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More state distinguishing problems

Which of these states are distinguishable? Divide them into
equivalence classes:

1. 10)+1) 5.{ 0) with prob. ¥z
0) + |1) with prob. 72

2.-[0) = 1[1)
3. ] |0) with prob. 7 6. (0) W?th prob. V4
{|1> with prob. V% ) 1) with prob. Y

0)+ 1) with prob. V4
0)— 1) with prob. V4

'd

4.{ 0) + 1) with prob. %2

0) = 1) with prob. %2 7 16 first qubit of [01) — [10)

Answers later on ...
This is a probabilistic mixed state ]



Density matrix formalism



Density matrices (1)

Until now, we’ ve represented quantum states as vectors
(e.g. |v), and all such states are called pure states)

An alternative way of representing quantum states is in terms
of density matrices (a.k.a. density operators)

The density matrix of a pure state [y) is the matrix p = [y) (/|

Example: the density matrix of a|0) + B|1) is
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Density matrices (2)

How do quantum operations work using density matrices?

Effect of a unitary operation on a density matrix:
applying U to p yields U,OUJr

(this is because the modified state is U|\|/>(\V|UT)

Effect of a measurement on a density matrix:
measuring state p with respect to the basis |,), |p,),..., |0,
yields the k" outcome with probability (¢,|o|®,)

(thiS is because (@] 0|0 = (@ W) {W|oy) = |<(Pk|\|f>|2 )

—and the state collapses to |p,) (/] 6



Density matrices (3)

A probability distribution on pure states is called a mixed state:
( (li)s p1)s (lwa)s pa)s --os (W), Pd))

The density g1atrix associated with such a mixed state is:
EDWABIA
k=1
Example: the density matrix for ((|0), 2 ), (|1), ¥2)) is:
1[1 0] 1fo o] _1[1 0
210 0| 2/0 1| 2[0 1
Question: what is the density matrix of
((0) +[1), %), (10) = [1), %)) 7



Density matrices (4)

How do quantum operations work for these mixed states?

Effect of a unitary operation on a density matrix:
applying U to p still yields U,OUT

This is because the modified state is:

d d
S pRU ) (U = U(Zwkxm) Ut = uput
k=1 k=1

Effect of a measurement on a density matrix:
measuring state p with respect to the basis |,), |p,),..., |0,
still yields the k™ outcome with probability (¢, o|¢,)

Why? 8



Recap: density matrices

Quantum operations in terms of density matrices:

* Applying U to p yields U,OUJr

» Measuring state o with respect to the basis |@,), |,),..., [0,),
yields: k" outcome with probability (¢,|0|®,)
—and causes the state to collapse to |@,) (@]

Since these are expressible in terms of density matrices alone
(independent of any specific probabilistic mixtures), states with
iIdentical density matrices are operationally indistinguishable



Return to state distinguishing

problems ...



State distinguishing problems (1)

The density matrix of the mixed state 4

((|\|]1>’ pl)s (|\|]2>’p2)’ ’(|\|]d>=pd)) IS Zpk|¢k><¢k|
k=1

Examples (from earlier in lecture):

1. & 2.10) +[1) and —|0) — [1) both have p = % E ﬂ

3. [ 10) with prob. V% )

_|1) with prob. 2

4.(10)+|1) with prob. %
0) = 1) with prob. ¥ >p:1 10
2

6. (|0) with prob. V4
1) with prob. 74
0)+ 1) with prob. V4
0)—[1) with prob. %4 !




State distinguishing problems (2)

Examples (continued):

5. { 0) with prob. ¥
0) + |1) with prob. 72

o 1j1 o 1i(1/2 1/2| [3/4 1/2
s P =5 {0 0} T3 {1/2 1/2} - [1/2 1/4}
7. The first qubit of |01) — [10) ...? (later)
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Characterizing density matrices

Three properties of p: B d
°Trp=1(TrM=MH+M22+...+Mdd) p_kz;pk‘wk><wk‘

« p=p' (i.e. pis Hermitian)
« (p|p|p) =0, for all states |¢p) (i.e. p is positive semidefinite)

Moreover, for any matrix p satisfying the above properties,
there exists a probabilistic mixture whose density matrix is p

Exercise: show this

13



Taxonomy of various

normal matrices




Normal matrices
Definition: A matrix M is normal if MM = MM’

Theorem: M is normal iff there exists a unitary U such that
M =U'DU, where D is diagonal (i.e. unitarily diagonalizable)

A 0 - 0
Do o 4 -+ 0
0 0 - Ay

Examples of abnormal matrices: :
: eigenvectors:

1 1] is noteven I 1] isdiagonalizable, :
0 1| diagonalizable |y 5| butnot unitarily - A

15



Unitary and Hermitian matrices

Normal: 4 0 - 0| with respect to some
|0 % - 0| orthonormal basis
0 0 - 4,

Unitary: MM = I which implies |1, |2 = 1, for all k
Hermitian: M = M" which implies 2, € R for all k

Question: which matrices are both unitary and Hermitian?

Answer: reflections (A, € {+1, -1}, for all k)
16



Positive semidefinite

Positive semidefinite: Hermitian and 1, > 0, for all £

Theorem: M is positive semidefinite iff M is Hermitian and,
for all [@), (¢|M]p) =0

(Positive definite: ), > 0, for all k)

17



Projectors and density matrices

Projector: Hermitian and M?2= M, which implies that M is
positive semidefinite and A, € {0,1}, for all &

d
Density matrix: positive semidefinite and Tr M=1, so > 4, =1
k=1

Question: which matrices are both projectors and density
matrices?

Answer: rank-1 projectors (A, =1 if £ =J; otherwise 1,=0)

18



Taxonomy of normal matrices
e positive

matrix
rank one
projector
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Bloch sphere for qubits




Bloch sphere for qubits (1)

Consider the set of all 2x2 density matrices p

They have a nice representation in terms of the Pauli matrices:

0 1 1 0 0 —i
Gx:X: GZ:Z: @) :Y:
1 0 0 -1 g i 0

Note that these matrices—combined with /—form a basis for
the vector space of all 2x2 matrices

We will express density matrices o in this basis

Note: coefficient of / must be Y2, since X, Y, Z are traceless

21



We will express p =

First consider the case of pure states [\y) (v
loss of generality,

p:

Bloch sphere for qubits (2)

cos’6

e'*?cosfsind

[+c X+c Y+cZ

. where, without

y) = cos(0)[0) + €*%sin(0)|1) (6, ¢ € [0,])

e

—12¢

sin’@

cosfsind

1+cos(20) e sin(260)

esin(20) 1-cos(26)

Therefore ¢, = c0s(20), ¢, = c0s(2¢)sIn(20), ¢, = sin(2¢)sin(26)

These are polar coordinates of a unit vector (¢, ,c,.c,) € R3

22



Bloch sphere for qubits (3)

+) = [0) +1)

=10y - 1)

+i) = |0) + i[1)
2 Ly =10y - i)

Note that orthogonal corresponds to antipodal here

Pure states are on the surface, and mixed states are inside
(being weighted averages of pure states)

23



Distinguishing mixed states



Distinguishing mixed states (1)

What' s the best distinguishing strategy between these two
mixed states?

{|O> with prob. % {|O> with prob. %

0) +|1) with prob. 72 1) with prob. V2
[3/4 172 _1{1 o}

el 1/4 P2=%10 1

§1)

0, also arises from this

orthogonal mixture: ... as does p, from:

{|¢O> with prob. cos?(/8) {|¢O> with prob. ¥
[b,) with prob. sin?(7/8) &) with prob. 72
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Distinguishing mixed states (2)

We’ ve effectively found an orthonormal basis |¢,), [d;) in
which both density matrices are diagonal:

, COSz(ﬂ:/S) O p’ :1|:1 O:| |(|)1> “|1> |+>
& 0 sin’(n/8) L2001
Do)

Rotating (¢), |¢,) to |0), |1) the scenario can now
be examined using classical probability theory: |

Distinguish between two classical coins, whose probabilities
of “heads” are cos?(n/8) and V% respectively (details: exercise)

Question: what do we do if we aren’t so lucky to get two
density matrices that are simultaneously diagonalizable?
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general quantum operations

more commonly known as

quantum channels

27



General quantum operations (1)

Also known as:
(11 ””
quantum channels
“completely positive trace preserving maps”,
“admissible operations”

LetA,, 4,, ..., A,, be matrices satisfying » A/A =1
=

Then the mapping pH— ZAij;.' IS a general quantum op
j=1

Note: 4,, 4,, ..., A,, do not have to be square matrices

Example 1 (unitary op): applying U to o yields U,OUT

28




General quantum operations (2)

Example 2 (decoherence): let A,=|0)(0
This quantum op maps o to |0)(0|0|0){0

For [y) = |0) + A1),

ap B

and A,=|1){1]
+ 1)1l 1)1

2
4

0

0

Al

‘2

Corresponds to measuring p “without looking at the outcome”

After looking at the outcome, p becomes{

10)(0] with prob. |¢?
[1)(1| with prob. |2

29



General quantum operations (3)

Example 3

1 0 0 O

0O 010

0O 100
0O 0 0 1

Let A,= /®(0| ={ } and A,=I®(1] ={

* Any state of the form p®o (product state) becomes p

1{1 O
. State (%|OO>+%|11>)(%<00|+%<11|) becomes 5{0 J
It's the same density matrix as for (%, |0)), (%, [1)))

« Corresponds to “discarding the second register”

The operation is called the partial trace Tr, p
30



