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Entropy and
compression



Shannon entropy

Letp = (p....., py) be a probability distribution on a set {1,...,d}

d
Then the (Shannon) entropy of p is H(p,,...,p,) = —Z p;logp;

j=1

J

Intuitively, this turns out to be a good measure of how much “randomness’
(or “uncertainty”) is there is in p:
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H(p)=logd Hp)=0

We'll see that, operationally, H(p) is the number of bits needed to store the
outcome (in a sense that will be made formal)
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Von Neumann entropy

For a density matrix p, it turns out that S(p) = - Trp logp is a good quantum
analogue of entropy

Note: S(p) = H(p,,..., p,y), Where p,,..., p; are the eigenvalues of p (with
multiplicity)

Operationally, S(p) is the number of qubits needed to store p (in a sense
that will be made formal later on)

Both the classical and quantum compression results pertain to the case of
large blocks of n independent instances of data:

« probability distribution p®” in the classical case, and

e quantum state p®” in the quantum case



Classical compression (1)

Letp = (p,...., py) be a probability distribution on a set {1,..., d} where n
independent instances are sampled:

(Jio--njy) €{1,...,d}" (d" possibilities, nlogd bits to specify one)

Theorem* (Shannon data compression): for all € > 0, for sufficiently

large n, there is a scheme that compresses the specification to n(H(p) + €)
bits while introducing an error with probability at most ¢

Example: an n-bit binary string with each bit distributed as Pr[0] = 0.9 and
Pr[1] = 0.1 can be compressed to ~0.47n bits

Intuitively, there is a subset T € {1,..., d}", called the “typical sequences”,
that has size 2" *¢ and probability 1- ¢ of occurring

Note that, in the above example, IT| « 2" even though Pr[T] = 1-¢

* “Plain vanilla” version that ignores, for example, the tradeoffs between n and ¢ 6




Classical compression (2)

A nice way to prove the theorem, is based on two cleverly defined random
variables ...

Define the random variable f:{1,...,d} > Rasf(j)=- log p;

d d
Note that E[f1=>" p,f(j)==> p,logp,=H(p,...,n,)
Jj=1 J=1

Define g:{1,...,d}" > R as g(jl,...,jn):f(j1)+.’;l'+f(j”)

Thus E[g]=H(p,,---» ;)

, , 1 1 . .
Also, ¢(ji,...,Jn) = ——log(pj, ...pj,) = —— log(Pf[(Jh x ,Jn)])
n n

which implies  Pr[(j,,..., j,)]=27"s")



Classical compression (3)

By standard results in statistics*, as n — «, the observed value of g(J,,...,/,)
approaches its expected value, H(p), in this sense:

Prl|g(j,,.... ) — Hp)| < €] = 1- ¢ for all & > 0, for sufficiently large n
[recall that g(/,,...,/,) is an average of independent () ]

Define (J,,...,J,) €{l,..., d}" to be e-typical if

8(Jine-ndi)-H(p)| €
Then, the above implies, for all € > 0, for sufficiently large n,

Pr[(ji,....J,) is e-typical] > 1- €

We can also bound the number of these e-typical sequences:

By definition, each such sequence has probability > 27"HP) *¢)
*Therefore, there can be at most 2"#») +¢ such sequences (otherwise, the
sum of probabilities would exceed 1)

* The weak law of large numbers



Classical compression (4)

In summary, the compression procedure is as follows:

The input data is (J,,...,J,) €{1,...,d}", each independently sampled
according the probability distribution p = (p,,..., py)

The compression procedure is to leave (J,,..., J,) intact if it is e-typical and

otherwise change it to some fixed e-typical sequence, say, some (J;,..., j;)
(which will result in an error)

Since there are at most 2"¢() * ¢) g-typical sequences, the data can then be
converted into n(H(p) + €) bits

The error probability is at most ¢, the probability of an input that is not
typical arising



Quantum compression (1)

The scenario: n independent instances of a d-dimensional state are
randomly generated according some distribution:

0) prob. '

1) prob. p,
: : : +) prob. %

: : : Example: {
9.) prob. p,

Goal: to “compress” this into as few qubits as possible so that the original
state can be reconstructed “with small error”

What's a good formal definition of error in a quantum compression scheme?

Define a quantum compression scheme to be g-good if no procedure can
distinguish between these two states

a)the state resulting from compressing and then uncompressing the data
b)the original state

with probability more than %2+ Y ¢ 0



Quantum compression (2)

Define p=> p,
i=1

¢, @,

Theorem (Schumacher data compression): for all € > 0, for sufficiently
large n, there is a scheme that compresses the data to n(S(p) + €) qubits,

that is v/2:-good

For the aforementioned example, = 0.6n qubits suffices 0) prob. Y%
{ +) prob. %

The compression method:
d

Express pin its eigenbasis as p=>"q |y, }v,]|
j=1

With respect to this basis, we will define an e-typical subspace of dimension
D7(S(p) + £) = DN(H(g) + €)

11



Quantum compression (3)

The e-typical subspace is that spanned by ‘\V jl,---,\lfjn>
where (J,,...,J,) is e-typical with respect to (q,...., )

Define: I1,,, as the projector into the e-typical subspace

typ

By the same argument as in the classical case, the subspace has
dimension < 2"6W+*= and Tr(ILy, p®") = 1- €
[y, prob. g

Why? Because p is the density matrix of _ <« “eigenstate” mixture

L[Wa) prob. gq

and Tr (IL,,p®") = Tr(thp D G Gl ) (W ~-¢jn|>

J1---In

— Z Q51 -+ - 45, X[j1 ... jn is typical] > 1l—e¢
/ 12



Quantum compression (4)

We would now be done if our actual mixture was an eigenstate mixture

actual mixture: eigenstate mixture:
+ 1) prob. p, 'yi) prob. g,
¢,) prob. p,. w,) prob. g,

Calculation of the “expected fidelity” for our actual mixture:

ZPI<¢I|thp‘¢I> — prTr (thp‘¢1><¢f‘> Abbreviations used
I I

I =1i110.. .0,

= (XI:pIthp‘¢I><¢I‘) Pr = PiyPis - - - Piy,
— Tr (thpp@m) |¢I> — |¢’L1 ¢i2 s ¢Zn>
>1—¢

Does this mean that the scheme is ¢'-good for some ¢'? 13



Quantum compression (5)

The true data is of the form (I, |¢;)) where the [ is generated with
probability p;

The approximate data is of the form (1, %thp\gbﬁ) where [ is generated
with probability p; 4
vr =/ {¢1|I,,,|¢r) IS @ normalization factor

Above two states af least as hard to distinguish as these two purifications:

=S VR @ 16) 9) =3 VprlD) @ 1L, lér)

Fidelity: (®|®’) pr,y—l (61|11, |¢1) > pr d1|yplpr) > 1 — ¢

Trace distance: || |®) — [®) ||ty < V2¢

Therefore the scheme is ~ v/2¢-good i’



