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Recall: quantum channels

Also known as: general quantum operations, admissible operations,
completely positive trace preserving maps

Let 4,, A,, ..., A,, be any matrices satisfying ZA;AJ. =1
m j=1

Then the mapping p — ZAij; is a quantum channel
j=1

Examples of channels:

Unitary operation: m=1and 4, = U (p mapsto UpU")

Probabilistic mixture of unitary operations: 4, = \p, U, , where (p{, ..., p,,)
is a probability distribution and each U, is unitary

Decoherence: A,=|(y)(Oof, A= |0){(Di], vy Ay = [Pui XDy
(equivalent to measuring in in some basis and outputting the collapsed state)

Partial trace (of a bipartite register):
Ay=10|, A,=IX1]|, ..., A, = 1{d—1] 2




More about the partial trace (1)

Intuition: for a bipartite system in state p, Tr,(p) is the state of the 15t register
(if the 29 register is discarded) (7

Easy case: for a product state p = o ®y, it holds that Tr,(p) = o

In general, Tr,(p) is not so trivial, since the state of a two-register system
may not be of the form o ®u (it may contain entanglement or correlations)

Aside 1
The “full” trace, is Tr (p) = (Go|o|do) + (D1[od1) + ... + (Dayi [0l 1),
where |d,), |d)), ..., [d,. ;) IS any orthonormal basis (equivalently, for

square matrix M, Tr (M) is the sum of the diagonal entries of M)
Note: Tr(4B) = Tr(BA) and Tr(4+B) = Tr(4) + Tr(B) hold

... but, in general, Tr(ABC) # Tr(ACB) and Tr(4B) # Tr(A4) Tr(B)
Aside 2

For any matrices A, B, C, D where the dimensions are compatible,
(A®B)(C®D) = (AC)®(BD) 3



More about the partial trace (2)

1. Definition of Tr, () in terms of measurements

Let |do), [d1), ..., |0,.;) be an orthonormal basis for the second register

Imagine measuring the 2"d register with respect to the above basis
and discarding the second register

d—1

If the state happens to be pure [v) =) \lv) @1l¢;) then the outcome is
j=0

lv5) with probability |),|? for each je {01 ,...,d-1}

This is exactly what is produced by the channel defined by the operators
A(): I®<(|)O| y A1= I®<(|)1| y eeey Ad_1 = [®<¢d—1|

These operators also represent the measurement in the case where the
state is mixed (by considering probability distributions over pure states)

i—1
Based on this, we can define Tr(p) = Z(I R {ow]) p (I @ |d1))
k=0 4




More about the partial trace (3)

2. Alternate definition of Tr, () in terms of a linear extension

The partial trace Tr,(0), can also be defined as the unique linear operator*
satisfying the identity Tr,(o ®u) = o

* By linear operator, we mean an operator that maps 1
d,d, x d,d, matrices to d, x d, matrices (where d, and d, y
are the dimensions of the two registers) such that d

F(aA+ BB)=aF(A)+ SF(B)
forall 4, B € C4%x4d and a, f € C



More about the partial trace (4)

3. Explicit expression for Tr, ()
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Channel for adding an extra register

Adding an extra register that is in some fixed state (say |0){0))
(it's kind of complementary to the partial trace) (7

0X0]

A channel with just one operator A,= I®|0) =

oS = O O

o o o =

Any state of the form p becomes P ®|0)(0

More generally, to add a register in state |(), use the operator 4,= [®|})

Exercise: what is the channel corresponding to adding a register in
a mixed state 7




General quantum

measurements




Prelude: projective measurements
2) 24

Ly span of |0) and |1)

In both cases, there is a complete set of mutually orthogonal projectors:
ZPj =1 and P,P; =0
j

The probability of outcome j is (MPJTP]-]@D) — Tr(|¢><¢|PJTPj) using
W Tr(AB)=Tr(BA)
The collapsed state is the projected vector, but normalized 9



Generalized measurements (1)

Let A,, 4,, ..., A,, be any matrices satisfying ZA;AJ- =1
j=1
Corresponding generalized measurement is a stochastic operation

on o that, with probability Tr(AijJ*.) , produces outcome:

( J (classical information)
S A.pA
A - (the collapsed quantum state)
| Tr(4,p4")

Example 1: 4;=|(;)(¢,| (rank-1 orthogonal projectors)
Can calculate that this is consistent with previous definitions (see next slide)
Question: what if we do the above but don’t look at j?

Answer: we get the channel corresponding to 4,, 4,, ..., 4, 10



Generalized measurements (2)

When A4;=[(;)}9,| are orthogonal projectors and p = [y/)(y/|,

Tr(d,p47) = Teld ), W)W |00
= <(I)j‘\|j><\|j‘(|)j><(l)j‘(l)j>
= (o, w)P

A].pAJT. _ ‘¢j><¢j ‘W><W‘¢1><¢j‘ :‘¢j><¢j‘

Moreover,
Y Tr(4,p4") lo, ‘l//>‘2

J J

11



Example 3 (trine state “measurent”):

Let |@o) = 10), [@1) = =1/2|0) +3/2[1), |¢,) = ~1/2]0) —3/2[1)

Define A,=2/3|0, )Xy :E{l 0}

0 0
A1=\/2/3|(P1><(P1‘:%{% +\/\/§} A= 2131 ) :i{\—/% _J@

Then A A +A"A +A, 4, =1

If the input itself is an unknown trine state, |p,){(¢,|, then the probability that

classical outcome is k is 2/3 = 0.6666... -’



POVM measurements

(POVM = Positive Operator Valued Measure)

Often generalized measurements arise in contexts where we only care
about the classical part of the outcome (not the residual quantum state),
and then the definition can be simplified as follows

The probability of outcome j is Tr(Aij;)z Tr(pA;Aj)

POVM measurements:
Let £\, E,, ..., E,, be positive semidefinite and with > E, =1

J=1

The probability of outcome j is Tr(pEj)

Note: for a POVM measurement, there is no well-defined residual state,
because the corresponding 4,, 4,, ..., A,, are not uniquely defined

13



“Mother of all operations”

kK m;
125 oo A, satisfy > > 474, =1
j=1 i=1

Then there is a quantum operation that, on input p, produces

with probability > .Tr(4,.04",)  the state:
i=l

(] (classical information)

{ Z 4;,p4;,

mZI (the collapsed quantum state)

Z Tr(Aj,l.pA]*.,l. )

14



Simulations among operations

15



Simulations among operations (1)

Theorem 1: any quantum channel can be simulated by applying a unitary
operation on a larger quantum system:

|O> I Y
0) — .
I0> . | discard This specification of a
) quantum channel is called
o U B the Stinespring form
nput 2 — — »~ O output

Example: decoherence

0)

-
bd of 0
0|0) + Bl1) ——O—— €= p= 2

16



Simulations among operations (2)

Proof of Theorem 1:

Let A,, A,, ..., A,k be any 2" x 2" matrices such that

J 2k
TA. —
> AA =1
j=1

Y
Kraus operators

This defines a mapping from #n qubits to m qubits

2k

prr Y AjpAl

j=1

This specification of the quantum operation is called the Kraus form

17



Simulations among operations (3)

) _ Since V1V =
Set V= A togt For .
A LA AL AL A =T
2 As
A2k i _ AQk _
) the columns of V are orthonormal
Let U be any unitary matrix with first Now, consider the circuit:
2" columns from V'
| o—
— : 0) —| |
U=[ViW] .

(and its columns partition into 27"k

U'is a 2mtkx 2m*k matrix Ut
, P
blocks of size 2") {

18




Simulations among operations (4)

The output state of the circuitis U(]00---0)(00---0| ® p)U"

_Ali _10 0 O_ _AT ATA_‘_ -
Ay ! W 0 0 - 0|t *t = 2"
| Ay Lo o 0 | L A |
i Aip O 0] r AT At AT T
AQ,O 0 0 _--1. _____ ' 2_ If_
N : L V[/'Jr
CAyp 0 - 0| L ]
T A pAl ApAl - AlpA%c T
3 AgpAl AgpAl oo AgpAl,
| AgepAl AgepAl - AgipAlL o



Simulations among operations (5)

Tracing out the high-order k qubits of this state yields
A1pAl + Agp AL + -+ + AgepAl,

exactly the output of mapping that we want to simulate

0) T
0 -
[N

{ U
input O )

» discard

1 — ~ O output

— b e -

Note: this approach is not always optimal in the number of ancilliary

qubits used—there are more efficient methods
20



Simulations among operations (6)

Theorem 2: any POVM measurement can also be simulated by applying a
unitary operation on a larger quantum system and then measuring:

input O { :

~ O quantum output

U
Igi— )): g ] classical output
0) — D— -

This is the same diagram as for Theorem 1 (drawn with the
extra qubits at the bottom) but where the “discarded” qubits
are measured and part of the output

21



