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Entropy and
compression



Shannon entropy
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Let p = (p1,…, pd) be a probability distribution on a set {1,…,d}

Then the (Shannon) entropy of p is H(p1,…, pd) j
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Intuitively, this turns out to be a good measure of how much “randomness” 
(or “uncertainty”) is there is in p:

vs. vs. vs.

H(p) = log d H(p) = 0 

We’ll see that, operationally, H(p) is the number of bits needed to store the 
outcome (in a sense that will be made formal)
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Let p = (p1,…, pd) be a probability distribution on a set {1,…,d}

Intuitively, this turns out to be a good measure of how much “randomness” 
(or “uncertainty”) is there is in p:

vs. vs. vs.

H(p) = log d H(p) = 0 

We’ll see that, operationally, H(p) is the number of bits needed to store the 
outcome (in a certain sense)



Von Neumann entropy
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For a density matrix r, it turns out that S(r) = − Trr logr is a good quantum 
analogue of entropy

Note: S(r) = H(p1,…, pd), where p1,…, pd  are the eigenvalues of r (with 
multiplicity)

Operationally, S(r) is the number of qubits needed to store r (in a sense 
that will be made formal later on)

Both the classical and quantum compression results pertain to the case of 
large blocks of n independent instances of data: 

• probability distribution pÄn in the classical case, and 

• quantum state rÄn in the quantum case



Classical compression (1)
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Let p = (p1,…, pd) be a probability distribution on a set {1,…, d} where n
independent instances are sampled:
( j1,…, jn) Î{1,…, d}n (dn possibilities, n logd bits to specify one)

Intuitively, there is a subset T ⊆ {1,…, d}n, called the �typical sequences�, 
that has size 2n(H(p) + e) and probability  1 − e of occurring

Theorem* (Shannon data compression): for all e > 0, for sufficiently 
large n, there is a scheme that compresses the specification to n(H(p) + e)
bits while introducing an error with probability at most e

* �Plain vanilla� version that ignores, for example, the tradeoffs between n and e

Example: an n-bit binary string with each bit distributed as Pr[0] = 0.9  and 
Pr[1] = 0.1 can be compressed to »0.47n bits

Note that, in the above example, |T | ≪ 2n even though Pr[T ] ≥ 1 − e



Classical compression (2)
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Define the random variable  f :{1,…, d} ® ℝ as f ( j ) = − log pj

Note that ( )dj
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"Define  g :{1,…, d}n ® ℝ as

Thus   ( )dppHgE ,,][ 1 !=

A nice way to prove the theorem, is based on two cleverly defined random 
variables …

which implies Pr[( j1,..., jn )]= 2
−ng( j1,..., jn )

Also, g(j1, ..., jn) = � 1

n
log(pj1 . . . pjn) = � 1

n
log

�
Pr[(j1, . . . , jn)]
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Classical compression (3)
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By standard results in statistics*, as n ® ¥, the observed value of  g ( j1,…, jn) 
approaches its expected value, H(p), in this sense:

Pr[|g( j1,…, jn) – H(p)| ≤ e] ³ 1– e for all e > 0, for sufficiently large n
[recall that g ( j1,…, jn) is an average of independent f ( j ) ]

Define ( j1,…, jn)Î{1,…, d}n to be e-typical  if

Then, the above implies, for all e > 0, for sufficiently large n,
Pr[( j1,…, jn) is e-typical] ³ 1− e

g j1,…, jn( )−H p( ) ≤ ε

We can also bound the number of these e-typical sequences:
•By definition, each such sequence has probability ³ 2−n(H(p) + e)

•Therefore, there can be at most 2n(H(p) + e) such sequences (otherwise, the 
sum of probabilities would exceed 1)

* The weak law of large numbers



Classical compression (4)
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In summary, the compression procedure is as follows: 

The input data is ( j1,…, jn) Î{1,…,d}n, each independently sampled 
according the probability distribution  p = (p1,…, pd)

The compression procedure is to leave ( j1,…, jn) intact if it is e-typical and 
otherwise change it to some fixed e-typical sequence, say, some ( jk ,…, jk) 
(which will result in an error)

Since there are at most 2n(H(p) + e) e-typical sequences, the data can then be 
converted into n(H(p) + e) bits 

The error probability is at most e, the probability of an input that is not 
typical arising



Quantum compression (1)
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The scenario: n independent instances of a d -dimensional state are 
randomly generated according some distribution:

|φ1 ñ prob. p1
: : :
|φr ñ prob. pr

Goal: to �compress� this into as few qubits as possible so that the original 
state can be reconstructed “with small error”

What’s a good formal definition of error in a quantum compression scheme?

Define a quantum compression scheme to be e-good if no procedure can 
distinguish between these two states
a)the state resulting from compressing and then uncompressing the data
b)the original state
with probability more than ½ + ¼ e

|0ñ prob. ½
|+ñ prob. ½ 

Example:



Quantum compression (2)
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For the aforementioned example, » 0.6n qubits suffices
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ψψrExpress r in its eigenbasis as

With respect to this basis, we will define an e-typical subspace of dimension 
2n(S(r) + e) = 2n(H(q) + e)

The compression method:

|0ñ prob. ½
|+ñ prob. ½ 

p
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Quantum compression (3)
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The e-typical subspace is that spanned by 
where ( j1,…, jn) is e-typical with respect to (q1,…, qd)

njj ,, ψψ
1
!

By the same argument as in the classical case, the subspace has 
dimension £ 2n(S(r) + e) and Tr(Ptyp r Än) ³ 1− e

Define: Ptyp as the projector into the e-typical subspace 

|y1ñ prob. q1
: : :
|ydñ prob. qd

Why? Because r is the density matrix of 

and Tr
�
⇧typ⇢

⌦n
�
= Tr

⇣
⇧typ

X

j1...jn

qj1 . . . qjn | j1 . . . jnih j1 . . . jn |
⌘

=
X

j1...jn

qj1 . . . qjnh j1 . . . jn |⇧typ| j1 . . . jni

=
X

j1...jn

qj1 . . . qjn�[j1 . . . jn is typical] � 1� "

“eigenstate” mixture



Quantum compression (4)
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Calculation of the “expected fidelity” for our actual mixture:

Does this mean that the scheme is e’-good for some e’?

Abbreviations used

I = i1i2 . . . in

pI = pi1pi2 . . . pin
|�Ii = |�i1�i2 . . .�ini

X

I

pIh�I |⇧typ|�Ii =
X

I

pITr
�
⇧typ|�Iih�I |

�

= Tr
⇣X

I

pI⇧typ|�Iih�I |
⌘

= Tr
�
⇧typ⇢

⌦n
�

� 1� "

We would now be done if our actual mixture was an eigenstate mixture 

|φ1 ñ prob. p1
: : :
|φr ñ prob. pr

actual mixture: 
|y1 ñ prob. q1
: : :
|yr ñ prob. qr

eigenstate mixture: 



Quantum compression (5)
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(I, |�Ii)
pI

The true data is of the form                 where the  I is generated with 
probability  

pI

The approximate data is of the form                      where  I is generated 
with probability 

⇣
I, 1

�I
⇧typ|�Ii

⌘

is a normalization factor�I =
p
h�I |⇧typ|�Ii

Above two states at least as hard to distinguish as these two purifications:

|�i =
X

I

p
pI |Ii ⌦ |�Ii |�0i =

X

I

p
pI |Ii ⌦ 1

�I
⇧typ|�Ii

Fidelity: h�|�0i =
X

I

pI
1
�I
h�I |⇧typ|�Ii �

X

I

pIh�I |⇧typ|�Ii � 1� "

Trace distance: k |�i � |�0i ktr 
p
2"

Therefore the scheme is           -good⇡
p
2"


