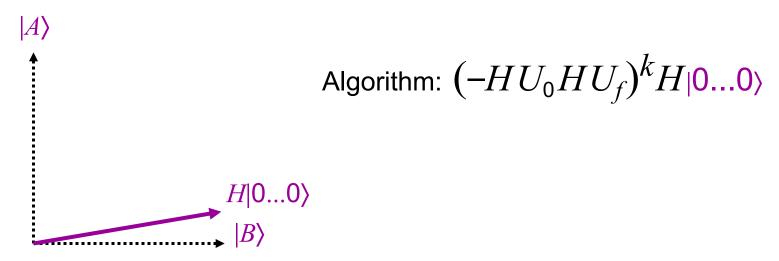
Let
$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
 and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$

Consider the space spanned by $|A\rangle$ and $|B\rangle$

$$|A\rangle$$
 \leftarrow goal is to get close to this state

$$H|0...0\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle = \sqrt{\frac{a}{N}} |A\rangle + \sqrt{\frac{b}{N}} |B\rangle$$

Grover's algorithm: analysis II



Observation:

 U_f is a reflection about $|B\rangle$: $U_f|A\rangle = -|A\rangle$ and $U_f|B\rangle = |B\rangle$

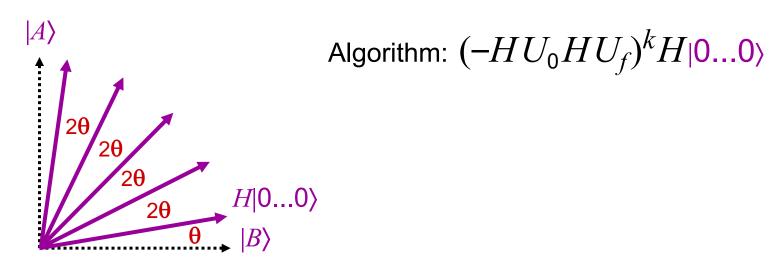
Question: what is $-HU_0H$? **Answer:** a reflection about $H|0...0\rangle$

Proof:

$$-HU_0H(H|0...0) = -HU_0|0...0) = -H(-|0...0) = H|0...0$$

$$-HU_0H(H|0...0\rangle)^{\perp} = -HU_0|0...0\rangle^{\perp} = -H|0...0\rangle^{\perp} = -(H|0...0\rangle)^{\perp} \ \, 9$$

Grover's algorithm: analysis III



Since $-HU_0HU_f$ is a composition of two reflections, it is a rotation by 20,

where
$$\sin(\theta) = \sqrt{a/N}$$
 so $\theta \approx \sqrt{a/N}$

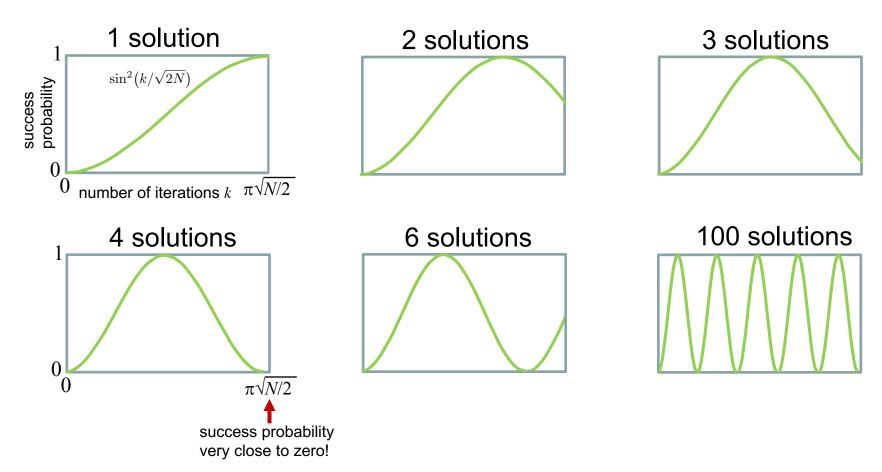
When
$$a = 1$$
, we want $(2k+1)(1/\sqrt{N}) \approx \pi/2$, so $k \approx (\pi/4)\sqrt{N}$

More generally, it suffices to set $k \approx (\pi/4) \sqrt{N/a}$

E.g., half as many iterations if a = 4

Question: what if *a* is not known in advance?

Unknown number of solutions



Note that if we choose a random k in the range then the success probability is the area under the curve (with normalized domain)

It turns out that this area is always > 0.43...

Optimality of Grover's algorithm

Optimality of Grover's algorithm I

Theorem: any quantum search algorithm for $f: \{0,1\}^n \to \{0,1\}$ must make $\Omega(\sqrt{2^n})$ queries to f (if f is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

$$|x\rangle \equiv \int \equiv (-1)^{f(x)} |x\rangle$$

and that a k-query algorithm is of the form

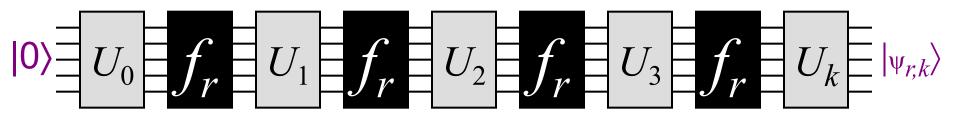
$$|0...0\rangle = U_0 = f = U_1 = f = U_2 = f = U_3 = f = U_k = 0$$

where U_0 , U_1 , U_2 , ..., U_k , are arbitrary unitary operations

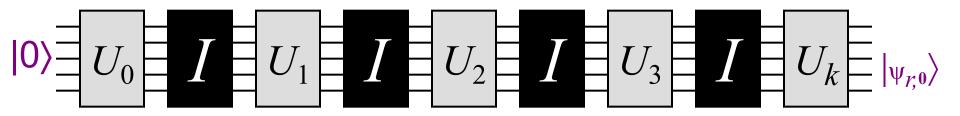
Optimality of Grover's algorithm II

Define $f_r: \{0,1\}^n \to \{0,1\}$ as $f_r(x) = 1$ iff x = r

Consider

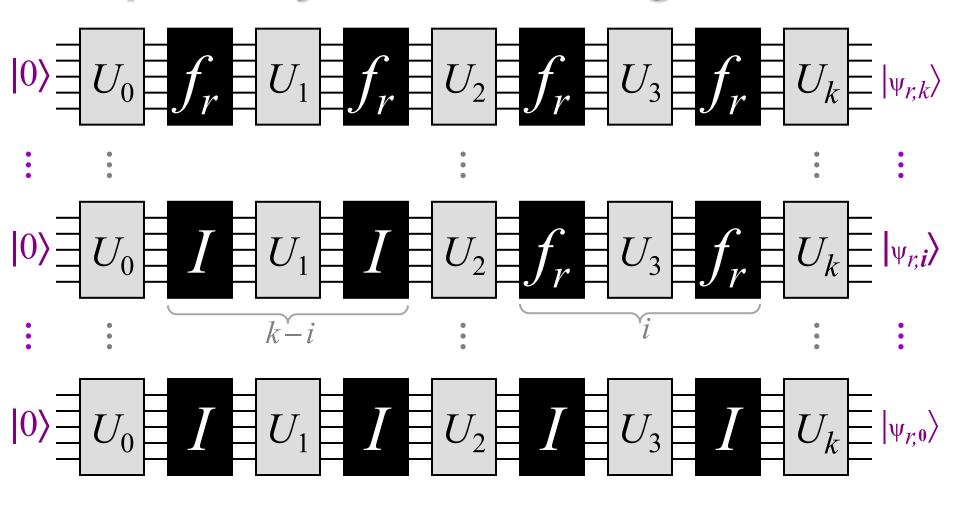


versus



We'll show that, averaging over all $r \in \{0,1\}^n$, $|| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || \le 2k/\sqrt{2^n}$

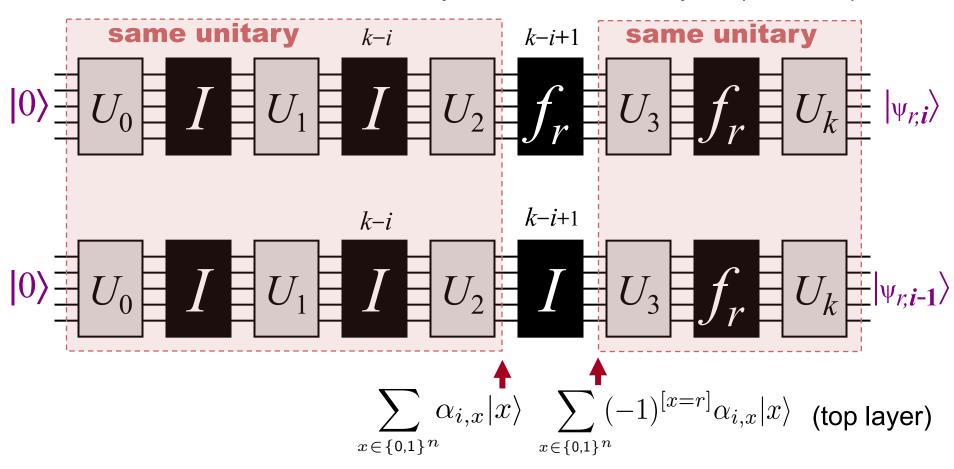
Optimality of Grover's algorithm III



Note that
$$|\psi_{r,k}\rangle - |\psi_{r,0}\rangle = (|\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle) + (|\psi_{r,k-1}\rangle - |\psi_{r,k-2}\rangle) + ... + (|\psi_{r,1}\rangle - |\psi_{r,0}\rangle)$$
 which implies $||\psi_{r,k}\rangle - |\psi_{r,0}\rangle|| \le ||\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle|| + ... + ||\psi_{r,1}\rangle - |\psi_{r,0}\rangle||$

Optimality of Grover's algorithm IV

Consider the difference between any two consecutive layers (i and i-1):



Therefore $|| |\psi_{r,i}\rangle - |\psi_{r,i-1}\rangle || = |2\alpha_{i,r}|$ (since only amplitude of $|r\rangle$ negated)

Therefore
$$\| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle \| \leq \sum_{i=0}^{n-1} 2|\alpha_{i,r}|$$

Optimality of Grover's algorithm V

Now, averaging over all $r \in \{0,1\}^n$,

$$\begin{split} \frac{1}{2^n} \sum_{r \in \{0,1\}^n} \||\psi_{r,k}\rangle - |\psi_{r,0}\rangle\| &\leq \frac{1}{2^n} \sum_{r \in \{0,1\}^n} \left(\sum_{i=0}^{k-1} 2|\alpha_{i,r}|\right) \quad \text{(we just showed this)} \\ &= \frac{1}{2^n} \sum_{i=0}^{k-1} 2 \left(\sum_{r \in \{0,1\}^n} |\alpha_{i,r}|\right) \quad \text{(reordering sums)} \\ &\leq \frac{1}{2^n} \sum_{i=0}^{k-1} 2 \left(\sqrt{2^n}\right) \quad \text{(by Cauchy-Schwarz)} \\ &= \frac{2k}{\sqrt{2^n}} \end{split}$$

Therefore, for **some** $r \in \{0,1\}^n$, the number of queries k must be $\Omega(\sqrt{2^n})$, in order to distinguish f_r from the all-zero function

This completes the proof