Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lectures 13-14 (2019)

Richard Cleve QNC 3129 cleve@cs.uwaterloo.ca

© Richard Cleve 2016

Preliminary remarks about quantum communication

Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems

How does quantum information affect the *communication costs* of information processing tasks?

We explore this issue ...

Entanglement and signaling

Recall that Entangled states, such as $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$,

can be used to perform some intriguing feats, such as *teleportation* and *superdense coding*

—but they cannot be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

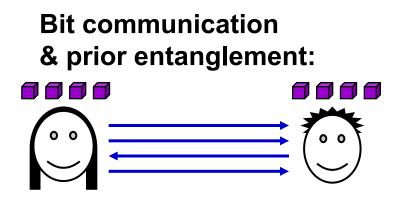
Basic communication scenario

Goal: convey *n* bits from Alice to Bob

Basic communication scenario

Bit communication:

Cost: \mathcal{N}



Cost: \mathcal{N} (can be deduced)

Qubit communication:

Cost: \mathcal{N} [Holevo's Theorem, 1973]

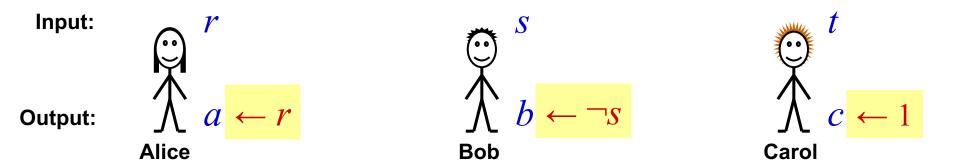
Qubit communication & prior entanglement:

Cost: *N*/2 superdense coding [Bennett & Wiesner, 1992]

The GHZ "paradox" (Greenberger-Horne-Zeilinger)

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]



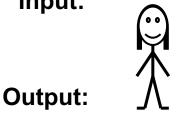
Rules of the game:

- 1. It is promised that $r \oplus s \oplus t = 0$
- 2. No communication after inputs received
- 3. They *win* if $a \oplus b \oplus c = r \lor s \lor t$

rst	$a \oplus b \oplus c$	abc
000	0 😀	011
011	1 🕄	001
101	1 🕄	111
110	1 😕	101

No perfect strategy for GHZ

Input:



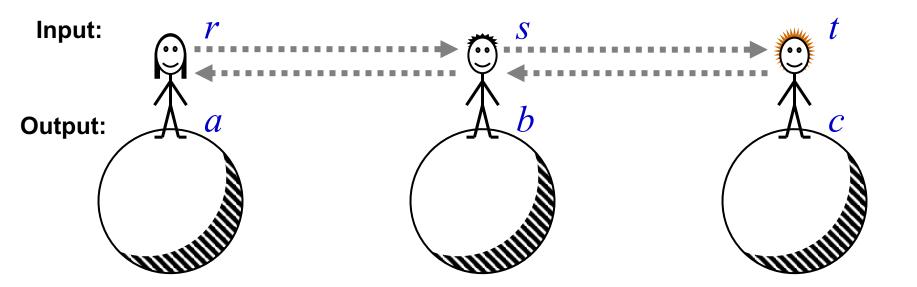
rst	$a \oplus b \oplus c$
000	0
011	1
101	1
110	1

General deterministic strategy: $a_0, a_1, b_0, b_1, c_0, c_1$

Winning conditions:

Has no solution, thus no perfect strategy exists $\begin{cases} a_0 \oplus b_0 \oplus c_0 = 0\\ a_0 \oplus b_1 \oplus c_1 = 1\\ a_1 \oplus b_0 \oplus c_1 = 1\\ a_1 \oplus b_1 \oplus c_0 = 1 \end{cases}$

GHZ: preventing communication



Input and output events can be *space-like* separated: so signals at the speed of light are not fast enough for cheating

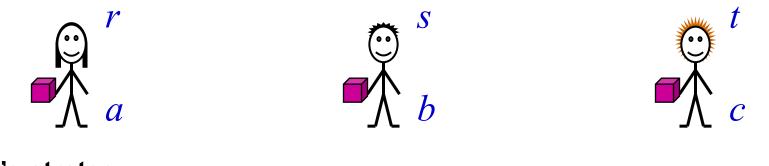
What if Alice, Bob, and Carol *still* keep on winning?

To be continued ...

Continuation of: The GHZ "paradox" (Greenberger-Horne-Zeilinger)

"GHZ Paradox" explained

Prior entanglement: $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$



<u>Alice's strategy:</u>

- 1. if r = 1 then apply H to qubit (else I)
- 2. measure qubit and set a to result

Bob's & Carol's strategies: similar

Case 1 (rst = 000): state is measured directly ... ••• ••• **Case 2** (*rst* = 011): new state $|001\rangle + |010\rangle - |100\rangle + |111\rangle$ ••• **Cases 3 & 4** (rst = 101 & 110): similar by symmetry

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

GHZ: conclusions

- For the GHZ game, any *classical* team succeeds with probability at most ³/₄
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1 (but not by using entanglement to communicate)
- Thus, entanglement is a useful resource for the task of *winning* the GHZ game

The Bell inequality and its violation – Physicist's perspective

Bell's Inequality and its violation

Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the "manuscript" is something like this:

called hidden variables

[Bell, 1964] [Clauser, Horne, Shimony, Holt, 1969]

\square

if $\{|0\rangle, |1\rangle\}$ measurement then output **0**

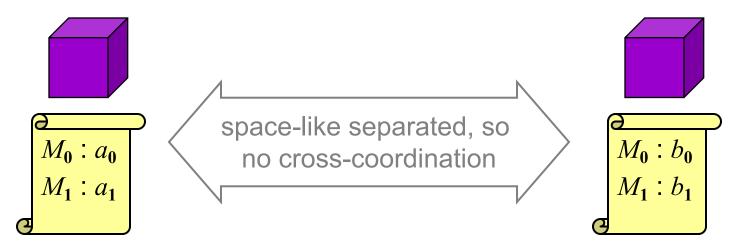
```
if \{|+\rangle, |-\rangle\} measurement then output 1
```

if ... (etc)

table could be implicitly given by some formula

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1 , will be applied to each qubit:



Define: $A_0 = (-1)^{a_0}$ $A_1 = (-1)^{a_1}$ $B_0 = (-1)^{b_0}$ $B_1 = (-1)^{b_1}$

Ρ

```
Claim: A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2
```

roof:
$$A_0 (B_0 + B_1) + A_1 (B_0 - B_1) \le 2$$

h one is ±2 and the other is 0

Bell Inequality

 $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$ is called a **Bell Inequality***

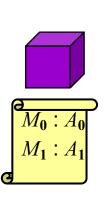
Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: *no, not directly*, because A_0, A_1, B_0, B_1 cannot all be measured (only *one* $A_s B_t$ term can be measured)

Answer 2: *yes, indirectly*, by making many runs of this experiment: pick a random $st \in \{00, 01, 10, 11\}$ and then measure with M_s and M_t to get the value of $A_s B_t$

The *average* of A_0B_0 , A_0B_1 , A_1B_0 , $-A_1B_1$ should be $\leq \frac{1}{2}$

* also called CHSH Inequality



Recap of Bell Inequality

Assume local hidden variables framework is correct

Consider the following experiment:

1.pick a random $st \in \{00, 01, 10, 11\}$ (uniform distribution) 2.perform M_s measurement on 1st qubit (outcome $A_s \in \{+1, -1\}$) 3.perform M_t measurement on 2nd qubit (outcome $B_t \in \{+1, -1\}$) 4.output the value of $(-1)^{s \cdot t}A_s B_t$

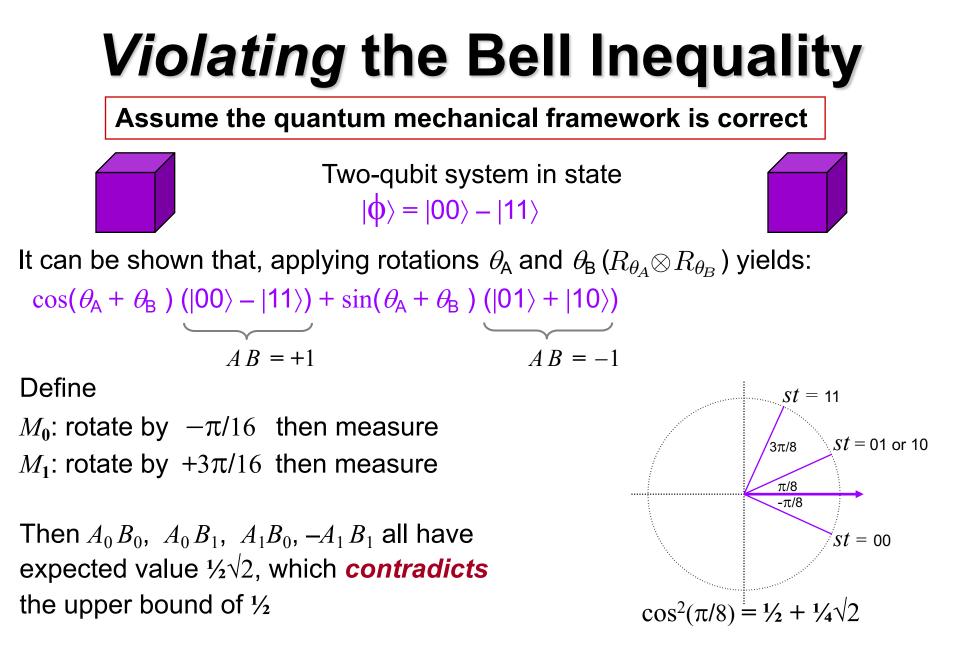
In any run of this experiment, the output is an element of $\{+1, -1\}$ (according to probabilities that depend on what A_0, A_1, B_0, B_1 are)

How large can the *expected* value of the outcome be?

$$\frac{1}{4}(A_0B_0) + \frac{1}{4}(A_0B_1) + \frac{1}{4}(A_1B_0) + \frac{1}{4}(-A_1B_1)$$

$$= \frac{1}{4} \left(A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \right) \le \frac{1}{4} 2 = \frac{1}{2}$$

 M_0 : E



Therefore, QM framework implies LHV framework is false

Bell Inequality violation: summary

Assuming that quantum systems are governed by *local hidden variables* leads to the Bell inequality $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$

But this is *violated* in the case of Bell states (by a factor of $\sqrt{2}$)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

The Bell inequality and its violation – Computer Scientist's perspective

Bell's Inequality and its violation

Part II: computer scientist's view:

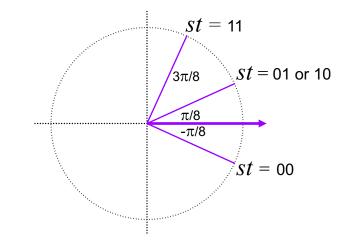
input:

With classical resources, $\Pr[a \oplus b = s \land t] \le 0.75$

But, with prior entanglement state $|00\rangle - |11\rangle$, $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

The quantum strategy

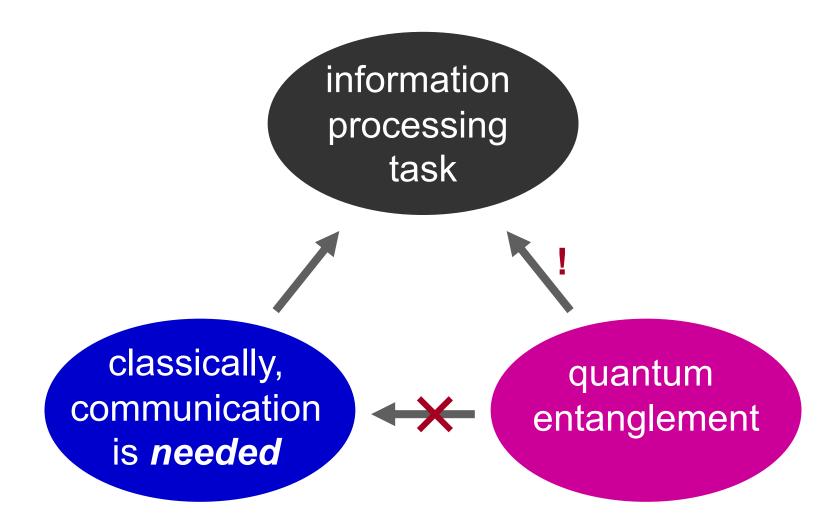
- Alice and Bob start with entanglement $|\phi\rangle = |00\rangle |11\rangle$
- Alice: if s = 0 then rotate by $\theta_A = -\pi/16$ else rotate by $\theta_A = +3\pi/16$ and measure
- **Bob:** if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = +3\pi/16$ and measure



 $\cos(\theta_{A} + \theta_{B}) (|00\rangle - |11\rangle) + \sin(\theta_{A} + \theta_{B}) (|01\rangle + |10\rangle)$

Success probability: $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

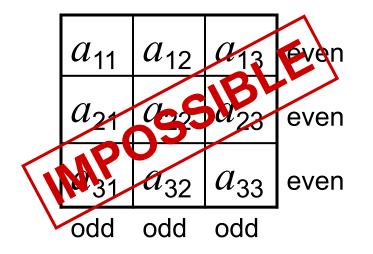
Nonlocality in operational terms

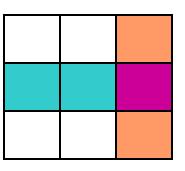


The magic square game

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity





Game: ask Alice to fill in one row and Bob to fill in one column

They *win* iff parities are correct and bits agree at intersection

Success probabilities: 8/9 classical and 1 quantum [Mermin, 1990] (details omitted here)

Distance measures for quantum states

Distance measures

Some simple (and often useful) measures:

- Euclidean distance: $\| |\psi\rangle |\phi\rangle \|_{2}$
- Fidelity: $|\langle \phi | \psi \rangle |$

Small Euclidean distance implies "closeness" but large Euclidean distance need not (for example, $|\psi\rangle$ vs $-|\psi\rangle$)

Not so clear how to extend these for mixed states ...

... though fidelity does generalize, to ${\rm Tr} \sqrt{
ho^{1/2} \sigma
ho^{1/2}}$

Trace norm – preliminaries (1)

For a normal matrix M and a function $f: \mathbb{C} \to \mathbb{C}$, we define the matrix f(M) as follows:

 $M = U^{\dagger}DU$, where D is diagonal (i.e. unitarily diagonalizable)

Now, define $f(M) = U^{\dagger} f(D) U$, where

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix} \quad f(D) = \begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_d) \end{bmatrix}$$

Trace norm – preliminaries (2)

For a normal matrix $M = U^{\dagger}DU$, define |M| in terms of replacing D with

$$\left|D\right| = \begin{bmatrix} \left|\lambda_{1}\right| & 0 & \cdots & 0 \\ 0 & \left|\lambda_{2}\right| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \left|\lambda_{d}\right| \end{bmatrix}$$

This is the same as defining $|M| = \sqrt{M^{\dagger}M}$ and the latter definition extends to **all** matrices (not necessarily normal ones), since $M^{\dagger}M$ is positive semidefinite

Trace norm/distance – definition

The *trace norm* of *M* is
$$||M||_{tr} = ||M||_{1} = Tr|M| = Tr\sqrt{M^{\dagger}M}$$

Intuitively, it's the 1-norm of the eigenvalues (or, in the non-normal case, the singular values) of ${\cal M}$

The *trace distance* between ρ and σ is defined as $\|\rho - \sigma\|_{tr}$

Why is this a meaningful distance measure between quantum states?

Theorem: for any two quantum states ρ and σ , the **optimal** measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} ||\rho - \sigma||_{tr}$

Distinguishing between two arbitrary quantum states

Holevo-Helstrom Theorem (1)

Theorem: for any two quantum states ρ and σ , the optimal measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} ||\rho - \sigma||_{tr}$ (equal prior probs.)

Proof* (the attainability part):

Since ρ - σ is Hermitian, its eigenvalues are real

Let Π_+ be the projector onto the positive eigenspaces

Let Π be the projector onto the non-positive eigenspaces

Take the POVM measurement specified by Π_+ and Π_- with the associations + = ρ and - = σ

* The other direction of the theorem (optimality) is omitted here

Holevo-Helstrom Theorem (2)

Claim: this succeeds with probability $\frac{1}{2} + \frac{1}{4} \|\rho - \sigma\|_{tr}$

Proof of Claim:

A key observation is $\text{Tr}(\Pi_{+} - \Pi_{-})(\rho - \sigma) = \|\rho - \sigma\|_{\text{tr}}$

The success probability is $p_s = \frac{1}{2} \text{Tr}(\Pi_+ \rho) + \frac{1}{2} \text{Tr}(\Pi_- \sigma)$

& the failure probability is $p_f = \frac{1}{2} \text{Tr}(\Pi_+ \sigma) + \frac{1}{2} \text{Tr}(\Pi_- \rho)$

Therefore, $p_s - p_f = \frac{1}{2} \text{Tr}(\Pi_+ - \Pi_-)(\rho - \sigma) = \frac{1}{2} \|\rho - \sigma\|_{\text{tr}}$

From this, the result follows

Purifications & Ulhmann's Theorem

Any density matrix ρ , can be obtained by tracing out part of some larger *pure* state:

$$\rho = \sum_{j=1}^{d} \lambda_{j} |\varphi_{j}\rangle \langle \varphi_{j} | = \operatorname{Tr}_{2} \left(\sum_{j=1}^{m} \sqrt{\lambda_{j}} |\varphi_{j}\rangle | j \rangle \right) \left(\sum_{j=1}^{m} \sqrt{\lambda_{j}} \langle \varphi_{j} | \langle j | \right)$$

a purification of ρ

Ulhmann's Theorem*: The *fidelity* between ρ and σ is the maximum of $\langle \phi | \psi \rangle$ taken over all purifications $| \psi \rangle$ and $| \phi \rangle$

* See [Nielsen & Chuang, pp. 410-411] for a proof of this

Recall our previous definition of fidelity as

$$F(\rho, \sigma) = Tr \sqrt{\rho^{1/2} \sigma \rho^{1/2}} \equiv \|\rho^{1/2} \sigma^{1/2}\|_{tr}$$

Relationships between fidelity and trace distance

$$1 - F(\rho, \sigma) \le \|\rho - \sigma\|_{tr} \le \sqrt{1 - F(\rho, \sigma)^2}$$

See [Nielsen & Chuang, pp. 415-416] for more details