Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 16 (2019)

Richard Cleve QNC 3129 <u>cleve@uwaterloo.ca</u>

© Richard Cleve 2016

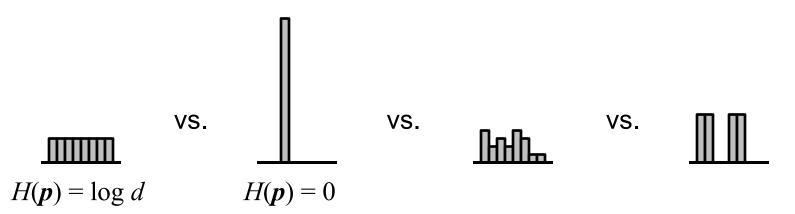
Entropy and compression

Shannon entropy

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$

Then the (Shannon) *entropy* of p is $H(p_1,...,p_d) = -\sum_{j=1}^d p_j \log p_j$

Intuitively, this turns out to be a good measure of how much "randomness" (or "uncertainty") is there is in p:

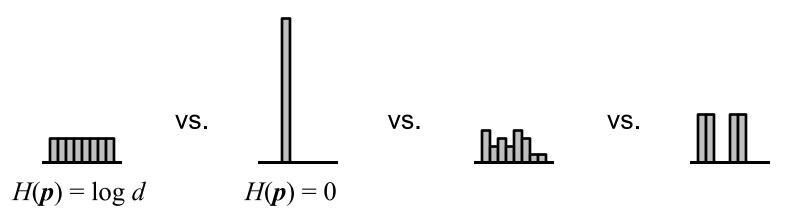


We'll see that, operationally, H(p) is the number of bits needed to store the outcome (in a sense that will be made formal)

Shannon entropy Then the (Shannon) *entropy* of *p* is $H(p_1, ..., p_d) =$ Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$

Then the (Shannon) *entropy* of **p** is $H(p_1, ..., p_d) = \sum_{j=1}^d p_j \log p_j$

Intuitively, this turns out to be a good measure of how much "randomness" (or "uncertainty") is there is in p:



We'll see that, operationally, H(p) is the number of bits needed to store the outcome (in a certain sense)

Von Neumann entropy

For a density matrix ρ , it turns out that $S(\rho) = -\text{Tr}\rho \log \rho$ is a good quantum analogue of entropy

Note: $S(\rho) = H(p_1, ..., p_d)$, where $p_1, ..., p_d$ are the eigenvalues of ρ (with multiplicity)

Operationally, $S(\rho)$ is the number of **qubits** needed to store ρ (in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to the case of large blocks of n independent instances of data:

- probability distribution $p^{\otimes n}$ in the classical case, and
- quantum state $\rho^{\otimes n}$ in the quantum case

Classical compression (1)

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$ where *n* independent instances are sampled:

 $(j_1,...,j_n) \in \{1,...,d\}^n$ (*d*ⁿ possibilities, $n \log d$ bits to specify one)

Theorem* (Shannon data compression): for all $\varepsilon > 0$, for sufficiently large *n*, there is a scheme that compresses the specification to $n(H(p) + \varepsilon)$ bits while introducing an error with probability at most ε

Example: an *n*-bit binary string with each bit distributed as Pr[0] = 0.9 and Pr[1] = 0.1 can be compressed to $\approx 0.47n$ bits

Intuitively, there is a subset $T \subseteq \{1, ..., d\}^n$, called the "typical sequences", that has size $2^{n(H(p) + \varepsilon)}$ and probability $1 - \varepsilon$ of occurring

Note that, in the above example, $|T| \ll 2^n$ even though $Pr[T] \ge 1 - \varepsilon$

Classical compression (2)

A nice way to prove the theorem, is based on two cleverly defined random variables ...

Define the random variable $f:\{1,...,d\} \to \mathbb{R}$ as $f(j) = -\log p_j$ Note that $E[f] = \sum_{j=1}^d p_j f(j) = -\sum_{j=1}^d p_j \log p_j = H(p_1,...,p_d)$

Define
$$g:\{1,...,d\}^n \to \mathbb{R}$$
 as $g(j_1,...,j_n) = \frac{f(j_1) + \dots + f(j_n)}{n}$
Thus $E[g] = H(p_1,...,p_d)$

Also,
$$g(j_1, ..., j_n) = -\frac{1}{n} \log(p_{j_1} \dots p_{j_n}) = -\frac{1}{n} \log(\Pr[(j_1, \dots, j_n)])$$

which implies $\Pr[(j_1,...,j_n)] = 2^{-ng(j_1,...,j_n)}$

Classical compression (3)

By standard results in statistics^{*}, as $n \to \infty$, the observed value of $g(j_1,...,j_n)$ approaches its expected value, $H(\mathbf{p})$, in this sense:

 $\Pr[|g(j_1,...,j_n) - H(p)| \le \varepsilon] \ge 1 - \varepsilon \text{ for all } \varepsilon > 0, \text{ for sufficiently large } n$ [recall that $g(j_1,...,j_n)$ is an average of independent f(j)]

Define
$$(j_1,...,j_n) \in \{1,...,d\}^n$$
 to be ε -typical if $|g(j_1,...,j_n) - H(p)| \le \varepsilon$

Then, the above implies, for all $\varepsilon > 0$, for sufficiently large *n*,

 $\Pr[(j_1,...,j_n) \text{ is } \varepsilon \text{-typical}] \ge 1 - \varepsilon$

We can also bound the *number of* these ε -typical sequences: •By definition, each such sequence has probability $\ge 2^{-n(H(p) + \varepsilon)}$ •Therefore, there can be at most $2^{n(H(p) + \varepsilon)}$ such sequences (otherwise, the sum of probabilities would exceed 1)

^{*} The weak law of large numbers

Classical compression (4)

In summary, the compression procedure is as follows:

The input data is $(j_1,...,j_n) \in \{1,...,d\}^n$, each independently sampled according the probability distribution $p = (p_1,...,p_d)$

The compression procedure is to leave $(j_1,...,j_n)$ intact if it is ε -typical and otherwise change it to some fixed ε -typical sequence, say, some $(j_k,...,j_k)$ (which will result in an error)

Since there are at most $2^{n(H(p) + \varepsilon)} \varepsilon$ -typical sequences, the data can then be converted into $n(H(p) + \varepsilon)$ bits

The error probability is at most $\boldsymbol{\epsilon},$ the probability of an input that is not typical arising

Quantum compression (1)

The scenario: *n* independent instances of a *d*-dimensional state are randomly generated according some distribution:

ſ	$ \varphi_1\rangle$ prob. p_1 \vdots \vdots \vdots \vdots	Example:	$\begin{cases} 0\rangle \text{ prob. } \frac{1}{2} \\ +\rangle \text{ prob. } \frac{1}{2} \end{cases}$
	$\langle arphi_r angle$ prob. p_r l		

Goal: to "compress" this into as few qubits as possible so that the original state can be reconstructed "with small error"

What's a good formal definition of error in a quantum compression scheme?

Define a quantum compression scheme to be ε -good if no procedure can distinguish between these two states a)the state resulting from compressing and then uncompressing the data b)the original state with probability more than $\frac{1}{2} + \frac{1}{4} \varepsilon$

Quantum compression (2)

Define

$$o = \sum_{i=1} p_i |\varphi_i\rangle \langle \varphi_i|$$

Theorem (Schumacher data compression): for all $\varepsilon > 0$, for sufficiently large *n*, there is a scheme that compresses the data to $n(S(\rho) + \varepsilon)$ qubits, that is $\sqrt{2\varepsilon}$ -good

For the aforementioned example, $\approx 0.6n$ qubits suffices

∫ 0 ⟩	prob. prob.	1/2
$\left + \right\rangle$	prob.	$\frac{1}{2}$

The compression method:

Express
$$ho$$
 in its eigenbasis as $ho = \sum_{j=1}^{d} q_j |\psi_j\rangle \langle \psi_j |$

With respect to this basis, we will define an ε -typical subspace of dimension $2^{n(S(\rho) + \varepsilon)} = 2^{n(H(q) + \varepsilon)}$

Quantum compression (3)

The ε -*typical subspace* is that spanned by $|\psi_{j_1}, ..., \psi_{j_n}\rangle$

where $(j_1,...,j_n)$ is ε -typical with respect to $(q_1,...,q_d)$

Define: Π_{typ} as the projector into the ϵ -typical subspace

By the same argument as in the classical case, the subspace has dimension $\leq 2^{n(S(\rho) + \varepsilon)}$ and $Tr(\Pi_{typ} \rho^{\otimes n}) \geq 1 - \varepsilon$

Why? Because ρ is the density matrix of $\begin{cases} |\psi_1\rangle & \text{prob. } q_1 \\ \vdots & \vdots & \vdots \\ |\psi_d\rangle & \text{prob. } q_d \end{cases}$ \leftarrow "eigenstate" mixture

12

and
$$\operatorname{Tr}\left(\Pi_{\operatorname{typ}}\rho^{\otimes n}\right) = \operatorname{Tr}\left(\Pi_{\operatorname{typ}}\sum_{j_{1}\dots j_{n}}q_{j_{1}}\dots q_{j_{n}}|\psi_{j_{1}}\dots \psi_{j_{n}}\rangle\langle\psi_{j_{1}}\dots \psi_{j_{n}}|\right)$$

$$= \sum_{j_{1}\dots j_{n}}q_{j_{1}}\dots q_{j_{n}}\langle\psi_{j_{1}}\dots \psi_{j_{n}}|\Pi_{\operatorname{typ}}|\psi_{j_{1}}\dots \psi_{j_{n}}\rangle$$
$$= \sum_{j_{1}\dots j_{n}}q_{j_{1}}\dots q_{j_{n}}\chi_{[j_{1}\dots j_{n} \text{ is typical}]} \geq 1-\varepsilon$$

Quantum compression (4)

We would now be done if our *actual mixture* was an *eigenstate mixture*

actual mixture:

eigenstate mixture:

ſ	$ \phi_1\rangle$	prob.	p_1		$ \psi_1\rangle$	prob.	q_1
$\left\{ \right.$	•	•	•	\prec	•	•	•
Ĺ	$ \phi_r\rangle$	prob.	p_r		$ \psi_r\rangle$	prob.	q_r

Calculation of the "expected fidelity" for our actual mixture:

$$\sum_{I} p_{I} \langle \phi_{I} | \Pi_{\text{typ}} | \phi_{I} \rangle = \sum_{I} p_{I} \text{Tr} \left(\Pi_{\text{typ}} | \phi_{I} \rangle \langle \phi_{I} | \right)$$

$$= \text{Tr} \left(\sum_{I} p_{I} \Pi_{\text{typ}} | \phi_{I} \rangle \langle \phi_{I} | \right)$$

$$= \text{Tr} \left(\Pi_{\text{typ}} \rho^{\otimes n} \right)$$

$$\geq 1 - \varepsilon$$
Abbreviations used
$$I = i_{1} i_{2} \dots i_{n}$$

$$p_{I} = p_{i_{1}} p_{i_{2}} \dots p_{i_{n}}$$

$$|\phi_{I} \rangle = |\phi_{i_{1}} \phi_{i_{2}} \dots \phi_{i_{n}} \rangle$$

Does this mean that the scheme is ϵ' -good for some ϵ' ?

Quantum compression (5)

The *true data* is of the form $(I, |\phi_I\rangle)$ where the *I* is generated with probability p_I

The *approximate data* is of the form $\left(I, \frac{1}{\gamma_I} \Pi_{typ} | \phi_I \right)$ where I is generated with probability p_I $\gamma_I = \sqrt{\langle \phi_I | \Pi_{typ} | \phi_I \rangle}$ is a normalization factor

Above two states *at least* as hard to distinguish as these two purifications:

$$|\Phi\rangle = \sum_{I} \sqrt{p_{I}} |I\rangle \otimes |\phi_{I}\rangle \qquad \qquad |\Phi'\rangle = \sum_{I} \sqrt{p_{I}} |I\rangle \otimes \frac{1}{\gamma_{I}} \Pi_{\text{typ}} |\phi_{I}\rangle$$

Fidelity:
$$\langle \Phi | \Phi' \rangle = \sum_{I} p_{I} \frac{1}{\gamma_{I}} \langle \phi_{I} | \Pi_{\text{typ}} | \phi_{I} \rangle \ge \sum_{I} p_{I} \langle \phi_{I} | \Pi_{\text{typ}} | \phi_{I} \rangle \ge 1 - \varepsilon$$

Trace distance: $\| \left| \Phi \right\rangle - \left| \Phi' \right\rangle \|_{tr} \leq \sqrt{2\varepsilon}$

Therefore the scheme is $\approx \sqrt{2\varepsilon}$ -good