Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 15 (2019)

Richard Cleve

QNC 3129

cleve@cs.uwaterloo.ca

Classical error correcting codes

Classical error-correcting codes

Useful for:

- transmitting information through a noisy communication channel
- storing information in a noisy storage medium

Noisy means the states of bits can change (usually unpredictably)

One simple noise model is the *binary symmetric channel*, where each bit flips with probability ε (independently)

3-bit repetition code

One way of coping with this noisy channel:

- Encode each bit b as bbb
- Decode each received message $b_1b_2b_3$ as majority(b_1,b_2,b_3)

Is this useful?

It reduces the effective error probability per data bit to $3\epsilon^2 - 2\epsilon^3$

why?	~	wł	ıy?
------	---	----	-----

3	$3\epsilon^2 - 2\epsilon^3$	error reduced by a factor of
0.10	0.009	11
0.01	0.0001	100
0.001	0.000001	1000

■ E.g., if ε = 0.10 and this is applied to n-bit messages then < 1% of the n bits will be in error (rather than 10%)

... but this is at a cost of tripling the message length ("rate" is 1/3)

Repetition > 3 times: a smaller effective error probability; but worse rate

Can one do better?

For a given error rate ε , what's the "best" that can be done?

A rough "big picture" view (1)

An error-correcting code can be viewed as two mappings:

- Encoding function $E: \{0,1\}^n \longrightarrow \{0,1\}^m$
- Decoding function $D: \{0,1\}^m \longrightarrow \{0,1\}^n$

We assume some error model χ (including ϵ) is given to us by the hardware

Some considerations:

- Error probability of the code: probability that $D(\chi(E(x_1x_2...x_n))) \neq x_1x_2...x_n$
- Rate of the code: n/m

Amazing* fact: For any constant $\varepsilon < 1/2$, there is a constant rate sufficient to attain arbitrarily small error probability of the code

Message: 0100110101110101 any *n*-bit string

Encoding: 0110011010101011111010101111010 (m bits) constant expansion

Errors: 010011101010110110110110110 *constant fraction* of the bits

Decoding: 0100110101110101 perfect recovery of *n*-bit string with probability $\rightarrow 1$

^{*} At least it's amazing the first time you think about it

A rough "big picture" view (2)

Rate as a function of noise level ε (assume binary symmetric channel)

For noise level ε , can attain arbitrarily high recovery probability with rate arbitrarily close to $R(\varepsilon)$ (and exceeding $R(\varepsilon)$ is provably impossible)

Some further considerations:

- Block length n (as the recovery probability $\rightarrow 1$, block length $\rightarrow \infty$)
- Computational efficiency: how difficult it is to compute E and D
 (this is tricky, but polynomial-time—and practical—approaches exist)

Quantum repetition code?

(This would violate the no-cloning theorem, for starters)

Shor's 9-qubit code

3-qubit code for one X-error

The following 3-qubit quantum code protects against up to one error, if the error can only be a quantum bit-flip (an X operation)

$$\alpha|0\rangle + \beta|1\rangle$$
 $|0\rangle$
 $|0\rangle$
 $|s_e\rangle$ "syndrome" of the error decode

Error can be any one of: $I \otimes I \otimes I$ $X \otimes I \otimes I$ $I \otimes X \otimes I$ $I \otimes I \otimes X$

Corresponding syndrome: $|00\rangle$ $|11\rangle$ $|10\rangle$ $|01\rangle$

The essential property is that, in each case, the data $\alpha|0\rangle + \beta|1\rangle$ is shielded from (i.e., unaffected by) the error

What about *Z* errors?

This code leaves them intact: one Z error is equivalent to a Z operation on the original data

3-qubit code for one Z-error

Using the fact that HZH = X, one can adapt the previous code to protect against Z-errors instead of X-errors

This code leaves *X*-errors intact

Is there a code that protects against errors that are arbitrary one-qubit unitaries?

Shor's 9-qubit quantum code

The "inner" part corrects any single-qubit *X*-error

The "outer" part corrects any single-qubit Z-error

Since Y = iXZ, single-qubit Y-errors are also corrected

Arbitrary one-qubit errors

Suppose that the error is some arbitrary one-qubit unitary operation U

Since there exist scalars λ_1 , λ_2 , λ_3 and λ_4 , such that

$$U = \lambda_1 I + \lambda_2 X + \lambda_3 Y + \lambda_4 Z$$

a straightforward calculation shows that, when a U-error occurs on the $k^{\rm th}$ qubit, the output of the decoding circuit is

$$(\alpha|0\rangle + \beta|1\rangle)(\lambda_1|s_{e_1}\rangle + \lambda_2|s_{e_2}\rangle + \lambda_3|s_{e_3}\rangle + \lambda_4|s_{e_4}\rangle)$$

where s_{e_1} , s_{e_2} , s_{e_3} and s_{e_4} are the syndromes associated with the four errors (*I*, *X*, *Y* and *Z*) on the k^{th} qubit

Hence the code actually protects against **any** unitary one-qubit error (in fact the error can be any one-qubit quantum operation)

Summary of 9-qubit code

Can recover data from any 1 qubit error:

Moreover, it turns out the data can also be recovered data from *any* 2 qubit *erasure* error:

CSS Codes

Introduction to CSS codes

CSS codes (named after Calderbank, Shor, and Steane) are quantum error correcting codes that are constructed from classical error-correcting codes with certain properties

A classical *linear* code is one whose codewords (a subset of $\{0,1\}^m$) constitute a vector space

In other words, they are closed under linear combinations (here the underlying field is $\{0,1\}$ so the arithmetic is $mod\ 2$)

Examples of linear codes

For m=7, consider these codes (which are linear): basis for space $C_2 = \{0000000, \ 1010101, \ 0110011, \ 1100110, \ 0001111, \ 1011010, \ 0111100, \ 1100110, \ 0001111, \ 1011010, \ 0111100, \ 1101001,$

1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011, 0010110}

Note that the minimum Hamming distance between any pair of codewords is: 4 for C_2 and 3 for C_1

The minimum distances imply each code can correct one error

These two codes will serve as a running example of a CSS code

Orthogonal complement

For a linear code C, define its **orthogonal complement** as

$$C^{\perp} = \{ w \in \{0,1\}^m : \text{for all } v \in C, \ w \cdot v = 0 \}$$
(where $w \cdot v = \sum_{j=1}^m w_j v_j \mod 2$, the "dot product")

Note that, in the previous example, $C_2^{\perp} = C_1$ and $C_1^{\perp} = C_2$

```
C_2 = \{0000000, 1010101, 0110011, 1100110, 0001111, 1011010, 0111100, 1101001\}
C_1 = \{0000000, 1010101, 0110011, 1100110, 0001111, 1011010, 0111100, 1101001, 1111111, 0101010, 1001100, 0011001, 1110000, 0100101, 1000011, 0010110\}
```

We will use some of these properties in the CSS construction

Encoding

Since , $|C_2| = 8$, it can encode 3 bits

To encode a 3-bit string $b = b_1b_2b_3$ in C_2 , one multiplies [b_1 b_2 b_3] (on the right) by an appropriate 3×7 *generator matrix*

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 (generator for C_2)

Similarly, C_1 can encode 4 bits and an appropriate generator matrix for C_1 is

Parity check matrix

Every n-dimensional linear code can be alternately specified by its parity-check matrix M (m by m-n) such that:

 $v \in \{0,1\}^m$ is a codeword v if and only if vM = 0

Exercise: determine the parity check matrix for C_1 and for C_2

Error syndrome of an error vector

For any *error-vector* $e \in \{0,1\}^m$, the damaged data is v+e (addition mod 2) Note that (v+e)M = eM, and define the *error syndrome* of e as $s_e = eM$

Exercise: for C_1 and for C_2 , work out the error syndromes for all $e \in \{0,1\}^m$, that correspond to single bit errors

Capability of a code: we are interested in sets of errors e with the property that each error e in the set can be uniquely identified (hence corrected) by s_e

For linear codes with maximum distance d, this includes the errors that are up to $\lfloor \frac{d-1}{2} \rfloor$ bit-flip errors

19

CSS construction

Let $C_2 \subset C_1 \subset \{0,1\}^m$ be two classical linear codes such that:

- The minimum distance of C_1 is d
- $C_2^{\perp} \subseteq C_1$

Let
$$r = \dim(C_1) - \dim(C_2) = \log(|C_1|/|C_2|)$$

Then the resulting **CSS** code maps each r-qubit basis state $|b_1...b_r\rangle$ to some "coset state" of the form

$$\frac{1}{\sqrt{|C_2|}} \sum_{v \in C_2} |v + w\rangle$$

where $w = w_1...w_m$ is a linear function of $b_1...b_r$ chosen so that each value of w occurs in a unique coset in the quotient space C_1/C_2

The resulting quantum code can correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors

Example of CSS construction

For m = 7, for the C_1 and C_2 in the previous example we obtain these basis codewords:

$$|0_L\rangle = |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle$$

$$|1_L\rangle = |1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle$$

and the linear function mapping b to w can be given as $w = b \cdot G$

$$[w_1 \ w_2 \ w_3 \ w_4 \ w_5 \ w_6 \ w_7] = [b] [1 \ 1 \ 1 \ 1 \ 1 \ 1]$$

There is a quantum circuit that transforms between $(\alpha|0\rangle + \beta|1\rangle)|0^{m-1}\rangle$ and $\alpha|0_L\rangle + \beta|1_L\rangle$

CSS error correction (1)

Using the error-correcting properties of C_1 , one can construct a quantum circuit consisting of CNOT gates that computes the syndrome s for any combination of up to d s-errors in the following sense

Once the syndrome S_e , has been computed, the X-errors can be determined and undone

What about *Z*-errors?

The above procedure for correcting X-errors has no effect on any Z-errors that occur

CSS error correction (2)

Note that any *Z*-error is an *X*-error in the Hadamard basis

Changing to Hadamard basis is like changing from C_2 to C_1 since

$$H^{\otimes m}\left(\sum_{v \in C_2} |v\rangle\right) = \sum_{u \in C_2^{\perp}} |u\rangle \quad \text{and} \quad H^{\otimes m}\left(\sum_{v \in C_2} |v+w\rangle\right) = \sum_{u \in C_2^{\perp}} (-1)^{w \cdot u} |u\rangle$$

Applying $H^{\otimes n}$ to a superposition of basis codewords yields

$$H^{\otimes m}\left(\sum_{b \in \{0,1\}^r} \alpha_b \sum_{v \in C_2} |v + b \cdot G\rangle\right) = \sum_{b \in \{0,1\}^r} \alpha_b \sum_{u \in C_2^{\perp}} (-1)^{b \cdot G \cdot u} |u\rangle = \sum_{u \in C_2^{\perp}} \sum_{b \in \{0,1\}^r} \alpha_b (-1)^{b \cdot G \cdot u} |u\rangle$$

Note that, since $C_2^{\perp} \subseteq C_1$, this is a superposition of elements of C_1 , so we can use the error-correcting properties of C_1 to correct

Then, applying Hadamards again, restores the codeword with up to d Z-errors corrected

CSS error correction (3)

The two procedures together correct up to d errors that can each be either an X-error or a Z-error — and, since Y = iXZ, they can also be Y-errors

From this, a simple linearity argument can be applied to show that the code corrects up to d arbitrary errors (that is, the error can be any quantum operation performed on up to d qubits)

Since there exist pretty good *classical* linear codes that satisfy the properties needed for the CSS construction, this approach can be used to construct pretty good *quantum* codes

In our running example, we obtain a 7-qubit quantum code for 1 qubit, that protects against one error (beating the Shor 9-qubit code)

Depolarizing channel

Roughly speaking, it's a quantum analogue of the binary symmetric channel

Each qubit incurs the following type of error $(0 \le \varepsilon \le \frac{3}{4})$:

$$\begin{cases} I & \text{with probability } 1-\epsilon & \text{(no error)} \\ X & \text{with probability } \epsilon/3 & \text{(bit flip)} \\ Z & \text{with probability } \epsilon/3 & \text{(phase flip)} \\ Y & \text{with probability } \epsilon/3 & \text{(both)} \end{cases}$$

For any noise rate ε below some constant, there are codes with:

- constant rate r = n/m
- error probability of code approaching zero as $n \to \infty$

Brief remarks about fault-tolerant computing

A simple error model

At each qubit there is an × error per unit of time, that denotes the following noise:

 $\begin{cases} I & \text{with probability } 1-\epsilon \\ X & \text{with probability } \epsilon/3 \\ Y & \text{with probability } \epsilon/3 \\ Z & \text{with probability } \epsilon/3 \end{cases}$

Threshold theorem

If ϵ is very small then this is okay—a computation of size* less than $1/(10\epsilon)$ will still succeed most of the time

But, for every *constant* value of ε , the size of the maximum computation possible in this manner is constant

Threshold theorem:

There's a *fixed* constant $\varepsilon_0 > 0$ such that a circuit of *any* size T can be translated into a circuit of size $O(T \log^c(T))$ that is robust against the error model with parameter $\varepsilon \le \varepsilon_0$

(The proof is omitted here)

^{*} where size = (# qubits)x(# time steps)

Comments about the threshold theorem

Idea is to use a quantum error-correcting code at the start and then perform all the gates on the encoded data

At regular intervals, an error-correction procedure is performed, very carefully, since these operations are also subject to errors!

The 7-qubit CSS code has some nice properties that enable some (not all) gates to be directly performed on the encoded data: H and CNOT gates act "transversally" in the sense that:

Also, codes applied recursively become stronger