
Quantum Information Processing
Course notes for

QIC 710 / CS 768 / PHYS 767 / CO 681 / AMATH 871 / PMATH 871

Richard Cleve
Institute for Quantum Computing & Cheriton School of Computer Science

University of Waterloo

August 11, 2025

Abstract

These notes explain some of the basics of quantum information processing, with
intuition and technical definitions, aimed at anyone with a solid understanding
of linear algebra and probability theory. They are in three parts

Part I: A primer for beginners
Part II: Quantum algorithms
Part III: Quantum information theory

where the second and third parts can be read in either order.
I have attempted to make these notes accessible to the diverse community of

students who usually take the course. I suggest that readers skim over (or skip)
any parts that they already have a good feel for.

© 2025 by Richard Cleve. All rights reserved.

1

Contents

I A primer for beginners 11

1 Preface 12

2 What is a qubit? 13
2.1 A simple digital model of information 13
2.2 A simple analog model of information 15
2.3 A simple probabilistic digital model of information 17
2.4 A simple quantum model of information 19

3 Notation and terminology 23
3.1 Notation for qubits (and higher dimensional analogues) 23
3.2 Normalization convention for quantum state vectors 24
3.3 A closer look at unitary operations 25
3.4 A closer look at measurements . 26

4 Introduction to state distinguishing problems 28
4.1 Distinguishing between |0⟩ and |+⟩ 28
4.2 Other state distinguishing problems 30

5 Can a qubit store more information than a bit? 32
5.1 On communicating a trit using a qubit 32

5.1.1 Worst-case success probability of bit strategies 33
5.1.2 Worst-case success probability of qubit strategies 35

6 Systems with multiple bits and multiple qubits 38
6.1 Definitions of n-bit systems and n-qubit systems 38
6.2 Subsystems of n-bit systems . 40
6.3 Subsystems of n-qubit systems . 41
6.4 Product states . 44
6.5 Aside: global phases . 46
6.6 Local unitary operations . 47
6.7 Controlled-U gates . 49
6.8 Controlled-NOT gate (a.k.a. CNOT) 51

2

7 Superdense coding 56
7.1 Prelude to superdense coding . 56
7.2 How superdense coding works . 58

8 Projective and local measurements 61
8.1 Projective measurements . 61
8.2 Local measurements . 64
8.3 Local actions do not non-locally affect measurements 66
8.4 Weirdness of the Bell basis encoding 68
8.5 Measuring the control qubit of a controlled-U gate 69

9 Isometries and exotic measurements 71
9.1 Isometries . 71
9.2 Exotic measurements . 72

9.2.1 Trine state distinguishing . 72
9.2.2 Zero-error state distinguishing between |0⟩ and |+⟩ 75

10 Teleportation 79
10.1 Prelude to teleportation . 79
10.2 Teleportation scenario . 79
10.3 How teleportation works . 80

11 Can quantum states be copied? 84
11.1 A classical bit copier . 84
11.2 A qubit copier? . 85

12 Can quantum states be stored redundantly? 88
12.1 3⁄2-copying (via secret sharing) . 89
12.2 More general forms of quantum redundancy 92

3

II Quantum algorithms 93

13 Classical and quantum algorithms as circuits 94
13.1 Classical logic gates . 94
13.2 Computing the majority of a string of bits 96
13.3 Classical algorithms as logic circuits 97
13.4 Multiplication problem and factoring problem 97
13.5 Quantum algorithms as quantum circuits 99

14 Simulations between quantum and classical 100
14.1 The Toffoli gate . 100
14.2 Quantum circuits simulating classical circuits 101
14.3 Classical circuits simulating quantum circuits 104

15 Computational complexity classes in brief 107

16 The black-box model 108
16.1 Classical black-box queries . 108
16.2 Quantum black-box queries . 109

17 Simple quantum algorithms in black-box model 112
17.1 Deutsch’s problem . 112
17.2 One-out-of-four search . 116
17.3 Constant vs. balanced . 118
17.4 Probabilistic vs. quantum query complexity 121

18 Simon’s problem 123
18.1 Definition of Simon’s Problem . 123
18.2 Classical query cost of Simon’s problem 125

18.2.1 Proof of classical lower bound for Simon’s problem 126
18.3 Quantum algorithm for Simon’s problem 128

18.3.1 Understanding H ⊗H ⊗ · · · ⊗H 128
18.3.2 Viewing {0, 1}n as a discrete vector space 129
18.3.3 Simon’s algorithm . 131

18.4 Significance of Simon’s problem . 136

4

19 The Fourier transform 138
19.1 Definition of the Fourier transform modulo m 138
19.2 A very simple application of the Fourier transform 140
19.3 Computing the Fourier transform modulo 2n 143

19.3.1 Expressing F2n in terms of F2n−1 144
19.3.2 Unravelling the recurrence . 148

19.4 Computing the Fourier transform for arbitrary modulus 150

20 Definition of the discrete log problem 151
20.1 Definitions of Zm and Z∗

m . 151
20.2 Generators of Z∗

p and the exponential/log functions 152
20.3 Discrete exponential problem . 153

20.3.1 Repeated squaring trick . 153
20.4 Discrete log problem . 153

21 Shor’s algorithm for the discrete log problem 155
21.1 Shor’s function with a property similar to Simon’s 155
21.2 The Simon mod m problem . 157
21.3 Query algorithm for Simon mod m 159
21.4 Returning to the discrete log problem 162
21.5 Loose ends . 163

21.5.1 How to extract r . 164
21.5.2 How not to compute an f -query 164
21.5.3 How to compute an f -query 166
21.5.4 How to compute the Fourier transform Fp−1 166

22 Phase estimation algorithm 168
22.1 A simple introductory example . 168
22.2 Multiplicity controlled-U gates . 170

22.2.1 Aside: multiplicity-control gates vs. AND-control gates 171
22.3 Definition of the phase estimation problem 172
22.4 Solving the exact case . 173
22.5 Solving the general case . 175
22.6 The case of superpositions of eigenvectors 179

5

23 The order-finding problem 181
23.1 Greatest common divisors and Euclid’s algorithm 181
23.2 The order-finding problem and its relation to factoring 183

24 Shor’s algorithm for order-finding 185
24.1 Order-finding in the phase estimation framework 185

24.1.1 Multiplicity-controlled-Ua,m gate 186
24.1.2 Precision needed to determine 1/r 186
24.1.3 Can we construct |ψ1⟩? . 187

24.2 Order-finding using a random eigenvector |ψk⟩ 187
24.2.1 When k is known . 188
24.2.2 When k is not known . 188
24.2.3 A snag: reduced fractions . 189
24.2.4 Conclusion of order-finding with a random eigenvector 190

24.3 Order-finding using a superposition of eigenvectors 191
24.4 Order-finding without requiring an eigenvector 191

24.4.1 A technicality about the multiplicity-controlled-Ua,m gate . . . 192

25 Shor’s factoring algorithm 194

26 Grover’s search algorithm 195
26.1 Two reflections is a rotation . 196
26.2 Overall structure of Grover’s algorithm 198
26.3 The case of a unique satisfying input 202
26.4 The case of any number of satisfying inputs 203

27 Optimality of Grover’s search algorithm 206

6

III Quantum information theory 211

28 Quantum states as density matrices 212
28.1 Probabilistic mixtures of states . 213
28.2 Density matrices . 215
28.3 Information processing in terms of density matrices 217
28.4 Normal matrices, positive matrices, and the trace 220
28.5 Characterizing density matrices . 222
28.6 Bloch sphere for qubits . 223

29 Density matrices on multi-register systems 227
29.1 Product states . 227
29.2 Separable states . 228
29.3 Entangled states . 229
29.4 The identity

(
I ⊗ |ϕ⟩

)
|ψ⟩ = |ψ⟩ ⊗ |ϕ⟩ 230

29.5 Quantum states of subsystems and the partial trace 231
29.5.1 Aside: marginal distributions 231
29.5.2 Quantum analogue of marginal distributions 232
29.5.3 Definition of the partial trace 233

29.6 Purifications . 235

30 State transitions in the Kraus form 237
30.1 Measurements via Kraus operators 237

30.1.1 Projective measurements . 239
30.1.2 A Kraus measurement for the trine states 240
30.1.3 POVM measurements . 240

30.2 Quantum channels via Kraus operators 241
30.2.1 Unitary operations and isometries 242
30.2.2 Decoherence of a qubit . 242
30.2.3 Phase damping qubit channel 246
30.2.4 Depolarizing qubit channel . 246
30.2.5 Amplitude damping qubit channel 247
30.2.6 Adding a mixed-state ancilla register 248
30.2.7 The partial trace is a channel 248

7

31 Channels and linear maps on subsystems 249
31.1 Channels vs. linear maps . 250
31.2 Linear maps applied to subsystems 250
31.3 The partial transpose as an entanglement test 251

32 State transitions in the Stinespring form 254
32.1 Measurements in the Stinespring form 254
32.2 Channels in the Stinespring form . 255

32.2.1 Decoherence of a qubit . 256
32.2.2 Reset channel . 257
32.2.3 Depolarizing channel . 257

32.3 Equivalence of Kraus and Stinespring channels 259
32.3.1 Kraus to Stinespring . 259
32.3.2 Stinepring to Kraus . 261

32.4 Unifying measurements and channels 262

33 Distance measures between states 263
33.1 Operational distance measure . 263
33.2 Geometric distance measures . 264

33.2.1 Euclidean distance . 264
33.2.2 Fidelity . 265

33.3 Functional calculus for linear operators 266
33.4 Trace norm and trace distance . 267
33.5 The Holevo-Helstrom Theorem . 268

33.5.1 Attainability of success probability 1
2 + 1

4∥ρ0 − ρ1∥1 268
33.5.2 Optimality of success probability 1

2 + 1
4∥ρ0 − ρ1∥1 270

33.6 Ulhmann’s Theorem . 271
33.7 Fidelity vs. trace distance . 271

34 Schmidt decomposition 273
34.1 States that are equivalent up to local unitaries 273
34.2 A tensor sum decomposition lemma 274
34.3 Statement and proof of the Schmidt decomposition 275
34.4 Applications of the Schmidt decomposition 277

8

35 Simple quantum error-correcting codes 279
35.1 Classical 3-bit repetition code . 280
35.2 The existence of good classical codes in brief 281
35.3 Shor’s 9-qubit quantum error-correcting code 283

35.3.1 3-qubit code that protects against one X error 284
35.3.2 3-qubit code that protects against one Z error 285
35.3.3 9-qubit code that protects against one Pauli error 285

35.4 Quantum error models . 286
35.5 Redundancy vs. cloning . 288

36 Calderbank-Shor-Steane codes 290
36.1 Classical linear codes . 290

36.1.1 Dual of a linear code . 292
36.1.2 Generator matrix and parity check matrix 293
36.1.3 Error-correcting via parity-check matrix 294

36.2 H⊗H⊗ · · · ⊗H revisited . 295
36.3 CSS codes . 296

36.3.1 CSS encoding . 297
36.3.2 CSS error-correcting . 298
36.3.3 CSS code summary . 300

37 Very brief remarks about fault-tolerance 302

38 Nonlocality 304
38.1 Entanglement and signalling . 304
38.2 GHZ game . 305

38.2.1 Is there a perfect strategy for GHZ? 306
38.2.2 Cheating by communicating 308
38.2.3 Enforcing no communication 308
38.2.4 The “mystery” explained . 310
38.2.5 Is the entangled strategy communicating? 311
38.2.6 GHZ conclusions . 311

38.3 Magic square game . 312
38.4 Are nonlocal games useful? . 314

9

39 Bell/CHSH inequality 316
39.1 Fresh randomness vs. stale randomness 316
39.2 Predetermined measurement outcomes of a qubit? 317
39.3 CHSH inequality . 319
39.4 Violating the CHSH inequality . 322
39.5 Bell/CHSH inequality as a nonlocal game 324

10

Quantum Information Processing Richard Cleve

Part I

A primer for beginners

11

1 Preface
The goal here is to explain the basics of quantum information processing, with in-
tuition and technical definitions. To be able to follow this, you need to have a solid
understanding of linear algebra and probability theory. But no prior background in
quantum information or quantum physics is assumed.

You’ll see how information processing works on systems consisting of quantum bits
(called qubits) and the kinds of manoeuvres that are possible with with them. You’ll
see this in the context of some simple communication scenarios. We’ll also consider
the question whether quantum states can be copied or otherwise stored redundantly.

Although the scenarios arising in this part are small toy problems, they are part
of a foundation. This will help you internalize the more dramatic scenarios that you’ll
see in Part II: quantum algorithms and Part III: quantum information theory.

If you are already past the beginner stage

Then you might skip several sections. Perhaps you’ll find sections 5 and 12 intriguing.
And you should ensure that you understand these topics from Part I :

• State distinguishing problems (specifically, sections 4.1 and 4.2)

• Controlled-U and CNOT gates (sections 6.7 and 6.8)

• Superdense coding (section 7)

• Projective and local measurements (sections 8.1 and 8.2)

• The deferred measurement lemma (section 8.5)

• Isometries (section 9)

• Teleportation (section 10)

• The no-cloning theorem (section 11.2)

12

2 What is a qubit?
In this section we are going to see how single quantum bits—called qubits—work.
Some of you may have already seen that the state of a qubit can be represented as a
2-dimensional vector (or a 2 × 2 “density matrix”). Since there are a continuum of
such possible states, it is natural to ask:

Is a qubit digital or analog?

How much information is there in a qubit?

Please keep these questions in mind, as we work our way from bits to qubits.

2.1 A simple digital model of information
To begin with, please take a moment to consider how to answer the question:

What is a bit?

13

Although a valid answer is that a bit is an element of {0, 1}, I’d like you to think
of a bit in an operational way, as a system that can store an element of {0, 1} and
from which the information can be retrieved. There are also other operations that we
might want to be able to perform on a bit, such as modifying the information stored
in it in some systematic way.

I happen to own a little 128 gigabyte USB flash drive that looks like this.

Figure 1: My 128 GB USB flash drive.

Think of a bit as a flash drive containing just one single bit of information. Let the
blue box in figure 2 denote such a system.

Figure 2: Think of a bit as a USB drive containing one single bit of information.

We will imagine a few simple devices that perform operations on such bits. First,
imagine a device that enables us to set the value of a bit to 0 or 1.

Figure 3: A set device enables us to set a bit to 0 or 1.

We plug our bit into that device and then we push one of the two green buttons to
set the state to either 0 or 1. Suppose we push the button on the left to set the state
to 0.

Later on, we (or someone else) might want to read the information stored in a bit.
Imagine a read device that enables this.

14

Figure 4: Plug a bit into a read device and push the activation button to see it’s value.

We can plug the bit into that device and then push the activation button. This causes
the bit’s value to appear on a screen, so that we can see it.

A third type of device is one that transforms the state of a bit in some way. For
example, for a NOT device, we plug the bit in and, when we push the button, the
state of the bit flips (0 changes to 1 and 1 changes to 0).

Figure 5: A NOT device enables us to flip the value of a bit.

This transformation is called NOT because it performs a logical negation, where we
associate 0 with “false” and 1 with “true”. Note that, for this kind of operation, we
don’t care about seeing what the value of the bit is, as long as that value gets negated.

OK, that’s more or less what conventional information processing is like—albeit
with many more bits in play and much more complicated operations.

2.2 A simple analog model of information
Next, let’s consider an analog information storage system. It has a continuum of
possible states (perhaps a voltage that can be anywhere within some range). We can
abstractly think of the state of the system as any real number between 0 and 1 (that
is, in the interval [0, 1]). We’ll use a different color to distinguish this from the bit.

Figure 6: An analog USB drive that stores a value in the interval [0, 1].

Let the red box in figure 6 represent such a system, an analog memory.

15

Imagine a device that sets the state of the analog memory. We plug our system

Figure 7: An analog set device.

into it. Suppose that there is some kind of dial that can be continuously rotated to
specify any number between 0 and 1. Then we press the activation button and the
state of the system becomes the value that we selected.

We can also imagine reading the state of such a system. Here the read device has

Figure 8: An analog read device.

an analog display depicted as a meter. When we press the button the needle goes to
a position between 0 and 1, corresponding to the state.

And we can also imagine an analog transformation that, when activated, applies

Figure 9: An analog f -transformation device.

some function f : [0, 1]→ [0, 1] (for example, mapping x to x2 or x to 1− x).
The real numbers are a mathematical idealization. In any implementation, there

will be a certain level of limited precision for all of the operations. But such analog
devices can be useful even if their precision isn’t perfect. Moreover, in principle,
one could make the level of precision very high. The resulting system may be very
expensive to manufacture, but it could contain a lot of information.

16

2.3 A simple probabilistic digital model of information
Before considering quantum bits, let’s introduce randomness into our notion of a bit.

Suppose that the state of our bit is the result of some random process, so there’s
a probability that the system is in state 0 and a probability that it’s in state 1. Of
course the probabilities are greater than or equal to 0 and they sum to 1. Let’s put
aside the question of what probabilities really mean. I’m going to assume that you
already have some understanding of this.

Now imagine a new kind of device to randomly set the value of a bit, where
some probability value, between 0 and 1, is selected by rotating a dial (within some
precision, of course).

Figure 10: A probabilistic set device.

When we activate, the bit gets set to 1 with the probability that we selected; and
otherwise it gets set to 0.

Now, from our perspective, if we know how the dial was set, there’s a specific
probability distribution, with components p0 and p1, and the state of the system is
best described by this probability vector[

p0

p1

]
. (1)

But note that the actual state is either 0 or 1 (we just don’t know which). The
probability vector is a useful way for us to think about the state given what we know
(and don’t know).

Notice that the probabilistic digital model has an analog flavour. There are a
continuum of possible probability distributions. The set device for analog (figure 7)
and the set device for probabilistic digital (figure 10) are superficially similar: they
both have a dial for selecting a value between 0 and 1. However, what the devices
actually do is very different.

Suppose that, later on, we insert our bit into a read device—which is the same
read device as in figure 4. After we press the activation button, the actual value of

17

the bit appears on the screen. Once we see the value of the bit, we change whatever
probability vector we might have associated with it: the component corresponding
to what we saw becomes 1 and the other component becomes 0. Let’s refer to this
change as the “collapse of the probability vector”.

Note that, if we activate the read device a second time we will just see the same
value we saw the first time—as opposed to another independent sample. To be clear,
what the bit contains is the outcome of the original random process for setting the
bit. It does not contain information about the random process itself.

Also, if we didn’t know what probability values p0 and p1 were used when the bit
was set then reading the bit does not provide us with those values. After reading the
bit, all we can do is make some statistical inferences. For example, if the outcome
of the read operation is 1 then we can deduce that p1 could not have been 0. This
is very different from the analog model, where we can actually see the value of the
continuously varying parameter using a read device.

There are also transformations, like the NOT operation, and, more generally, any
2× 2 stochastic matrix makes sense as a transformation.

Figure 11: A stochastic transformation, where S is some stochastic matrix.

A 2× 2 stochastic matrix is of the form

S =
[
s00 s01

s10 s11

]
, (2)

where s00, s01, s10, s11 ≥ 0, s00 +s10 = 1, s01 +s11 = 1. In other words, each column of
S is a valid probability distribution. Applying S changes state 0 to [s00

s10] and state 1
to [s01

s11]. If our knowledge of the state is summarized by the probability distribution
[p0
p1] then applying S changes our knowledge to S[p0

p1].
OK, that’s essentially what information processing with bits is like when we allow

random operations (again, with many more bits in play and much more complicated
operations).

18

2.4 A simple quantum model of information
So how do quantum bits fit in? Are quantum bits like probabilistic bits or are they
like analog? In fact, they are neither of these. Quantum information is an entirely
different category of information. But it will be worth comparing it to probabilistic
digital and analog.

A quantum bit (or qubit) has a probability amplitude associated with 0 and with 1.
Probability amplitudes (called amplitudes for short) are different from probabilities.
They can be negative—in fact they can be complex numbers. As long as they sat-
isfy the condition that their absolute values squared sum to 1. In other words the
amplitude vector, written here with components α0 and α1, is a vector[

α0

α1

]
∈ C2 (3)

whose Euclidean1 length is 1 (also called a unit vector).
OK, that’s a definition, but it’s natural to ask: what do these amplitudes actually

mean? Our approach to answering this question will be operational. What I mean
by this is that we’ll consider what happens to qubits when basic operations similar
to set, read, and transform are performed. We’ll develop an understanding of qubits
by seeing them in action.

Later on, it will become clear that, unlike with probabilities, the explicit state of
a qubit is not 0 or 1; it works better to think of the amplitude vector [α0

α1] as the
explicit state. In this one respect, quantum digital states resemble our analog system,
where the explicit state is the continuous value.

Now, let’s see qubits in action. We have our quantum memory, which we will
denote as a purple box, containing a qubit.

Figure 12: A quantum memory containing a qubit.

To begin with, imagine a device that enables us to set the state of a qubit to any
amplitude vector.

1The Euclidean length of a vector [α0
α1] is defined as

√
|α0|2 + |α1|2.

19

Figure 13: Plug the qubit into a set device, set the dials, and then push the activation button to set
the state of the qubit.

The device has two dials that we can rotate. Why two? Because there are two real
degrees of freedom for all amplitude vectors: the amplitudes α0 and α1 (which are
complex numbers) can be expressed in a polar form

α0 = sin(θ) (4)
α1 = eiϕ cos(θ) (5)

which is in terms of two2 angles. So we can tune the two dials to specify any state
(within some precision), and then we press the activation button and the qubit is set
to the state that we specified.

Next, the quantum analogue of the read device is called the measure device.

Figure 14: Quantum measure device.

We’re going to consider this device carefully. Recall that the state of the qubit is
described by an amplitude vector [α0

α1]. What happens during a measurement is:
1. The outcome displayed on the screen is either a 0 or a 1, with respective prob-

abilities the |α0|2 and |α1|2. Note that this makes perfect sense as a probability
distribution, because these quantities sum to 1.

2. Also, the amplitude vector “collapses” towards the outcome in a manner similar
to the way that a probability vector collapses when we read the value of a bit.
The amplitude for the outcome becomes 1 and the other amplitude becomes 0.

2Perhaps you noticed that there are actually three degrees of freedom; however, it turns out that
one of them doesn’t matter (this will be explained in section 6.5).

20

This is depicted in Figure 15.

Figure 15: When a measure device is activated, there are two possible outcomes.

For example, suppose we press the button and the outcome is 0 (an outcome that
occurs with probability |α0|2). Then 0 is displayed on the screen and the state of the
qubit changes from [α0

α1] to [1
0]. The original amplitudes α0 and α1 are lost. In this

sense, the measurement process is a destructive operation. And there’s no point in
measuring the qubit a second time; we would just see the exact same result, 0, again.

It should be clear that, if we don’t know the state [α0
α1] of a qubit, then measuring

it does not enable us to extract the amplitudes α0 and α1. In this respect, qubits
resemble the bits in our probabilistic digital system.

Considering these two operations, set and measure, you might wonder: what’s
the point of these amplitudes? Amplitudes seem like square roots of probabilities.
When we measure, the outcome probabilities depend only on the absolute values of
the amplitudes squared. So what relevant information is there in those square roots?
In fact, if we stopped with these two operations, set and measure, then qubits would
be essentially the same as probabilistic bits.

But qubits are interesting because we can also perform transformations like rota-
tions on amplitude vectors, which essentially change the coordinate system in which
subsequent measurements are made. Note that, if you rotate a vector of length 1, it’s
still a vector of length 1, so the validity of quantum states is preserved. In fact, the
allowable transformations are unitary operations, which are kind of like “generalized
rotations,” and include operations like reflections too. If U is a specific 2× 2 unitary
matrix then Figure 16 shows how we denote the device that performs the operation
“multiply the state vector by U .”

21

Figure 16: A unitary operation, where U is a 2× 2 unitary matrix, transforms a state by U .

We’ll shortly see (in section 3.3) a formal definition of unitary and some interesting
manoeuvres involving unitary operations in subsequent sections.

Together, these three kinds of operations—set, measure, and unitary—are es-
sentially the building blocks of quantum information processing. We’ll see that all
the strange and interesting feats that can be performed in quantum information
and quantum computing are based on these operations—and similar ones involving
more qubits.

Finally, a comment about terminology. What I’ve been calling “probabilistic” is
commonly known as “classical.” The word “classical” is a reference to classical physics,
the physics that existed before the advent of quantum physics. So we have classical
information and classical bits vs. quantum information and qubits.

22

3 Notation and terminology
We now have a basic picture of how qubits work, but there are a few details to fill in,
and we’ll spend a little time with that.

3.1 Notation for qubits (and higher dimensional analogues)
First, let’s briefly go over some notation and further terminology. Recall that the state
of a qubit is its amplitude vector, a unit vector [α0

α1] ∈ C2. This state is commonly
denoted using the bra-ket notation as α0 |0⟩+α1 |1⟩ (it’s also called the Dirac notation,
after Paul Dirac). The strange looking parentheses (with the angle bracket on the
right side) are called kets, and |0⟩ and |1⟩ are shorthand for the basis vectors, which
are orthonormal (where orthonormal means orthogonal and of unit length). Figure 17
illustrates the geometric arrangement of the vectors |0⟩, |1⟩, and α0 |0⟩+α1 |1⟩ = [α0

α1]
for a generic quantum state vector.

Figure 17: Geometric view of the computational basis states |0⟩, |1⟩, and a superposition [α0
α1].

Note that figure 17 is a schematic because [α0
α1] ∈ C2, rather than R2. The basis

vectors |0⟩ and |1⟩ are commonly referred to as the computational basis states. For
quantum states, the linear combinations α0 |0⟩+α1 |1⟩ are also called superpositions.

More generally, in higher-dimensional systems (which will come up soon), any
symbol within a ket denotes a column vector of unit length, like

|ψ⟩ =


α0

α1
...

αd−1

 , (6)

where ∥ |ψ⟩ ∥ =
√
|α0|2 + |α1|2 + · · ·+ |αd−1|2 = 1.

23

A bra is like a ket, but written with the angle bracket on the left side, and it
denotes the conjugate transpose of the ket with the same label. Taking the conju-
gate transpose of a column vector yields a row vector whose entries are the complex
conjugates of the original entries, like

⟨ψ| =
[
ᾱ0 ᾱ1 · · · ᾱd−1

]
. (7)

A bra is always a row vector of unit length.
The inner product of a two kets is written as a bra-ket, or bracket, which can be

viewed as shorthand for the product of a row matrix with a column matrix. If

|ϕ⟩ =


β0

β1
...

βd−1

 (8)

then the inner product of |ψ⟩ and |ϕ⟩ is the bracket

⟨ψ|ϕ⟩ = ⟨ψ| · |ϕ⟩ =
[
ᾱ0 ᾱ1 · · · ᾱd−1

]

β0

β1
...

βd−1

 (9)

=
d−1∑
k=0

ᾱkβk. (10)

Recall that, for inner products of complex-valued vectors, one takes the complex
conjugates of the entries of one of the vectors.

3.2 Normalization convention for quantum state vectors
Sometimes we denote states like 1√

2 |0⟩ + 1√
2 |1⟩ as simply |0⟩ + |1⟩ to reduce clut-

ter. More generally, we can write states as (non-zero) vectors that are not normal-
ized, where we use the normalization convention that unnormalized state vectors are
understood be divided by their norm. An unnormalized |ψ⟩ is interpreted as the
quantum state |ψ⟩ /∥ |ψ⟩ ∥.

24

3.3 A closer look at unitary operations
Let U be a square matrix. Here are three equivalent definitions of unitary.

The first definition is in terms of a useful geometric property: U is unitary if it
preserves angles between unit vectors. For any two states, there is an angle between
them, which is determined by their inner product, and the property is expressed in
terms of inner products.

Definition 3.1. A square matrix U is unitary if it preserves inner products. That
is, for all |ψ1⟩ and |ψ2⟩, the inner product between U |ψ1⟩ and U |ψ2⟩ is the same as
the inner product between |ψ1⟩ and |ψ2⟩.

The second definition makes it easy to recognize unitary matrices.

Definition 3.2. A square matrix U is unitary if its columns are orthonormal (which
is equivalent to its rows being orthonormal).

Some well-known examples of 2× 2 unitary matrices are: the rotation by angle θ

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(11)

and the Hadamard transform

H =
 1√

2
1√
2

1√
2 −

1√
2

 , (12)

which is not a rotation (but H is a reflection). Three further examples are the Pauli
matrices3

X =
[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, and Y =

[
0 −i
i 0

]
. (13)

The PauliX is sometimes referred to as a bit flip (or NOT operation), sinceX |0⟩ = |1⟩
and X |1⟩ = |0⟩. Also, Z is sometimes referred to as a phase flip.

The third definition of unitary, is useful in calculations and is commonly seen in
the literature.

Definition 3.3. A square matrix U is unitary if U∗U = I, where U∗ is the conjugate
transpose4 of U (the transpose of U with all the entries conjugated).

3An older notation for the Pauli matrices, commonly used in physics, is σX , σY , and σZ .
4An alternative notation for U∗, commonly used in physics, is U†.

25

It remains to show that the above three definitions of unitary are equivalent:

Exercise 3.1 (fairly straightforward). Show that the above three definitions of uni-
tary are indeed equivalent.

3.4 A closer look at measurements
Now, let’s look at measurements again. Let our qubit be in some state α0 |0⟩+α1 |1⟩ =
[α0
α1] (where |α0|2 + |α1|2 = 1). Then the result of the measurement is the following:

• With probability |α0|2, the outcome is 0 and the state collapses to |0⟩.

• With probability |α1|2, the outcome is 1 and the state collapses to |1⟩.
Let’s look at this geometrically, in figure 18.

Figure 18: The outcome probabilities of a measurement depend on the projection lengths squared
on the computational basis states.

We have a 2-dimensional space with computational basis |0⟩ and |1⟩. An arbitrary
state has a projection on each basis state. What happens in a measurement is that
the state collapses to each basis state with probability equal to the projection-length
squared.

The geometric perspective suggests some potential variations in our definition of
a measurement. For example, there’s no fundamental reason why the computational
basis states should have special status. We can imagine basing a measurement on
some other orthonormal basis, different from the computational basis. For example,
consider the orthonormal basis |ϕ0⟩ and |ϕ1⟩ in figure 19.

26

Figure 19: Measurement with respect to an alternative basis, |ϕ0⟩ and |ϕ1⟩.

Any state has a projection on each basis vector and, although the projection lengths
squared are different for this basis, they still add up to 1. We can define a new
measurement operation that projects the state being measured |ψ⟩ to each of these
basis vectors with probability the projection lengths squared:

• With probability |⟨ψ|ϕ0⟩|2, the outcome is 0 and the state collapses to |ϕ0⟩.

• With probability |⟨ψ|ϕ1⟩|2, the outcome is 1 and the state collapses to |ϕ1⟩.
One way of thinking about what unitary operations do is that they permit us to

perform measurements with respect to any alternative orthonormal basis. We have
our basic measurement operation (which is with respect to the computational basis).
If we want to perform a measurement with respect to a different orthonormal basis
|ϕ0⟩ = U |0⟩ and |ϕ1⟩ = U |1⟩ then we carry out the following procedure:

1. Apply U∗ to map the alternative basis to the computational basis (|0⟩ and |1⟩).

2. Perform a basic measurement (with respect to the computational basis).

3. Apply U to appropriately adjust the collapsed state (to one of |ϕ0⟩ and |ϕ1⟩).
So that’s a nice way of seeing the role of unitary operations: they change the coordi-
nate system, thereby releasing us from being tied to measuring in the computational
basis.

A final comment here is that there are more exotic measurements than this, where
the state is first embedded into a larger-dimensional space. Then a unitary operation
and measurement are made in that larger space. We’ll be seeing these types of
measurements later on (in section 9.2).

27

4 Introduction to state distinguishing problems
Define the plus state and minus state as

|+⟩ = 1√
2 |0⟩+ 1√

2 |1⟩ (14)

|−⟩ = 1√
2 |0⟩ −

1√
2 |1⟩ . (15)

Figure 20: Geometric depiction of the states |+⟩, and |−⟩.

What happens if a qubit in one of these two states is measured with respect to the
computational basis? Since (1√

2)2 = (− 1√
2)2 = 1

2 , the result of the measurement is a
uniformly distributed random bit, for both states.

Now, suppose that we’re given a qubit whose state is promised to be either |+⟩ or
|−⟩, but we’re not told which one. Is there a process for determining which one it is?

The first observation is that measuring with respect to the computational basis
is useless. For either state, the result will be a uniformly distributed random bit.
There’s no distinction. But, since we can perform unitary operations, we are not
shackled to the computational basis. We can apply a rotation by angle 45 degrees,
which maps |+⟩ to |1⟩ and |−⟩ to |0⟩. Then we measure in the computational basis,
which enables us to perfectly distinguish between the two cases. We can describe this
procedure as measuring with respect to the orthonormal basis |+⟩, |−⟩.

4.1 Distinguishing between |0⟩ and |+⟩
Here’s another, more subtle, state distinguishing problem. Suppose that we are given
a qubit that is either in the |0⟩ state or the |+⟩ state. Can we distinguish between
these two cases? The problem is that the states are not orthogonal—so there’s no
unitary that takes one of them to |0⟩ and the other to |1⟩. In fact, there is no perfect
distinguishing procedure for |0⟩ and |+⟩.

28

Even though we cannot perfectly distinguish between |0⟩ and |+⟩, we can try to
maximize the success probability.

Figure 21: The states |0⟩ and |+⟩.

First note that success probability 1
2 is attainable by simply outputting a random

guess (without even measuring the state). So success probability 1
2 is a baseline that

we can try to improve on via a measurement.
What happens if we measure in the computational basis? Then it’s sensible to

guess “0” if the outcome is 0 and guess “+” if the outcome is 1. The success probability
of this strategy (which depends on the instance) is1 if the state is |0⟩

1
2 if the state is |+⟩.

(16)

How good is this? We will consider two different definitions: average-case success
probability and worst-case success probability:

Average-case success probability is the average of the success probabilities with
respect to some prior probability distribution on the instances. For example, if we
assume that |0⟩ and |+⟩ each arise with probability 1

2 then the average-case success
probability of the above measurement procedure is (1

2)(1) + (1
2)(1

2) = 3
4 .

Worst-case success probability is the minimum of the success probabilities of the
instances. The worst-case success probability of the above procedure is 1

2 .
There is a complementary procedure to the procedure of measuring in the compu-

tational basis: measure with respect to the |+⟩, |−⟩ basis. Then it’s sensible to guess
“+” if the outcome is |+⟩ and “0” if the outcome is |−⟩. The success probabilities of
the instances are 

1
2 if the state is |0⟩
1 if the state is |+⟩.

(17)

The average-case success probability is 3
4 and the worst-case success probability is 1

2 .

29

There is a way of combining the two aforementioned measurement procedures to
attain worst-case success probability 3

4 . The procedure is to randomly choose between
the two measurement strategies. In other words, with probability 1

2 , do the above
procedure based on measuring with respect to the computational basis, and with
probability 1

2 do the above procedure based on measuring with respect to the |+⟩,
|−⟩ basis. The resulting success probabilities for the instances are

3
4 if the state is |0⟩
3
4 if the state is |+⟩.

(18)

In fact, there is a better strategy than all of the above strategies, whose worst-case
success probability is cos2(π/8) = 0.853.... The idea is to measure with respect to the
orthonormal basis

|ψ0⟩ = cos(π/8) |0⟩ − sin(π/8) |1⟩ (19)
|ψ1⟩ = sin(π/8) |0⟩+ cos(π/8) |1⟩ . (20)

Figure 22: Distinguishing between |0⟩ and |+⟩ by measuring with respect to |ψ0⟩ and |ψ1⟩.

Notice that |ψ0⟩ and |ψ1⟩ symmetrically flank |0⟩ and |+⟩, making an angle of 15◦

(π/8 radians) at each side.
It turns out that cos2(π/8) is the highest success probability possible for this

state distinguishing problem, though we don’t prove it now. (We will be able prove
optimality using techniques in section 33.5 of Part III: quantum information theory.)

4.2 Other state distinguishing problems
What follows are some other state distinguishing problems, given as exercises. Since,
at this point, we don’t have methodologies for proving optimality, you might not know
for sure whether the measurement procedures you devise are optimal.

30

Exercise 4.1. For each of the following pairs of states, devise a measurement proce-
dure with as large a worst-case success probability as you can attain:

1. |0⟩ vs.
√

3
2 |0⟩+ 1

2 |1⟩.

2. |1⟩ vs. |−⟩.

3. cos(θ) |0⟩+sin(θ) |1⟩ vs. cos(θ) |0⟩−sin(θ) |1⟩, where θ ∈ [0, π2] is a known angle.

The examples of states that have arisen so far have amplitudes that are real num-
bers; however amplitudes can be complex numbers. Here are some state distinguishing
problems with complex amplitudes (where i =

√
−1 = eiπ/2).

Exercise 4.2. For each of the following pairs of states, devise a measurement proce-
dure with as large a worst-case success probability as you can attain:

1. i√
2 |0⟩+ 1√

2 |1⟩ vs. 1√
2 |0⟩+ i√

2 |1⟩

2. 1√
2 |0⟩+ 1+i

2 |1⟩ vs. 1√
2 |0⟩+ 1−i

2 |1⟩

State distinguishing problems involving more than two states also make sense.
Here is an example.

Exercise 4.3. Devise a measurement procedure with as large a worst-case success
probability as you can attain for distinguishing between the four states

|0⟩ vs. |1⟩ vs. |+⟩ vs. |−⟩ .

Since there are four states, the baseline success probability that arises from random
guessing is 1

4 . Your procedure should do better than that.

In general, state distinguishing problems involving more than two states can be
tricky. An interesting state distinguishing problem involving three states arises in the
next section (figure 28).

31

5 Can a qubit store more information than a bit?
Remember one of the questions posed at the beginning of section 2: How much
information is there in a qubit? On one hand, a qubit can be in a continuum of
explicit states, so the amount of information needed to specify a quantum state is
huge—or even infinite if the precision is perfect. But the measurement operation is
very severe, yielding only a discrete outcome like 0 or 1, so we cannot “read out” the
continuous value.

A famous theorem in quantum information theory, called Holevo’s Theorem5 (dat-
ing back to 1973!) implies that classical information cannot be compressed by encod-
ing it as a quantum state and then recovering the data by a measurement. A more
recent related result, due to Ashwin Nayak,6 that is simpler to state and to prove, also
implies this. Technically, the results of Holevo and of Nayak apply in an average-case
setting, where it is assumed that there is a prior probability distribution associated
with the classical data.

Here, I will show that, in a worst-case setting, a qubit can slightly outperform
a bit for a communication problem. Although the advantage is modest, this is an
example of an information processing task where a single qubit can achieve something
that a single classical bit cannot.

5.1 On communicating a trit using a qubit
A qubit can obviously store a bit (representing 0 as |0⟩ and 1 as |1⟩), but suppose
we want to use it to store more information than one bit. The smallest upgrade we
could ask for is to store a trit, which is an element of {0, 1, 2}. Can a qubit store
a trit? Although a qubit cannot perfectly store a trit (intuitively, because there do
not exist three mutually orthogonal vectors in two dimensions), I will show you that
there is a sense in which a qubit can store more partial information about a trit than
a classical bit can.

To make the scenario clear, suppose there are two parties, A and B, that we’ll
personify and refer to as Alice and Bob. Alice receives a trit a ∈ {0, 1, 2} as input
and the goal is to convey this information over to Bob. We consider two types of
strategies that Alice and Bob can carry out: bit strategies and qubit strategies. We
will see that there exists a qubit strategy that outperforms every bit strategy.

5Holevo, Alexander S. (1973). “Bounds for the quantity of information transmitted by a quantum
communication channel.” Problems of Information Transmission. 9(3): 177–183.

6https://arxiv.org/pdf/quant-ph/9904093

32

https://arxiv.org/pdf/quant-ph/9904093

In a bit strategy, Alice is allowed to send just one bit to Bob, from which he should
somehow produce a guess of the value of the trit a with as high a success probability
as possible.

Figure 23: Alice conveying information about a trit to Bob by a bit strategy.

In a qubit strategy, Alice is allowed to send just one qubit to Bob, from which
he should somehow produce a guess of the value of the trit a with as high a success
probability as possible.

Figure 24: Alice conveying information about a trit to Bob by a qubit strategy.

5.1.1 Worst-case success probability of bit strategies

Here is a simple example of a bit strategy. Alice receives her trit and she encodes 0

Figure 25: A simple bit strategy for Alice conveying a trit to Bob.

as 0, 1 as 1, and 2 also as 1. Then Bob decodes to 0 to 0 and 1 to 1. This obviously
succeeds for inputs 0 and 1, but fails miserably for input 2.

In the case where the input is a uniformly distributed trit, this strategy succeeds
with probability 2

3 . The aforementioned result of Nayak implies that, for uniformly
distributed trits, this is optimal among bit strategies as well as qubit strategies.

The situation becomes more interesting when we consider the worst-case input.
For any given strategy, this is defined as the smallest success probability for all inputs
(instead of the average of the success probabilities). This framework makes sense
if Alice and Bob have no idea what distribution Alice’s input trit will arise from.

33

Whatever strategy they come up with, the trit could be the case where their strategy
performs the worst.

Consider the classical bit strategy that we saw in figure 25, whose average-case
success probability is 2

3 . What is its worst-case success probability? For the worst-
case instance, the success probability is zero! If the trit is 2 then Bob produces the
wrong value for sure!

But the worst-case success probability can be improved to 1
2 as follows.

Figure 26: Another classical bit strategy for Alice conveying a trit to Bob.

Bob decodes a 1 randomly to either 1 or 2. This bit strategy has worst-case success
probability 1

2 . Success probability 1
2 may seem weak. But if there were no commu-

nication from Alice to Bob then the best success probability would be 1
3 . So the bit

strategy achieves something: it increases the success probability from 1
3 to 1

2 .
In fact, success probability 1

2 is the best possible for bit strategies where Alice and
Bob use localized randomness. Localized randomness means that Alice and Bob have
separate sources of randomness that are stochastically independent; their randomness
is uncorrelated. Alice can use her randomness to probabilistically map her trit to a
bit, and then, when Bob receives the bit at his end, he can use his randomness to
probabilistically generate a trit from it. Here is a proof of optimality of 1

2 .

Theorem 5.1. For any bit strategy where Alice and Bob use localized randomness,
the best possible worst-case success probability is 1

2 .

Proof (sketch). Any classical bit strategy for conveying a trit using local random-
ness is of the following form, where the labeled outgoing edges represent probabilistic

Figure 27: General form of classical bit strategy with local randomness conveying a trit.

choices. Thus, the labels of outgoing edges from each state are probability distribu-
tions: for each a ∈ {0, 1, 2}, it holds that pa,0, pa,1 ≥ 0 and pa,0 + pa,1 = 1; also, for

34

each b ∈ {0, 1}, it holds that qb,0, qb,1, qb,2 ≥ 0 and qb,0 + qb,1 + qb,2 = 1. What is
the best possible worst-case success probability attainable by filling in the probability
values of such a strategy?

To simplify the analysis, suppose that Alice receives a ∈ {0, 1, 2} as her input trit.
From Alice’s perspective, there are two relevant probabilities associated with this a:
the probability that Bob correctly outputs a if Alice sends bit 0, which is q0,a; and the
probability that Bob correctly outputs a if Alice sends bit 1, which is q1,a. It is clearly
optimal for Alice to send the bit b for which qb,a is maximum (and Alice might as
well send bit 0 in the case of a tie). Therefore, even though Alice is allowed to behave
probabilistically, there is an optimal strategy where Alice behaves deterministically.

Now, all Alice’s possible deterministic strategies essentially look like the left side
of figure 26, where Alice’s encoding has a collision: two trit values that encode to the
same bit value. For any of these deterministic encoding strategies for Alice, whatever
Bob’s probabilistic decoding procedure is, it will fail with probability at least 1

2 for
one of the trit values where the collision occurs. ■

5.1.2 Worst-case success probability of qubit strategies

What is interesting is that there exists a qubit strategy that succeeds with probability
higher than 1

2 in the worst case. In the qubit strategy, Alice encodes the trit as one of
the so-called trine states. These are three amplitude vectors in two dimensions with
an equal angle of 120 degrees (2π

3 radians) between them:

|ϕ0⟩ = |0⟩ (21)
|ϕ1⟩ = −1

2 |0⟩+
√

3
2 |1⟩ (22)

|ϕ2⟩ = −1
2 |0⟩ −

√
3

2 |1⟩ . (23)

Figure 28: The three trine states.

35

Theorem 5.2. There is a qubit strategy that attains worst-case success probability 7
12 .

To be clear about the model, this strategy employs just a single qubit, that Alice sends
to Bob, and the parties may use localized randomness.

Proof. The qubit strategy is based on Alice encoding the trit k ∈ {0, 1, 2} as the trine
state |ϕk⟩ and then Bob decoding via the following measurement procedure. Bob
randomly chooses an ℓ ∈ {0, 1, 2} and then measures with respect to the orthonormal
basis |ϕℓ⟩, |ϕ⊥

ℓ ⟩, where

|ϕ⊥
0 ⟩ = |1⟩ (24)
|ϕ⊥

1 ⟩ = −
√

3
2 |0⟩ −

1
2 |1⟩ (25)

|ϕ⊥
2 ⟩ =

√
3

2 |0⟩ −
1
2 |1⟩ . (26)

Figure 29: The states |ϕ⊥
0 ⟩, |ϕ⊥

1 ⟩, and |ϕ⊥
2 ⟩ (shown in red).

The outcome of the measurement is either |ϕℓ⟩ or |ϕ⊥
ℓ ⟩. If the outcome is |ϕℓ⟩ then

Bob outputs ℓ as his guess for k; if the outcome is |ϕ⊥
ℓ ⟩ then Bob randomly chooses

between the two elements of {0, 1, 2} that are not ℓ as his guess.
How well does this perform? Whatever the trit k is, with probability 1

3 , Bob is
lucky and ℓ = k, in which case Bob is measuring |ϕk⟩ with respect to the orthonormal
basis |ϕk⟩, |ϕ⊥

k ⟩, so his guess will correctly be k for sure. With probability 2
3 , Bob is

not so lucky and ℓ ̸= k. Conditional on that case arising, the measurement outcome
is |ϕ⊥

ℓ ⟩ with probability 3
4 and, conditional on that, Bob guesses k with probability 1

2 .
Considering all the conditional probabilities, the success probability is(

1
3

)(
1
)

+
(

2
3

)(
3
4

)(
1
2

)
= 7

12 . (27)

■

36

Since 7
12 >

1
2 , this is sufficient to establish the qualitative point that qubit strate-

gies can outperform classical bit strategies—so there is a sense in which a qubit can
store more classical information than a bit.

However, 7
12 = 0.583... is not the best possible performance of qubit strategies.

There are better ways for Bob to measure the trine state received from Alice. For
example, there is a procedure that attains success probability 2

3 cos2(π/12) = 0.622...,
based on Bob measuring his received trine state with respect to a different orthonor-
mal basis. This improved procedure is left as an exercise.

Exercise 5.1. Show that there exists a qubit strategy that attains worst-case success
probability 2

3 cos2(π/12).

Moreover, even 2
3 cos2(π/12) is not the optimal strategy for measuring an unknown

trine state in the worst-case. Can you think of how to do better? In a later section,
we will see a somewhat exotic measurement that correctly identifies a trine state with
success probability 2

3 .

37

6 Systems with multiple bits and multiple qubits
Up until now, we have considered systems of a single bit and a single qubit. Let’s
consider the case of multiple bits and qubits.

6.1 Definitions of n-bit systems and n-qubit systems
Our definitions for bits and qubits extend naturally to n-bit systems and n-qubit
systems, by taking 2n-dimensional vectors instead of 2-dimensional vectors.

For n classical bits, there are 2n possible values, and a probabilistic state has a
probability px associated with every n-bit string x ∈ {0, 1}n. Of course, since these
are probabilities, we have: for all x ∈ {0, 1}n, px ≥ 0 and ∑

x∈{0,1}n px = 1. These
probabilities constitute a 2n-dimensional probability vector.

For n quantum bits, there are 2n amplitudes: αx ∈ C, for each x ∈ {0, 1}n
(where ∑x∈{0,1}n |αx|2 = 1). These amplitudes constitute a 2n-dimensional state vec-
tor (which is a unit vector).

Note that, although the focus of attention in quantum information processing
is usually on n-qubit systems, it’s completely valid to consider systems whose states
have dimensions other than powers of 2. For example, a quantum trit (qutrit) has a 3-
dimensional state vector of the form α0|0⟩+α1|1⟩+α2|2⟩ (with |α0|2+|α1|2+|α2|2 = 1).

The set of all probability vectors is a simplex, which is illustrated for the case of
three dimensions as a triangular region.

Figure 30: Simplex of all possible 3-dimensional classical (probabilistic) states.

The set of all valid quantum state vectors is a hypersphere, which is all points of
distance 1 from the origin.

38

Figure 31: Hypersphere of all possible 3-dimensional quantum states.

There are 2n (orthonormal) computational basis states, denoted as n-bit strings
within kets. For n = 3, these states are

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ . (28)

Note that we can write an n-qubit state vector as a linear combination of the 2n
computational basis states, as ∑

x∈{0,1}n

αx |x⟩ , (29)

where ∑
x∈{0,1}n

|αx|2 = 1. (30)

As with single qubits, what’s important is the operations that can be performed
on them. We’ll consider unitary operations and measurements.

Unitary operations are 2n × 2n unitary matrices, acting on the 2n-dimensional
state vectors (unitary matrices were defined in section 3.3).

Measurements have 2n outcomes, corresponding to the 2n computational basis
states. Each basis state outcome occurs with probability the absolute squared of its
amplitude. Thus, when a measurement is applied to the state∑

x∈{0,1}n

αx |x⟩ , (31)

what happens is: an outcome x ∈ {0, 1}n occurs with probability |αx|2 and the state
of the system changes to the computational basis state |x⟩.

So far, everything is the same as for bits and qubits, except with 2n dimensions
instead of two dimensions. But there’s more to it than that. There is structure among
subsystems.

39

6.2 Subsystems of n-bit systems
First, let’s consider how subsystems work for the case of a classical n-bit system. It
can be viewed as one system (shown here as a rather bloated USB memory stick)

Figure 32: An n-bit system can be viewed as n separate 1-bit systems.

whose state can be described as a 2n-dimensional probability vector. But we can also
view the n-bit system as n separate 1-bit systems. Let’s explore that.

We can consider the state of every subset of the n bits. We have a probability
vector for the entire system. For three bits it would be this 8-dimensional vector

p000

p001

p010

p011

p100

p101

p110

p111


. (32)

What’s the state of the first bit? The probability that the first bit is 0 is the sum
of the first four probabilities (all cases where the first bit is 0), and the probability
that it’s 1 is the sum of the last four probabilities. In this manner, we can deduce
the probability vector for the first bit to be[

p000 + p001 + p010 + p011

p100 + p101 + p110 + p111

]
. (33)

By similar reasoning, we can deduce the probability vector for any other subset of the
bits. In the language of probability theory, these are called marginal distributions.

40

Also, an operation can act on a subset of the bits. For example, if there are three
bits, it makes sense to apply an operation to the first bit. For example, think of how
applying a NOT operation to the first bit affects the 8-dimensional probability vector
in Eq. (32). It permutes the probabilities, resulting in the vector

p100

p101

p110

p111

p000

p001

p010

p011


. (34)

It should be clear that, to apply a NOT operation to the first bit, one only needs to
be in possession of the first bit. This operation is local to the first bit.

And operations can be similarly local to various other subsets of the bits. Dataflow
diagrams are a useful way of illustrating localizations of operations, and their evolu-
tion in time. Figure 33 is an example of a dataflow diagram.

Figure 33: A dataflow diagram of a 3-bit system. First, operation S is applied to the first bit. Then
operation T is applied jointly to the second and third bits. Finally, operation U is applied to the
first and second bits.

6.3 Subsystems of n-qubit systems
Now we consider subsystems in the context of an n-qubit system. An n-qubit system
can be viewed as one system (shown in Figure 34 as a bloated quantum USB memory).
But it can also be viewed as n separate 1-qubit systems.

41

Figure 34: An n-qubit system can be viewed as n separate 1-qubit systems.

Can we consider the state of every subset of the n qubits? Consider a 3-qubit system
with 8-dimensional state vector 

α000

α001

α010

α011

α100

α101

α110

α111


. (35)

What’s the state of the first qubit? Näıvely, we could try summing the first four and
the last four amplitudes, as we did for probabilities. But that doesn’t work. In fact,
for the state vector 

1√
8

− 1√
8

1√
8

− 1√
8

1√
8

− 1√
8

1√
8

− 1√
8


(36)

this would result in [
0
0

]
, (37)

42

and having both amplitudes be zero makes no sense as a one-qubit state vector! Can
we do something else instead?

It turns out that the states of subsystems of quantum systems are a bit tricky. We
will be able to address this matter in section 29.5 of Part III: quantum information
theory, using the language of density matrices. For now, it suffices to be aware that:
in some cases, there does not exist a state vector for a subsystem. In this sense, the
larger system must be considered for a quantum state to make sense.

Now, let’s consider applying operations to subsets of the qubits. If there are three
qubits, does it make sense for a unitary operation to be local to the first qubit? The
fact that the first qubit might not even have have a state vector suggests that this is
not an entirely trivial matter. But it turns out that there is a fairly straightforward
way to make sense of operations that are local to a subset of the qubits—and we’ll
see how to do this shortly (in section 6.6).

For example, if Alice possesses the first qubit and Bob the last two qubits then
Alice can perform an operation on her qubit, without touching Bob’s qubits. And
operations can be similarly localized to various other subsets of the qubits. Quantum
dataflow diagrams are a useful way of illustrating localizations of operations, and their
evolution in time. They are commonly called quantum circuits.

Figure 35: A quantum circuit of a 3-qubit system. First, unitary operation U is applied to the first
qubit. Then unitary operation V is appied jointly to the second and third qubit. Finally, unitary
operation W is applied jointly to the first and second qubits.

There are two ways of viewing a quantum circuit:
• One way is that the lines are wires and the qubits flow along the wires from left

to right, and are transformed when the qubits pass through the boxes, which
are called gates.

• Another way of viewing a quantum circuit is that the qubits stay put and the

43

horizontal axis only represents time.
Quantum circuits are a very useful way of representing quantum information pro-
cesses, and you’ll be seeing a lot of them.

6.4 Product states
Let’s return to the issue of quantum states of subsystems. Remember that multi-qubit
state vectors do not always have meaningful state vectors for their subsystems.

However, we can build some quantum state “bottom-up”, by starting with the
states of the subsystems. For example, consider two qubits in these specific states,

Figure 36: Two separate qubit state vectors can be translated into a 2-qubit state vector.

with amplitudes α0 and α1 for the first qubit, and β0 and β1 for the second qubit. We
can choose to consider these two qubits as two separate systems, or as one 2-qubit
system, whose state is a 4-dimensional vector. What is the four-dimensional vector?
It’s defined to be the tensor product ⊗ of the two 2-dimensional vectors. An intuitive
way of thinking about this tensor product is to “expand the product” of the two
superpositions, which is

(α0 |0⟩+ α1 |1⟩)⊗ (β0 |0⟩+ β1 |1⟩) = α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ .
(38)

This definition of the tensor product is equivalent to

[
α0

α1

]
⊗
[
β0

β1

]
=


α0β0

α0β1

α1β0

α1β1

 . (39)

Note that this is similar to the way that probability distributions of independent
systems are combined to yield product distributions.

We now define the tensor product for arbitrary matrices (where the case of column
vectors occurs as a special case).

44

Definition 6.1. Let A and B be n×m and k × ℓ matrices (respectively):

A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

An1 An2 · · · Anm

 B =


B11 B12 · · · B1ℓ

B21 B22 · · · B2ℓ
...
Bk1 Bn2 · · · Bkℓ

 . (40)

The tensor product of A and B (also called the Kronecker product) is defined as

A⊗B =


A11B A12B · · · A1mB

A21B A22B · · · A2mB
...

An1B An2B · · · AnmB

 , (41)

where each AijB denotes a k× ℓ block consisting of all entries of B multiplied by Aij.
Note that A⊗B is a km× ℓn matrix.

Definition 6.2. If one system is in state |ψ⟩ and another system is in state |ϕ⟩, then
the state of the joint system is the product state |ϕ⟩ ⊗ |ψ⟩.

Now a few words about notation for product states. Frequently |ϕ⟩ ⊗ |ψ⟩ is
abbreviated to |ϕ⟩ |ψ⟩. Also, for computational basis states, |a⟩ and |b⟩ (where a ∈
{0, 1}n and b ∈ {0, 1}m), we have these equivalent notations: |a⟩⊗|b⟩ = |a⟩ |b⟩ = |ab⟩.
For example, |0⟩ ⊗ |0⟩ ⊗ |1⟩ = |0⟩ |0⟩ |1⟩ = |001⟩.

Exercise 6.1 (straightforward, but one case is a trick question). In each case, express
the 2-qubit state as a product of two 1-qubit states:

1
2 |00⟩+ 1

2 |01⟩+ 1
2 |10⟩+ 1

2 |11⟩ (42)
1
2 |00⟩ − 1

2 |01⟩ − 1
2 |10⟩+ 1

2 |11⟩ (43)

1
4 |00⟩+

√
3

4 |01⟩+
√

3
4 |10⟩+ 3

4 |11⟩ (44)
1√
2 |00⟩+ 1√

2 |11⟩ . (45)

The first three cases are straightforward. If you tried to work out the third case, you
probably realized that there is no solution! The last state cannot be expressed as a
tensor product. It is one of those states (mentioned in section 6.3) whose individual
qubits do not have state vectors.

45

Exercise 6.2 (fairly straightforward). Prove that the state vector 1√
2 |00⟩ + 1√

2 |11⟩
cannot be written as the tensor product of two one qubit state vectors.

The state 1√
2 |00⟩+ 1√

2 |11⟩ is an example of an entangled state. We’ll see that two
qubits in such a state can behave in interesting ways. It’s especially interesting when
the two qubits are physically in separate locations, say one is in Alice’s lab and one
is in Bob’s lab.

6.5 Aside: global phases
Now is a good time to discuss the matter of global phases. You may have noticed
that factorizations of 2-qubit states into products of 1-qubit states is not unique. For
example,

1
2 |00⟩+ 1

2 |01⟩+ 1
2 |10⟩+ 1

2 |11⟩ =
(

1√
2 |0⟩+ 1√

2 |1⟩
)
⊗
(

1√
2 |0⟩+ 1√

2 |1⟩
)

(46)

=
(
− 1√

2 |0⟩ −
1√
2 |1⟩

)
⊗
(
− 1√

2 |0⟩ −
1√
2 |1⟩

)
. (47)

So what’s the difference between the state 1√
2 |0⟩ + 1√

2 |1⟩ and − 1√
2 |0⟩ −

1√
2 |1⟩? As

vectors they are not orthogonal, but they are certainly different. The angle between
them is 180 degrees.

Can we distinguish between them? Suppose you’re given a qubit in one of these
states but not told which one. Is there some measurement procedure for determining
which one it is? Of course, you could always apply the trivial state distinguishing
procedure (from section 4) that ignores the qubit and make a random guess. This
succeeds with probability 1

2 . Can you apply some measurement procedure that enables
you to do any better than that?

The answer is no. For any measurement (in any basis), the outcome probabilities
will be identical for both states. Since there’s no way of distinguishing between the
states, we regard them as equivalent.

Based on this, we define an equivalence relation on state vectors.

Definition 6.3. Two state vectors |ψ⟩ and |ϕ⟩ are deemed equivalent if |ψ⟩ = eiθ |ϕ⟩
for some θ ∈ [0, 2π].

The factor eiθ |ϕ⟩ is called a global phase (“global” because it’s applied to all of
the terms of the superposition).

Here’s an exercise, if you’d like to get used to this concept.

46

Exercise 6.3. Partition the following into sets of equivalent states:

− 1√
2 |0⟩+ 1√

2 |1⟩
1√
2 |0⟩ −

1√
2 |1⟩

1√
2 |0⟩+ i√

2 |1⟩

i√
2 |0⟩+ 1√

2 |1⟩ − 1√
2 |0⟩+ i√

2 |1⟩
1√
2 |0⟩ −

i√
2 |1⟩

6.6 Local unitary operations
Now, let’s consider the matter of the scope of unitary operations. Suppose that there
are two qubits and we want to apply a 1-qubit unitary operation

U =
[
u00 u01

u10 u11

]
(48)

to the second qubit (and do nothing to the first qubit), as illustrated in figure 37.

Figure 37: Circuit diagram of a 1-qubit unitary U acting on the second qubit of a 2-qubit system.

What is the 4× 4 unitary matrix acting on the 2-qubit system that expresses this?
If the individual qubits happen to be in computational basis states then it’s rea-

sonable that the first state does not change and the second state is acted on by U , so
the 4× 4 unitary must have the property that

|0⟩ |0⟩ 7→ |0⟩U |0⟩ (49)
|0⟩ |1⟩ 7→ |0⟩U |1⟩ (50)
|1⟩ |0⟩ 7→ |1⟩U |0⟩ (51)
|1⟩ |1⟩ 7→ |1⟩U |1⟩ . (52)

Now, if we have a 4 × 4 unitary matrix with this effect on the basis states then, by
linearity, it must be 

u00 u01 0 0
u10 u11 0 0
0 0 u00 u01

0 0 u10 u11

 . (53)

47

This is what we will take as the definition of doing nothing to the first qubit and
applying U to the second qubit.

Notice that, by this definition, it makes perfect sense to apply U to the second
qubit of any 2-qubit system, even one in an entangled state like

1√
2 |00⟩+ 1√

2 |11⟩ , (54)

where the second qubit of the state does not even have a state vector! Whatever
the 2-qubit state is, it’s a 4-dimensional vector, and it makes sense to multiply that
vector by the matrix in Eq. (53).

Interestingly, the matrix in Eq. (53) can be expressed succinctly as[
1 0
0 1

]
⊗
[
u00 u01

u10 u11

]
= I ⊗ U, (55)

where the operation ⊗ (the tensor product) is defined in Definition 6.1. Here’s a
question to consider:

Exercise 6.4 (straightforward). What is the 4×4 unitary corresponding to applying
U to the first qubit and doing nothing to the second qubit?

We’ve discussed 1-qubit unitary operations in 2-qubit systems. Clearly, this gen-
eralizes naturally to more qubits. For example, when there are n + m qubits and U

Figure 38: Circuit for U applied to the last m qubits of an (n+m)-qubit system.

is applied to the last m qubits, think about what the resulting 2n+m × 2n+m matrix
should be.

The resulting 2n+m×2n+m unitary matrix is I⊗U , where I is the 2n×2n identity
matrix. Also, if a unitary V is applied to the first n qubits, this is expressed as V ⊗I,
where I is the 2m × 2m identity matrix.

Furthermore, whenever U and V act on separate qubits (as in figure 39), it’s

48

Figure 39: Example of two local unitaries acting on separate qubits. They commute.

natural to expect the two operations to commute. That is, their net effect is the
same regardless of which one applied first. It’s not too hard to prove this, and I
suggest it as an exercise.

Exercise 6.5 (straightforward). Prove that the two circuits in figure 39 are equiva-
lent.

To prove it, it’s useful to use the following lemma about the tensor product.

Lemma 6.1 (multiplicative property of tensors). Let A be is an n1×m1 matrix and
C be an m1×k1 matrix (so the matrix product AC makes sense). Let B be an n2×m2

matrix and D be an m2 × k2 matrix (so the matrix product BD makes sense). Then(
A⊗B

)(
C ⊗D

)
=
(
AC

)
⊗
(
BD

)
. (56)

A final comment: if U and V overlap then, in general, the operations will not
commute.

6.7 Controlled-U gates
Now, I’d like to show you something called a controlled-U gate, where U can be any
unitary operation.

For example, consider the case where U is a 1-qubit unitary operation

U =
[
u00 u01

u10 u11

]
(57)

The notation for the controlled-U gate in circuit diagrams is the following.

49

Figure 40: Notation for controlled-U gate.

where U drawn as “acting” on a target qubit and with a “wire” from a control qubit
to U .

If the control qubit is in state |0⟩ then nothing happens. And, if the control qubit
is in state |1⟩ then U gets applied to the target qubit. This gate has the following
effect on the four computational basis states:

|0⟩ |0⟩ 7→ |0⟩ |0⟩ (58)
|0⟩ |1⟩ 7→ |0⟩ |1⟩ (59)
|1⟩ |0⟩ 7→ |1⟩U |0⟩ (60)
|1⟩ |1⟩ 7→ |1⟩U |1⟩ . (61)

By linearity, we can deduce from this that the 4× 4 matrix of this controlled-U gate
is the matrix 

1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

 . (62)

Eq. (62) is the definition of the controlled-U gate acting on two qubits.
Notice that the matrix in Eq. (62) is like the matrix in Eq. (53) for applying U to

the second qubit, except that the first block is I rather than U . Although it might be
tempting to think of a controlled-U gate as “doing less” than the operation of applying
U to the second qubit (as in figure 37), this way of thinking is misleading. Note that,
when the control qubit is not in a computational basis state, the descriptionapply I if the control qubit is in state |0⟩

apply U if the control qubit is in state |1⟩
(63)

does not apply.
Here’s a question to consider:

50

Exercise 6.6 (worth thinking about). Does there exist a controlled-U gate that
changes the state of its control qubit? To make “the state of the control qubit” clear,
assume that the input state and output state must be product states. What does
your intuition say?

The above definition of a controlled-U gate assumes an orientation: the first qubit
is the control qubit and the second qubit is the target qubit. There is natural corre-
sponding definition for the case where the orientation is inverted (where second qubit
is the control qubit and the first qubit is the target qubit).

Exercise 6.7. Consider an inverted control-U gate, where the second qubit is the
control and the first qubit is the target. Based on the above explanations, how should
the 4× 4 matrix be defined for this (analogous to Eq. (62))?

Finally, a controlled-U gate can be defined for any n-qubit unitary U . The
controlled-U gate is an (n + 1)-qubit gate, where the additional qubit is the con-
trol qubit.

Figure 41: Notation for a controlled-U gate for an n-qubit U .

If the control qubit is the first qubit then the controlled-U gate is defined as the
2n+1 × 2n+1 matrix [

I 0
0 U

]
, (64)

where I and U are both 2n × 2n blocks.

6.8 Controlled-NOT gate (a.k.a. CNOT)
Here we consider the controlled-U gate, where

U = X = NOT =
[

0 1
1 0

]
. (65)

51

This 2-qubit gate is commonly referred to as the controlled-NOT (and CNOT) gate.
It has interesting properties and occurs very frequently in the theory of quantum
information processing. There is special notation for this gate, shown in figure 42.

Figure 42: Controlled-NOT gate (two different notations).

To understand where the notation comes from, consider what happens when
the inputs are computational basis states. Let the inputs be |a⟩ and |b⟩, where
a, b ∈ {0, 1}. For these input states, the output states are |a⟩ and |a⊕ b⟩. The sym-

Figure 43: Action of CNOT gate on the computational basis states (a, b ∈ {0, 1}).

bol ⊕ is the binary exclusive-OR operation (a.k.a. XOR). If you haven’t seen the ⊕
operation before, here’s a table of its values, and a comparison with values of ∨ (the
standard OR).

XOR OR

ab a⊕ b a ∨ b
00 0 0
01 1 1
10 1 1
11 0 1

The value of a ⊕ b is 1 and only if one of the two input bits are 1, but not both;
whereas, a ∨ b is 1 also in the case where both a and b are 1. Another, altogether
different way of thinking about the ⊕ operation is that it is the sum of the two bits in
modulo 2 arithmetic. The way that the symbol ⊕ is embedded into the gate symbol
in figure 43 is suggestive of what it does.

52

The above discussion of the CNOT gate is for computational basis states. The
definition of the CNOT gates is given by the 4× 4 unitary matrix in Eq. (62)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (66)

This operation can be applied to any 2-qubit state—independent of any intuitive
picture that’s based on the very special case of computational basis states.

Remember, in Exercise 6.6, I asked a question about whether there is a controlled-
U gate that can change the state of its control qubit? What did you decide?

Feel free to think more about this before looking at the next page ...

53

The answer might surprise you: for some input states to the CNOT gate, the
control qubit actually changes! Recall the states

|+⟩ = 1√
2 |0⟩+ 1√

2 |1⟩ (67)

|−⟩ = 1√
2 |0⟩ −

1√
2 |1⟩ . (68)

(first defined in section 4). Suppose the control qubit is set to |+⟩ and the target qubit
is set to |−⟩ and then the CNOT gate is applied. It can be verified by a calculation
that the output qubits are both in state |−⟩. So, for this input, the control qubit

Figure 44: Example where CNOT gate modifies the state of the control qubit.

changes state, from |+⟩ to |−⟩. And recall that, as we saw in section 4, |+⟩ and |−⟩
are certainly different states—they’re orthogonal and perfectly distinguishable.

Exercise 6.8 (straightforward). Verify that CNOT
(
|+⟩ ⊗ |−⟩

)
= |−⟩ ⊗ |−⟩.

The CNOT gate has several other interesting properties. One other property
concerns the simulation of other controlled-U gates, for different unitary operations
U , other than the X gate. Suppose that we have the capability of performing CNOT
gates plus all one-qubit unitary operations—and that’s all. Then, can we construct
circuits with these gates that implement other controlled-U gates? Let’s start by
considering the the controlled-Rθ, where Rθ is the rotation by angle θ

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (69)

How do we approach this? Well, we can guess a few simple forms that the circuit
might take. Consider a quantum circuit of this form.

Figure 45: Simulating a controlled-U gate from CNOT gates and one-qubit gates.

54

Do there exist unitaries V and W such that this circuit simulates the controlled-Rθ?
The answer is yes, and I leave this as an exercise.

Exercise 6.9 (fairly straightforward). Find 1-qubit unitary operations V and W

such that the circuit on the left side of figure 45 performs the same unitary operation
as the controlled-Rθ. (Hint: consider setting V and W to rotation matrices, with
carefully chosen angles.)

Exercise 6.9 is a good starting point towards this more challenging problem:

Exercise 6.10 (challenging). Show how to simulate a controlled-U operation for any
1-qubit unitary U by a circuit consisting of only CNOT and 1-qubit gates. Note that
the form of the simulating circuit need not be the same as the left side of figure 45.
(Hint: begin by considering the case where U has determinant 1.)

55

7 Superdense coding
This section is about an interesting communication feat that is possible with qubits
called superdense coding. What makes superdense coding interesting is not that it is
powerful (the feat of communicating two bits is not very exciting); rather, superdense
coding shows a sesnse in which quantum information is fundamentally different from
classical information.

7.1 Prelude to superdense coding
Suppose that Alice wants to convey two classical bits to Bob by sending only one
classical bit.

Figure 46: Scenario for Alice conveying two bits ab to Bob by sending just one bit (the best strategy
succeeds with probability 1

2).

The precise scenario is that Alice receives her two bits, a, b ∈ {0, 1} as input and
then she somehow creates a 1-bit message to send to Bob, who is somehow supposed
to determine both a and b from the bit that he receives from Alice. It should be
clear that this is impossible to accomplish perfectly. The highest success probability
possible is 1

2 , and this is obtained by the simple strategy where Alice just sends a to
Bob and then Bob outputs a and randomly guesses the value of b. This strategy has
success probability 1

2 in the average-case as well as in the worst-case.
What if Alice can send a qubit to Bob?

Figure 47: Scenario where Alice can send a qubit (the best success probability is 1
2).

It turns out that this does not help: the best success probability is still 1
2 . We don’t

prove this here (it’s a consequence of a result of Nayak).
Now, let’s add a twist. What if we allow Bob to send a bit to Alice before Alice

sends her bit to him?

56

Figure 48: Scenario where Bob can send a bit to Alice and then Alice can send a bit to Bob (the
best possible success probability is 1

2).

To be clear, the scenario (depicted in figure 48) is the following:
1. Alice receives her two bits, a, b ∈ {0, 1} as input.

2. Bob sends a bit to Alice.

3. Alice sends a bit to Bob.

4. Then Bob outputs two bits (and this is successful if his output bits are ab).
That extra bit of communication from Bob to Alice does not help. The best possible
success probability is still 1

2 . Intuitively, this is because the flow of information is in
the wrong direction. How does Bob sending a bit to Alice provide him with any more
information? To be sure that there isn’t some subtle way that Bob’s message helps,
we would need to think about this carefully. But let’s just accept, without proof, that
the best possible success probability is 1

2 .
In fact, if Bob sends a bit the wrong way and then Alice sends a qubit to Bob,

even that does not help: the best possible success probability is still 1
2 .

Figure 49: Scenario where Bob can send a bit to Alice and then Alice can send a qubit to Bob (the
best possible success probability is 1

2).

These examples seem to indicate that messages sent in the wrong direction are
of no use. We will see that superdense coding violates this intuition. In superdense
coding, Bob first sends a qubit to Alice and then Alice sends a qubit to Bob—and
Bob’s message actually makes a difference: the protocol always succeeds!

57

Figure 50: Scenario where Bob can send a qubit to Alice and then Alice can send a qubit to Bob
(the superdense coding protocol always succeeds at this).

The scenario is that:
1. Alice receives her two bits, a, b ∈ {0, 1} as input.

2. Bob sends a qubit to Alice.

3. Alice sends a qubit to Bob.

4. Then Bob outputs two bits (and this is successful if his output bits are ab).
We’ll see a communication protocol of this form where Bob always outouts ab cor-
rectly. Sending a bit in the wrong direction does not help but, somehow, sending a
qubit in the wrong direction does help!

7.2 How superdense coding works
Let’s begin with a description of the protocol for superdense coding. It is the following
three steps.

1. Bob creates the entangled two-qubit state

1√
2 |00⟩+ 1√

2 |11⟩ (70)

then he sends the first qubit to Alice (and he keeps the second qubit). So, at
this point, Alice and Bob each possess one qubit of this 2-qubit state.

2. Alice has her two input bits a and b and the qubit that she received from Bob.
She performs the following procedure:
2.1 If a = 1 apply X to the qubit (where X = [0 1

1 0]).
2.2 If b = 1 apply Z to the qubit (where Z = [1 0

0 −1]).
In summary, Alice applies ZbXa to the qubit in her possession. Then she sends
her qubit to Bob.

3. At this point Bob is in possession of both qubits again. He applies this circuit

58

Figure 51

to the two qubits and measures in the computational basis. The outcome of the
measurement is two bits, which is Bob’s output.

Now, let’s analyze how this protocol works. In step 2, Alice’s operations on the first
qubit changes the 2-qubit state in the following way:

1√
2 |00⟩+ 1√

2 |11⟩ if ab = 00
1√
2 |00⟩ − 1√

2 |11⟩ if ab = 01
1√
2 |01⟩+ 1√

2 |10⟩ if ab = 10
1√
2 |01⟩ − 1√

2 |10⟩ if ab = 11.

(71)

There’s something interesting about these four states: they are orthogonal to each
other! They are an orthonormal basis for the 4-dimensional state space associated
with two qubits. This is called the Bell basis (named after John Bell).

What Bob does in step 3 is measure the two qubits in the Bell basis. This is
accomplished by Bob first applying the unitary operation specified by the circuit in
figure 51 and then measuring in the computational basis. The effect of the unitary
operation on the four Bell states is shown in the following table (where we are omitting
the 1√

2 factors to reduce clutter, following the normalization convention in section 3.2).

input output
|00⟩+ |11⟩ |00⟩
|00⟩ − |11⟩ |01⟩
|01⟩+ |10⟩ |10⟩
|01⟩ − |10⟩ − |11⟩

Therefore, when Bob measures in the computational basis, he recovers the bits ab, as
required.

So that’s how superdense coding works. It makes use of an interesting property
of the Bell basis, where, in step 2, Alice applies an operation to just one of the two
qubits (the one in her possession) but by doing so she manages to change the state to
any of the four Bell basis states. That step wouldn’t work if the computational basis

59

were used: Alice could then manipulate the state of the first qubit but she couldn’t
do anything to the second qubit, which is in Bob’s possession. And there is no way
to do this using classical bits.

60

8 Projective and local measurements
So far, our notion of measurement has been with respect to some orthonormal ba-
sis, and an effect of the measurement is that state collapses to one of the elements
of the orthonormal basis. Here we broaden our notion of measurement to include
measurements that yield less information than this, in return for a benefit: that the
measurement can be less destructive to the quantum state. An example of this is a
local measurement, that measures a subset of a set of qubits.

8.1 Projective measurements
First, I’ll show you a more general notion of measurement than anything we’ve dis-
cussed so far, which we call a projective measurement. We need at least three dimen-
sional quantum state vectors to illustrate this kind of measurement.

We have considered 2-qubit systems, whose state vectors are 4-dimensional. But
let’s start with 3-dimensional quantum systems, where the space of states is easier to
visualize. For a quantum trit (or qutrit) there are three computational basis states,
called |0⟩, |1⟩, and |2⟩.

The most general measurements that we have seen so far are based on an or-
thonormal basis |ϕ0⟩ , |ϕ1⟩ , |ϕ2⟩ and they act as follows: they project the state to one
of the computational basis states, where the probability of projecting to each such
basis state is the projection length squared. Since we can perform unitary operations
before and after the measurement, we lose no generality by focusing on measurements
with respect to the computational basis.

The outcome of the measurement consists of two parts:
• Classical information indicating which basis state occurred—for qutrits, that’s

0, 1, or 2—which we can imagine is what we see on the screen of our measure-
ment device (the qutrit analogue of the device in Figure 15).

• And there is also a residual (or collapsed) quantum state, which would be |0⟩,
|1⟩, or |2⟩.

An equivalent way of viewing this is that there are three orthogonal one-dimensional
subspaces (the span of |0⟩, the span of |1⟩, and the span of |2⟩), and the state has
an orthogonal projection onto each subspace, and the square of the length of that
projection determines the probability of that outcome.

61

A projective measurement is like this, except that the orthogonal subspaces need
not be one-dimensional. For example, for qutrits, consider these two subspaces:

• The horizontal plane spanned by |0⟩ and |1⟩, which is two-dimensional.

• The vertical line spanned by |2⟩, which is one-dimensional.
These two subspaces (illustrated on the right side of figure 52) are orthogonal to each
other and, together, they span the entire space.

Figure 52: A geometric view of a standard qutrit measurement (left) and an example of a projective
qutrit measurement (right).

The definition of the projective measurement with respect to these subspaces is
as follows. Any quantum state vector has an orthogonal projection on each subspace.
The squares of the lengths of these projections sum to 1. The measurement process
produces: a classical outcome, indicating which space was collapsed to; and a residual
(collapsed) state, which is the original state projected into one of the subspaces.

For the subspaces on the right side of figure 52 (call them “plane” and “line”) the
result of measuring the state α0 |0⟩+ α1 |1⟩+ α2 |2⟩ is:“plane” and residual state α0 |0⟩+ α1 |1⟩ with probability |α0|2 + |α1|2

“line” and residual state α2 |2⟩ with probability |α2|2
(72)

(where in both cases the residual state is assumed to be normalized, following our
normalization convention for quantum states in section 3.2). In the case of the first
outcome, the residual state can still be an interesting quantum state in the sense that
it’s a superposition of basis states |0⟩ and |1⟩.

I have explained the above projective measurement by appealing to your geometric
intiution of figure 52. A more mathematically formal definition of the projective
measurement is in terms of matrices that are projectors.

62

Definition 8.1. A d×d matrix Π is an (orthogonal) projector if Π = Π∗ and Π2 = Π.
� A word of caution: there exist projectors that satisfy P 2 = P ; but for which

P ∗ ̸= P . An example of such a matrix is

P =
[
1 −1
0 0

]
. (73)

Note that P
(
α |0⟩ + β |+⟩

)
= α |0⟩ (for all α, β ∈ C), but since |0⟩ and |+⟩ are

not orthogonal, this is not an orthogonal projector; it may be called an oblique
projector. Our convention is that all our projectors are implicitly assumed to the
orthogonal (i.e., Hermitian), unless explicitly stated otherwise.

Definition 8.2. A sequence of (orthogonal) projectors Π0,Π1, . . . ,Πm−1 is complete
if Π0 + Π1 + · · ·+ Πm−1 = I.

The projective measurement in the right side of figure 52 and Eq. (72) can be
defined in terms of the projectors

Πplane =


1 0 0
0 1 0
0 0 0

 and Πline =


0 0 0
0 0 0
0 0 1

 . (74)

Note that, for |ψ⟩ = α0 |0⟩+ α1 |1⟩+ α2 |2⟩,

Πplane |ψ⟩ = α0 |0⟩+ α1 |1⟩ (75)
Πline |ψ⟩ = α2 |2⟩ , (76)

and the respective outcome probabilities in Eq. (72) are

⟨ψ|Πplane |ψ⟩ (77)
⟨ψ|Πline |ψ⟩ . (78)

Definition 8.3 (projective measurement). For a complete sequence of d×d projectors,
Π0,Π1, . . . ,Πm−1, the associated projective measurement is the following. For any d-
dimensional state |ψ⟩, the classical outcome is k ∈ {0, 1, . . . ,m− 1}, where

Pr[outcome is k] = ⟨ψ|Πk |ψ⟩ , (79)

and the corresponding residual state is Πk |ψ⟩, which in normalized form is
Πk |ψ⟩√
⟨ψ|Πk |ψ⟩

. (80)

There is some arbitrariness in the choice of labels for the projectors; for m pro-
jectors, {0, 1, . . . ,m− 1} is the default choice.

63

8.2 Local measurements
The definition of a projective measurement enables us to make sense of scenarios
where we measure a subset of n qubits. Consider the example where there are two
qubits, and we want to measure (only) the first qubit.

Figure 53: Notation for measuring individual qubits.

The half-circle shape in the circuit diagram is our way of denoting a measurement of
an individual qubit. Notice that the wire coming out of the measurement gate is a
double line. We can think of the double line as a “thicker wire” that carries classical
bits. The outcome of the measurement is either 0 or 1, and the residual state of the
first qubit will be either |0⟩ or |1⟩ and the second qubit remains “unmeasured.”

Since the original state of the two-qubit system might be entangled, we cannot
just ignore the second qubit and use our previous definition for measuring a one-qubit
system. There might not be a state vector for the first qubit.

Before we define this measurement in terms of projectors, let’s try to visualize the
underlying geometry in terms of the following two 2-dimensional subspaces:

• The space of all linear combinations of |00⟩ and |01⟩ (states with first qubit |0⟩).

• The space of all linear combinations of |10⟩ and |11⟩ (states with first qubit |1⟩).
These two spaces are orthogonal to each other (every vector in one space is orthogonal

Figure 54: Schematic picture of two orthogonal 2-dimensional spaces in four dimensions.

64

to every vector in the other space). So we have two orthogonal 2-dimensional spaces
within the 4-dimensional space of two-qubit states.

Any two-qubit quantum state α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩ has a projection
onto each subspace. These projections are:

α00 |00⟩+ α01 |01⟩ = |0⟩ ⊗
(
α00 |0⟩+ α01 |1⟩

)
(81)

α10 |10⟩+ α11 |11⟩ = |1⟩ ⊗
(
α10 |0⟩+ α11 |1⟩

)
. (82)

And the respective lengths squared of these projections are

|α00|2 + |α01|2 (83)
|α10|2 + |α11|2. (84)

Now we define the outcome of the measurement of the first qubit as0 and residual state α00 |0⟩+ α01 |1⟩ with probability |α00|2 + |α01|2

1 and residual state α10 |0⟩+ α11 |1⟩ with probability |α10|2 + |α11|2.
(85)

Note that, in Eq. (85), we are omitting the residual state of the first (measured) qubit,
which is |0⟩ or |1⟩, in correspondence with the classical output bit.

The projectors that describe this measurement are

Π0 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and Π1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (86)

There is an obvious version of this definition for measuring the second qubit of
two qubits.

Exercise 8.1 (straightforward). Using a similar approach to the above, propose a
definition for the result of measuring the second qubit of a 2-qubit system.

This definition of local measurement extends in a very straightforward way to
the scenario where there are n qubits and some arbitrary subset of k of the qubits
are measured. The outcome is a k-bit string, and associated with each outcome, is
a 2n−k-dimensional subspace (orthogonal projector of rank 2n−k). There are are 2k
such subspaces (orthogonal to each other) and the outcome probabilities correspond
to the projection lengths squared of the state on the 2k subspaces.

65

Exercise 8.2 (a straightforward check of the definitions). Consider the 3-qubit state
1√
2 |001⟩ + 1√

3 |010⟩ + 1√
6 |100⟩. What are the outcome probabilities and residual

states if the first qubit is measured? What about the case where the second qubit is
measured? And if the third qubit is measured?

A state distinguishing problem with local measurements

Recall that the Bell basis is

1√
2 |00⟩+ 1√

2 |11⟩ (87)
1√
2 |01⟩+ 1√

2 |10⟩ (88)
1√
2 |00⟩ − 1√

2 |11⟩ (89)
1√
2 |01⟩ − 1√

2 |10⟩ . (90)

Consider the state distinguishing problem where one of these states is created and
the goal is to determine which one. This is easy to do perfectly if you’re provided
with both qubits of the state.

Suppose that we add a restriction that you are provided with only the first qubit
of the state (the second qubit is inaccessible to you). The trivial baseline strategy
for distinguishing among the four Bell states is to randomly guess (without even
measuring the qubit), which succeeds with probability 1

4 . It turns out that, if you can
only measure the first qubit, then it is impossible to do any better than the baseline
strategy.

Exercise 8.3. Suppose that a Bell state is selected randomly and the only informa-
tion that you are given is the first qubit of the Bell state. Show that there is no
measurement (of your qubit) that enables you to guess which Bell state was selected
with probability greater than 1

4 .

8.3 Local actions do not non-locally affect measurements
Suppose that Alice and Bob have separate labs, each containing one qubit of the
Bell state 1√

2 |00⟩ + 1√
2 |11⟩. Now suppose that Alice measures her qubit (in the

computational basis). The result will be an unbiased random bit (0 with probability 1
2

and 1 with probability 1
2).

How does the situation change if Bob measures his system before Alice measures
hers? According to our definition of local measurements in section 8.2, if Bob’s

66

measurement outcome is (say) 0 then the state of Alice’s qubit becomes |0⟩, even
though Alice has not performed her measurement yet. Has Bob’s measurement of his
qubit affected the state of Alice’s qubit? On the face of it, one might be tempted
to think that it has. Here, I will explain why it’s more accurate to view Bob’s
measurement as having no causal effect on the state of Alice’s system.

In the aforementioned scenario, Alice and Bob’s individual measurement outcomes
are random bits, whose joint distribution is completely correlated. It’s as if a fair coin
has been flipped, and prior to seeing the outcome, it’s a uniformly distributed random
bit for both Alice and Bob. If Bob looks at the outcome first then he knows what
outcome Alice will see. But his looking doesn’t affect what Alice will see.

More generally, suppose that Alice and Bob’s separate labs each contain one qubit
of the state α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩. If they measure simultaneously
then the joint distribution of the four possible outcomes (00, 01, 10, and 11) is

|α00|2 |α01|2

|α10|2 |α11|2,
(91)

and Alice and Bob’s individual measurement outcome bits are the marginals of this
distribution: Alice’s outcome bits are distributed as the row sums |α00|2 + |α01|2 and
|α10|2 + |α11|2. Bob’s outcome bits are distributed as the column sums |α00|2 + |α10|2
and |α01|2 + |α11|2. If one party measures first then it does not affect the marginal
distribution of the other party. And this argument extends to higher dimensional
systems than pairs of qubits.

In pictures, the local measurements commute with each other.

Figure 55: Measuring two separate qubits can be done in any order.

Also, note that if the spacial positions and times of the local measurement are “space-
like separated events” (in the language of special relativity) then it is not even well-
defined which event occurs first; it depends on the reference frame from which they
are being considered. Therefore, the measurement operations need to commute with
each other for the theory to make sense. The commutativity property is a sanity-check
that our theory passes.

67

What about if Bob performs a unitary operation on his qubit prior to Alice’s
measurement? Can this affect the outcome probabilities of a subsequent measurement
of Alice? To analyze this, it’s convenient to express

α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩
= β0 |0⟩ ⊗

(
γ0 |0⟩+ γ1 |1⟩

)
+ β1 |1⟩ ⊗

(
δ0 |0⟩+ δ1 |1⟩

)
, (92)

where

β0 =
√
|α00|2 + |α01|2 β1 =

√
|α10|2 + |α11|2 (93)

γ0 = α00/β0 γ1 = α01/β0 (94)
δ0 = α10/β1 δ1 = α11/β1. (95)

From this, it’s clear that applying unitary U to the second qubit changes the state to

β0 |0⟩ ⊗ U
(
γ0 |0⟩+ γ1 |1⟩

)
+ β1 |1⟩ ⊗ U

(
δ0 |0⟩+ δ1 |1⟩

)
, (96)

which has no effect on the outcome probabilities of Alice’s subsequent measurement,
which are β2

0 and β2
1 .

Later on, in Part III: quantum information theory, we’ll learn a language that
enables us to express matters like this more clearly.

8.4 Weirdness of the Bell basis encoding
Suppose that we have two qubits which we want to use to encode two classical bits.
Let’s consider two different ways of encode the two classical bits: the computational
basis and the Bell basis.

ab Comp. basis
00 |00⟩
01 |01⟩
10 |10⟩
11 |11⟩

ab Bell basis
00 |00⟩+ |11⟩
01 |00⟩ − |11⟩
10 |01⟩+ |10⟩
11 |01⟩ − |10⟩

Now, if the two qubits are considered as one system, it doesn’t make much difference
which encoding you use, because you can always convert between these encodings by
a unitary operation. However, if the two qubits are localized: say, Alice possesses the
first qubit and Bob possesses the second qubit then there’s an interesting difference.

68

For the case of the computational basis encoding, Alice can determine the value
of the first bit a, but not the second bit, b. Also, Alice can flip the value of the first
bit (between 0 and 1) but cannot flip the second bit. She has complete control over
the first bit, but no access to the second bit.

On the other hand, for the case of the Bell basis encoding, Alice has no idea about
either bit (she cannot determine any information about the value of a nor the value
of b). However, Alice can flip either one of the two bits: she can flip the first bit (by
applying a Pauli X); she can flip the second bit by applying the Pauli Z); and she
can flip both bits, by applying both of these Paulis.

Informally, by using the Bell basis encoding, each party individually forgoes the
ability to read any of the bits being encoded, but gains the advantage of being able
to flip both bits by a local operation on just one of the qubits.

This weirdness of the Bell basis is the driving force behind superdense coding.

8.5 Measuring the control qubit of a controlled-U gate
In section 6.7, we saw that controlled-U gates can behave in remarkable ways, such
as changing the state of their control qubit. Here, we consider another phenomenon,
which arises when the control-qubit of a controlled-U gate is measured. It is summa-
rized by the equivalence of the following two circuit diagrams.

Figure 56: Measuring the control qubit before or after a controlled-U gate.

In the circuit on the left side, the first qubit is measured with respect to the compu-
tational basis (yielding outcome 0 or 1) which then serves as the (classical) control of
the subsequent controlled-U gate. In the circuit on the right side, the controlled-U
gate is performed first (on a fully quantum state) and then the first qubit is measured
in the computational basis.

Lemma 8.1 (deferred measurement lemma). For any 2-qubit input state, show that
the effect of the two procedures depicted in figure 56 is exactly the same.

Exercise 8.4 (fairly straightforward). Prove Lemma 8.1.

69

� A word of caution: the equivalence depicted in figure 56 is valid if the mea-
surement is with respect to the computational basis. If the measurement is with
respect to a different basis then the equivalence does not hold in general.

70

9 Isometries and exotic measurements
Although unitary operations are fundamental, there exist more general operations
that are clearly within the framework of quantum information processing. For ex-
ample, suppose that you receive a qubit as input and you produce two qubits as
output: the input qubit (unchanged); plus a second qubit that you yourself set to
state |0⟩. Clearly, this is an allowable operation. This mapping |ψ⟩ 7→ |ψ⟩ ⊗ |0⟩ can
be mathematically expressed by the matrix

1 0
0 0
0 1
0 0

 , (97)

where multiplying any 2-dimensional state vector |ψ⟩ by the matrix results in the
4-dimensional state vector |ψ⟩ ⊗ |0⟩. This is a special case of an isometry, defined in
the next subsection.

In subsequent subsections, we will see how we can use isometries to extend our
repertoire of measurements in interesting ways.

9.1 Isometries
Definition 9.1. An isometry is an m× n matrix V such that V ∗V = I.

Note that this only makes sense when m ≥ n, since otherwise V ∗V = I cannot
hold. In the special case where m = n, V is unitary; in the more general case, V is
characterized by the property that its columns are orthonormal.

Exercise 9.1 (isometries preserve inner products). Show that an m× n matrix V is
an isometry if and only if, for all n-dimensional states |ψ⟩ and |ϕ⟩, the inner product
between V |ψ⟩ and V |ϕ⟩ is the same as the inner product between |ψ⟩ and |ϕ⟩.

A very simple example of an isometry is
1 0
0 1
0 0

 , (98)

which maps any qubit in state α0 |0⟩+ α1 |1⟩ to a qutrit in state α0 |0⟩+ α1 |1⟩. This
embeds a 2-dimensional state into the first two dimensions of a 3-dimensional space.

71

Another, less trivial, example of an isometry is
2√
6 0

− 1√
6

1√
2

− 1√
6 −

1√
2

 . (99)

We’ll see an application of this partricular isometry later on.

9.2 Exotic measurements
Now is a good time to see the exotic measurements that I briefly alluded to at the
end of section 3.4, but have not yet explained.

First, to review, we have our basic measurement operation, which is with respect
to the computational basis states. Then we have a notion of measuring a qubit
with respect to any orthonormal basis, which can be simulated by preceding a basic
measurement with some unitary operation U . The more exotic measurements precede
the measurement in the computational basis by an isometry.

If you’re hearing about this kind of measurement process for the first time, you
might wonder what the point of doing this is. Is there anything special that these
exotic measurements can achieve? In fact they are very useful. In subsections 9.2.1
and 9.2.2, I’ll show you some interesting examples.

9.2.1 Trine state distinguishing

Recall the trine state measurement problem that arose within section 5.1.2, where the
goal is to distinguish among these three one-qubit states (with equal angles between
them):

|ϕ0⟩ = |0⟩ (100)
|ϕ1⟩ = −1

2 |0⟩+
√

3
2 |1⟩ (101)

|ϕ2⟩ = −1
2 |0⟩ −

√
3

2 |1⟩ . (102)

In the proof of Theorem 5.2, we saw how to use qubit measurements to correctly
determine the state with probability 7

12 . Also, it was mentioned that this can be
improved to 2

3 cos2(π12) ≈ 0.622 (left as Exercise 5.1). Here, we show how to use an
exotic measurement to further improve the success probability to 2

3 .

72

The idea is based on a nice geometric arrangement of vectors in three dimensions,
based on the visualization described in figures 57 and 58.

Figure 57: Visualization of trine state measurement: cut out these templates (or imagine doing so).

Figure 58: Visualization of trine state measurement: assemble the cutouts in 3-dimensions like this.

73

The angle of the red vectors is set so that, in the 3-dimensional arrangement of
figure 58, they are mutually orthogonal. This is achieved by setting

|ψk⟩ =
√

2
3 |ϕk⟩+ 1√

3 |2⟩ , (103)

for k ∈ {0, 1, 2}. It is straightforward to check that |ψ0⟩, |ψ1⟩, |ψ2⟩ are orthogonal:

⟨ψj|ψk⟩ = 2
3 ⟨ϕj|ϕk⟩+ 1

3 ⟨2|2⟩ = 2
3(−1

2) + 1
3 = 0, (104)

for all j ̸= k.
Our distinguishing procedure is to first map our 2-dimensional input state into a

3-dimensional space by performing the isometry
1 0
0 1
0 0

 (105)

and then measure with respect to the orthonormal basis |ψ0⟩, |ψ1⟩, |ψ2⟩. When the
input state is |ϕk⟩, the probability that the outcome is k is |⟨ψk|ϕk⟩|2 = 2

3 . Therefore,
this measurement correctly identifies among the states |ϕ0⟩, |ϕ1⟩, |ϕ2⟩ with success
probability 2

3 .
This procedure can be shown to be equivalent to performing the isometry

2√
6 0

− 1√
6

1√
2

− 1√
6 −

1√
2

 (106)

and then measuring with respect to the 3-dimensional computational basis.

A variant of the trine state measurement problem

Suppose that you receive (one copy) of a trine state that you are allowed to measure,
and after your measurement you are allowed to make two guesses at the state. Your
answer is deemed successful if one of your guesses is correct.

If we use the above measurement, then it can be worked out that the success
probability for this two-guess game will be 2

3 + 1
2 = 5

6 . But there is a different
measurement that leads to success probability 1 for this two-guess game.

Exercise 9.2. Give a different measurement procedure for a trine state, whose out-
come enables you to produce two guesses such that one of them is guaranteed to be
correct. (Hint: If you are stuck with this then you might consider playing around
with the cutouts from figures 57 and 58.)

74

9.2.2 Zero-error state distinguishing between |0⟩ and |+⟩

Here we consider a variant of the problem of distinguishing between the two states
|0⟩ and |+⟩. In section 4.1, we saw how to determine the state correctly with success
probability cos2(π/8) = 0.853..., but no higher. Note that this procedure gives the
wrong answer with probability sin2(π/8) = 0.146....

A zero-error procedure for state distinguishing never gives the wrong answer. But
that does not mean it always gives the right answer. This is because the procedure is
allowed to sometimes abstain from giving an answer. Formally, the potential outputs
of the distinguishing procedure are {0, 1, A}, where:

• 0 means a guess that the state is |0⟩.

• 1 means a guess that the state is |+⟩.

• A means “abstain” (in other words, no guess).
To be zero-error means that an output of 0 or 1 is always correct.

Now there’s a very trivial zero-error procedure: abstain all the time. But that’s
not interesting, because it never guesses the state correctly either. A nontrivial zero-
error procedure is one that sometimes does not abstain (and in such cases, the guess
has to be correct).

If we have a zero-error-procedure, it’s success probability on an input instance is
defined as the probability that it gives the right answer for that input.

Imagine a situation where you can make a guess about something. When you are
right you are rewarded; when you are wrong you are penalized. But you also have
the option of abstaining, in which case you get no reward and no penalty. Maybe
the penalty for a wrong guess is extremely high so you cannot afford to ever make a
wrong guess. But you’d still like to sometimes get the reward, so you don’t want to
always abstain.

What is the best zero-error success probability for distinguishing between |0⟩ and
|+⟩? The idea that follows is based on a nice geometric arrangement of vectors in
three dimensions. To see it, you can cut out the rectangle in figure 59 and fold it 90
degrees in the middle (or imagine doing so).

75

Figure 59: Template for a special geometric arrangement of vectors (fold 90 degrees in the middle).

The result will look like figure 60.

Figure 60: Special geometric arrangement of vectors.

Note that the states |0⟩, |1⟩, and |A⟩ are mutually orthogonal and the states |ψ0⟩
and |ψ1⟩ are of the form

|ψ0⟩ = sin(θ) |0⟩+ cos(θ) |A⟩ (107)
|ψ1⟩ = sin(θ) |1⟩+ cos(θ) |A⟩ . (108)

76

We set the angle θ so that ⟨ψ0|ψ1⟩ = cos2(θ) = 1√
2 = ⟨0|+⟩. This implies that

there exists an isometry that maps the 2-dimensional space span(|0⟩ , |+⟩) to the
2-dimensional subspace span(|ψ0⟩ , |ψ1⟩) of the 3-dimensional space. For now, I’m
appealing to your geometric intuition that such an isometry exists; however, I will
later make this isometry explicit.

After performing the isometry, our goal is to distinguish between |ψ0⟩ and |ψ1⟩
with zero-error. We do this by measuring with respect to the basis |0⟩, |1⟩, and |A⟩.
The outcome probabilities for the two cases, |ψ0⟩ and |ψ1⟩, can be deduced from
equations (107) and (108) as follows. For state |ψ0⟩, the outcome probabilities are

0 with probability sin2(θ)
1 with probability 0
A with probability cos2(θ),

(109)

and, for state |ψ1⟩, the outcome probabilities are
0 with probability 0
1 with probability sin2(θ)
A with probability cos2(θ).

(110)

It follows that this procedure is zero-error and the success probability in each case is
sin2(θ) = 1− 1√

2 = 0.292... (since we have set θ so that cos2(θ) = 1√
2 = ⟨ψ0|ψ1⟩).

I have shown that there exists an exotic measurement that performs the zero-error
state distinguishing with success probability 1− 1√

2 , but without explicitly specifying
the isometry that maps |0⟩ and |+⟩ (respectively) to |ψ0⟩ and |ψ1⟩ in figure 60. I will
now give an explicit isometry.

It’s convenient to start with a preliminary rotation by angle π/8 to the input state
(which is |0⟩ or |+⟩) so that the states to distinguish become

|ϕ0⟩ = cos(π/8) |0⟩+ sin(π/8) |1⟩ (111)
|ϕ1⟩ = sin(π/8) |0⟩+ cos(π/8) |1⟩ . (112)

For the states in this form, we can use the isometry

V =


1√
2

1√
2 − 1

1√
2 − 1 1√

2√√
2− 1

√√
2− 1

 . (113)

77

How do we know that this works? First of all, we can verify that V is an isometry,
by checking that its columns are orthonormal. And it is possible determine that V
results in success probability 1− 1√

2 by calculating that

|ψ0⟩ = V |ϕ0⟩ =
√

1− 1√
2 |0⟩+

√
1√
2 |A⟩ (114)

|ψ1⟩ = V |ϕ1⟩ =
√

1− 1√
2 |1⟩+

√
1√
2 |A⟩ , (115)

where the calculation makes use of the fact7 that

cos(π/8) = 1√
2

√
1 + 1√

2 (116)

sin(π/8) = 1√
2

√
1− 1√

2 . (117)

7Which follows from cos2(π/8) = 1+cos(π/4)
2 and sin2(π/8) = 1−cos(π/4)

2 .

78

10 Teleportation
Consider the problem where Alice wants to communicate an arbitrary qubit to Bob
by sending only a finite number of classical bits. Intuitively, one might expect that,
since there are a continuum of possible qubit state vectors, this is impossible to
accomplish. Teleportation violates this intuition, though it makes use of an extra
resource: entanglement between Alice and Bob.

10.1 Prelude to teleportation
Consider the scenario where Alice receives a qubit as input and the goal is for her
to convey it to Bob. Based on the qubit that Alice receives, she determines some
classical bits to send to Bob. When Bob receives these classical bits, he is supposed
to reconstruct Alice’s original state.

Figure 61: Communicating a qubit by sending classical bits.

If Alice knows the state α0 |0⟩ + α1 |1⟩ of the qubit she receives then she can send
bits that specify α0 and α1 within some precision. High precision would require
Alice sending many bits—and perfect precision would require infinitely many bits.
Moreover, the situation is even worse than that: Alice might not even know the
amplitudes of the qubit that she received. Maybe the state was set by a third party,
who gave the qubit to Alice (without telling her what the state is). Alice can at
best obtain one bit of information about the state by measuring it, and that process
destroys the state.

10.2 Teleportation scenario
In the teleportation scenario, Alice and Bob start with an additional resource, a
shared Bell state 1√

2 |00⟩+ 1√
2 |11⟩ and Alice sends Bob only two classical bits.

79

Figure 62: Teleportation scenario.

Note that the Bell state contains absolutely no information about Alice’s input state
α0 |0⟩+ α1 |1⟩. It is remarkable that, in this scenario, there is a protocol where Alice
sends two classical bits to Bob and he is able to perfectly reconstruct the state.

10.3 How teleportation works
We begin by considering the initial state of the system, where Alice is in possession
of her input qubit and the first qubit of the Bell state and Bob is in possession of the
second qubit of the Bell state. We can write this state as(

α0 |0⟩+α1 |1⟩
)
⊗
(

1√
2 |00⟩+ 1√

2 |11⟩
)

(118)

= 1√
2α0 |000⟩+ 1√

2α0 |011⟩+ 1√
2α1 |100⟩+ 1√

2α1 |111⟩ . (119)

It is clear that all the information about the state α0 |0⟩ + α1 |1⟩ resides with Alice.
It is interesting that we can write the state in Eq. (119) as

1√
2α0 |000⟩+ 1√

2α0 |011⟩+ 1√
2α1 |100⟩+ 1√

2α1 |111⟩

= 1
2

(
1√
2 |00⟩+ 1√

2 |11⟩
)
⊗
(
α0 |0⟩+ α1 |1⟩

)
+ 1

2

(
1√
2 |01⟩+ 1√

2 |10⟩
)
⊗
(
α0 |1⟩+ α1 |0⟩

)
+ 1

2

(
1√
2 |00⟩ − 1√

2 |11⟩
)
⊗
(
α0 |0⟩ − α1 |1⟩

)
+ 1

2

(
1√
2 |01⟩ − 1√

2 |10⟩
)
⊗
(
α0 |1⟩ − α1 |0⟩

)
. (120)

First, it is worth confirming that Eq. (120) is correct.

Exercise 10.1 (straightforward). Confirm Eq. (120). (Hint: expand the tensor prod-
ucts and observe that some of the terms cancel out.)

80

What is remarkable about the expression in Eq. (120) is that the coefficients α0 and
α1 appear to be on Bob’s side—and the teleportation protocol has not even started!
How did α0 and α1 migrate over to Bob’s side? In spite of Eq. (120), Bob’s qubit
contains absolutely no information about α0 |0⟩ + α1 |1⟩. We have to be careful not
to misinterpret the state in Eq. (120).

But Eq. (120) suggests an approach to make the teleportation protocol work:
what if Alice measures her qubits (the first two qubits) in the Bell basis? Then, for
each outcome, the residual state of Bob’s qubit is similar to α0 |0⟩+ α1 |1⟩. A simple
correction, based on Alice’s outcome, can make the state exactly α0 |0⟩+ α1 |1⟩.

The measurement in the Bell basis can be accomplished by Alice first applying
the 2-qubit unitary operation specified by this circuit.

Figure 63: Circuit that converts from the Bell basis to the computational basis.

This has the following effect on the Bell states

input output
|00⟩+ |11⟩ |00⟩
|00⟩ − |11⟩ |01⟩
|01⟩+ |10⟩ |10⟩
|01⟩ − |10⟩ |11⟩

Therefore this changes the 3-qubit state to

1
2 |00⟩ ⊗

(
α0 |0⟩+ α1 |1⟩

)
+ 1

2 |01⟩ ⊗
(
α0 |1⟩+ α1 |0⟩

)
+ 1

2 |10⟩ ⊗
(
α0 |0⟩ − α1 |1⟩

)
+ 1

2 |11⟩ ⊗
(
α0 |1⟩ − α1 |0⟩

)
. (121)

Now, if Alice measures the first two qubits of this state in the computational basis

81

then the result (Alice’s two classical bits and the residual state in Bob’s possession) is

00, α0 |0⟩+ α1 |1⟩ with probability 1
4

01, α0 |1⟩+ α1 |0⟩ with probability 1
4

10, α0 |0⟩ − α1 |1⟩ with probability 1
4

11, α0 |1⟩ − α1 |0⟩ with probability 1
4 .

(122)

At this point, Bob does not yet have the correct state (expect in the case of outcome
00). But, if Alice sends Bob the two bits of her measurement outcome then Bob can
apply an appropriate operation to “correct” his state.

Here’s what Bob does after receiving the two classical bits ab from Alice:
1. If b = 1 apply X.

2. If a = 1 apply Z.
The resulting state on Bob’s side is for each case is

00, α0 |0⟩+ α1 |1⟩
01, X

(
α0 |1⟩+ α1 |0⟩

)
= α0 |0⟩+ α1 |1⟩

10, Z
(
α0 |0⟩ − α1 |1⟩

)
= α0 |0⟩+ α1 |1⟩

11, ZX
(
α0 |1⟩ − α1 |0⟩

)
= α0 |0⟩+ α1 |1⟩.

(123)

This completes the description of the teleportation protocol.
The protocol can be summarized by the following circuit. Alice’s qubits and bits

Figure 64: The teleportation protocol summarized in one circuit.

are on top and Bob’s are on the bottom. The slanted classical wires denote that the
two classical bits resulting from Alice’s measurements being shifted down from Alice
towards Bob.

Exercise 10.2 (straightforward). Work through the circuit diagram in figure 64 and
confirm that it works.

82

It is natural to ask: What happens to Alice’s copy of her state? Is Alice’s copy
preserved? The answer is that, since Alice measures her two qubits, all the quantum
information in her possession is lost. So, while Bob ends up with a copy of the state
α0 |0⟩+ α1 |1⟩, Alice loses her copy of the state in the teleportation process.

83

11 Can quantum states be copied?
In the teleportation protocol, Alice loses her copy while Bob obtains a copy. Can this
protocol be modified so that Alice’s copy is not lost? Or is there some other way to
produce a second copy of a quantum state?

11.1 A classical bit copier
Classical information is easy to copy and we do it all the time (say, when we back up
our data).

Figure 65: Classical bit copying (where b ∈ {0, 1}).

A simple device that copies one bit could be of this form.

Figure 66: A circuit diagram for a bit copying device.

The first input bit is the data to be copied. The second input bit is always 0 (think
of it as analogous to the blank sheet of paper that goes into a photocopier).

How do we implement such a device? It is not hard to see that a CNOT gate (a
classical version of this gate) will perform the copying operation.

Figure 67: A classical version of the CNOT gate is a bit copier (where b ∈ {0, 1}).

84

11.2 A qubit copier?
A qubit copier would perform the following transformation.

Figure 68: A hypothetical qubit copier.

If such a device existed it would be expressible in a form similar to the following.

Figure 69: Form of a hypothetical qubit copier.

Does there exist a unitary operation that performs this for any input state |ψ⟩?
Our first candidate might be the quantum CNOT gate. Does this work?

Figure 70: A candidate for a qubit copier.

The CNOT gate actually works correctly for the input states |0⟩ and |1⟩.

Figure 71: CNOT copies the computational basis states correctly.

However, the CNOT gate fails to correctly copy the state |+⟩ = 1√
2 |0⟩+ 1√

2 |1⟩.

Figure 72: CNOT fails to copy the |+⟩ state.

85

The output of the gate is 1√
2 |00⟩+ 1√

2 |11⟩, whereas two copies of the |+⟩ state is the
state |+⟩ ⊗ |+⟩ = 1

2 |00⟩+ 1
2 |01⟩+ 1

2 |10⟩+ 1
2 |11⟩.

Theorem 11.1. There does not exist a 2-qubit unitary that implements the quantum
copier in figure 69.

Proof. If unitary U correctly copies for the states |0⟩ and |1⟩ then

U |00⟩ = |00⟩ (124)
U |10⟩ = |11⟩ , (125)

It follows by linearity that

U |+⟩ |0⟩ = 1√
2 |00⟩+ 1√

2 |11⟩ ≠ |+⟩ |+⟩ , (126)

which means that U does not correctly copy for the state |+⟩. ■

Theorem 11.1 doesn’t quite settle the matter of whether quantum information can
be copied, because figure 69 is not the most general possible form that a hypothetical
qubit copier can take. A more general form is the following.

Figure 73: A more general form of a hypothetical quantum copier.

Think of the first qubit as the data to be copied, the second qubit as the analogue of
the blank sheet of paper that goes into a photocopier, and the third register as the
analogue of the toner cartridge, which is discarded at the end of the process. The
notation for the output state of the third register |ϕψ⟩ is intended to indicate that it
is allowed to be a function of the data |ψ⟩. In fact, this more general framework does
not help.

Theorem 11.2. There does not exist a 2-qubit unitary that implements the quantum
copier in figure 73.

Exercise 11.1 (slightly challenging). Prove Theorem 11.2.

86

For completeness, we end this section by stating the general No-cloning Theorem
for d-dimensional quantum states.

Theorem 11.3 (No-cloning Theorem for d-dimensional states). For arbitrary dimen-
sion d ≥ 2, there does not exist an ancilla dimension d′ ≥ 2 and a unitary operation U
that acts on two d-ary quantum states and one d′-ary state such that, for all |ψ⟩ ∈ Cd,

U |ψ⟩ |0⟩ |0⟩ = U |ψ⟩ |ψ⟩ |ϕψ⟩ , (127)

where |ϕψ⟩ can be an arbitrary state that depends on |ψ⟩.

87

12 Can quantum states be stored redundantly?
The No-cloning Theorem (Theorem 11.3) suggests that there can be no redundancy
in quantum states, in the sense that it is not possible to construct a “back-up copy”
of an arbitrary quantum state. If it were possible to construct such a copy then the
data would be recoverable if at most one of the two versions were lost.

Figure 74: A hypothetical duplicate copy enables data to be recovered from the loss of one copy.

However, more subtle forms of redundancy are possible. Here, I will show how
to do “ 3⁄2-copying,” which can be thought of as producing three “half-copies” of an

Figure 75: 3⁄2-copier (encoder part).

arbitrary quantum state, so that the state can be reconstructed from any two of the
three half-copies. This is redundancy in the sense that the data can be recovered if
any one of the three half-copies is lost.

Figure 76: Data can be recovered from any two of the three “half-copies”.

It turns out that there’s a particularly nice way of doing this for the case of trits.
In calling this “3⁄2-copying,” I’m using playful language. The common terminology
for constructions along these lines is erasure codes, and the specific construction in
the next subsection comes from quantum secret sharing.

88

12.1 3⁄2-copying (via secret sharing)
Here we show how to “encode” a qutrit into three qutrits in a manner where the
qutrit can be recovered from any two of the three qutrits of the encoding.

An arbitrary qutrit in state α0 |0⟩ + α1 |1⟩ + α2 |2⟩ is encoded in three qutrits as
the state

α0
(
|000⟩+ |111⟩+ |222⟩

)
+α1

(
|012⟩+ |120⟩+ |201⟩

)
+α2

(
|021⟩+ |102⟩+ |210⟩

)
. (128)

How can we implement such an encoding in terms of valid quantum operations, such
as unitary operations? It can be done, but I will show you how later on.

For now, note the symmetry of the state in Eq. (128) under cyclic shifts. A cyclic
shift by one is the rearrangement of qutrits where the first qutrit is moved to the
position of the second qutrit; the second qutrit is moved to the position of the third
qutrit; and the third qutrit is moved to the position of the first qutrit. A cyclic shift
by two is a composition of two cyclic shifts by one. Figure 77 is circuit notation for
such cyclic shifts. You can check by inspection that the state in Eq. (128) does not

Figure 77: Circuits diagrams for cyclic shift by one (left) and cyclic shift by two (right).

change when such cyclic shifts are performed.
To describe the recovery circuits (which enable the original qutrit state to be

recovered from any two of the three qutrits) we first introduce a qutrit analogue of
the CNOT gate, which we call the ADD3 gate, which maps |a⟩ |b⟩ to |a⟩ |b+ a mod 3⟩
(for all a, b ∈ {0, 1, 2}). This gate is denoted on qutrit circuits like the CNOT gate.

Figure 78: Circuit notation for the ADD3 gate, a qutrit analogue of the CNOT gate.

Now suppose that we are just given the first two qutrits of the encoded state in
Eq. (128) (i.e., the third qutrit is lost). The circuit in figure 79 recovers the original

89

data in the position the first qutrit. The validity of this circuit follows from setting

Figure 79: Circuit that recovers the original qutrit from just the first two “half-copies”.

the input state to the encoding of Eq. (128) and then tracing through the execution
of the circuit. Let’s do that. After the first ADD3 gate, the state becomes

α0
(
|000⟩+ |121⟩+ |212⟩

)
+α1

(
|012⟩+ |100⟩+ |221⟩

)
+α2

(
|021⟩+ |112⟩+ |200⟩

)
, (129)

and after the second ADD3 gate, the state becomes

α0
(
|000⟩+ |021⟩+ |012⟩

)
+α1

(
|112⟩+ |100⟩+ |121⟩

)
+α2

(
|221⟩+ |212⟩+ |200⟩

)
(130)

=
(
α0 |0⟩+ α1 |1⟩+ α2 |2⟩

)
⊗
(
|00⟩+ |12⟩+ |21⟩

)
. (131)

Also, notice that the two gates of the circuit only act on the first two qutrits; the
third qutrit isn’t needed (the third wire in figure 79 is a dashed-line to highlight this).

Now, consider the case where the second qutrit is the lost one. Since the cyclic
shift circuits in figure 77 do not change the encoded state, we can apply the cyclic
shift by one prior to decoding, which has the effect of moving the position of the
missing qutrit from the second to the third position, as shown in figure 80, where the
data is recovered from the first and third qutrit.

Figure 80: Circuit that recovers the original qutrit from just the first and third “half-copies”.

90

The case where the first qutrit is the missing one is similar, where we apply a
cyclic shift by two.

Finally, we address how the encoding procedure can be implemented. First note
that the inverse of the recovery circuit in figure 79 is almost the encoding circuit, as it
maps

(
α0 |0⟩+α1 |1⟩+α2 |2⟩

)
⊗
(

1√
3 |00⟩+ 1√

3 |12⟩+ 1√
3 |21⟩

)
to the state of Eq. (128).

We need only add some gates to the beginning of the inverse of the circuit of figure 79
that map the two ancilla qutrits from state |00⟩ to state 1√

3 |00⟩ + 1√
3 |12⟩ + 1√

3 |21⟩.
A circuit along these lines is in figure 81, where the gates are defined below.

Figure 81: Circuit that produces the encoding state of Eq. (128).

The gate U is a 3× 3 unitary operation that maps |0⟩ to 1√
3 |0⟩+

1√
3 |1⟩+

1√
3 |2⟩.

An example of such a U is

U =


1√
3

1√
6

1√
2

1√
3

1√
6 −

1√
2

1√
3 −

2√
6 0

 (132)

(another example is the Fourier transform modulo 3, defined in section 19, Eq. (171)).
The other gate appearing in figure 81 is not the ADD3 gate (notice that it looks

slightly different). Rather, it is the inverse of the ADD3 gate, defined as follows.

Figure 82: Circuit notation for the inverse of the ADD3 gate.

This completes the description of 3⁄2-copying a qutrit. What about states of di-
mensions other than 3? A construction along these lines exists for certain higher
dimensions, such as prime numbers larger than 3; however, it does not work for
dimension 2.

If we want to perform 3⁄2-copying for a qubit, we can, as a first step, embed the
qubit α0 |0⟩+α1 |1⟩ isometrically into a qutrit and then produce three half-copies that

91

are each qutrits. The decoding will result in a qutrit in state α0 |0⟩ + α1 |1⟩ (where
α2 = 0), which can, as a formality, be transformed back to a qubit by a projective
measurement (specifically the projective measurement on the right side of figure 52).

12.2 More general forms of quantum redundancy
3⁄2-copying is an example of a very simple type of quantum error-correcting code.
The subject of quantum error-correcting codes, which can protect data against var-
ious types of errors, is explained further in sections 35 and 36 of Part III: quantum
information theory.

The above construction of 3⁄2-copying appeared in the context of quantum secret
sharing,8 where a key property (that I don’t explain here) is that the individual qutrits
contain no information whatsoever about the data α0 |0⟩+ α1 |1⟩+ α2 |2⟩.

8More about quantum secret sharing is at https://arxiv.org/abs/quant-ph/9901025.

92

https://arxiv.org/abs/quant-ph/9901025

Quantum Information Processing Richard Cleve

Part II

Quantum algorithms

93

13 Classical and quantum algorithms as circuits
In this section, we’ll see see a basic picture of classical and quantum algorithms as
circuits. We’ll consider simulations between classical and quantum circuits and we’ll
see the Toffoli gate.

13.1 Classical logic gates
Recall that the NOT gate takes one bit as input and outputs the logical negation of
the bit.

a ¬a
0 1
1 0

Figure 83: Table of input/output values of the NOT gate (symbolically denoted as ¬).

Here is the traditional notation for the gate that’s used in electrical engineering logic
diagrams, followed by more recent alternative ways of denoting the gate.

Figure 84: Three notations for the NOT gate.

The logical AND gate takes two input bits and produces one output bit, which is 1 if
and only if both input bits are 1.

ab a ∧ b
00 0
01 0
10 0
11 1

Figure 85: Table of input/output values of the AND gate (symbolically denoted as ∧).

94

Here is the traditional electrical engineering notation for the AND gate followed by
alternate notation.

Figure 86: Two notations for the AND gate.

The fan-out operation is is often implicitly used in circuit diagrams. It’s essentially a
copying operation, whose output bits are multiple copies of its input bit. Recall that
it is possible to copy classical information.

Figure 87: Notation for fan-out: of an input bit (left), and of the output of a gate (right).

What about the logical OR gate and the XOR gate? These are defined as

ab a ∨ b
00 0
01 1
10 1
11 1

ab a⊕ b
00 0
01 1
10 1
11 0

Figure 88: Input/output values of the OR and XOR gates (denoted as ∨ and ⊕, respectively).

We don’t need them as our fundamental operations because they can be simulated
by ∧ and ∨ gates. For example, OR can be simuated by three NOT gates and one
AND gate using DeMorgan’s Law

a ∨ b = ¬(¬a ∧ ¬b). (133)

We can also simulate an XOR gate in terms of AND and NOT gates, which I leave as
an exercise.

Exercise 13.1. Show that an XOR gate can be simulated by AND and NOT gates.

95

13.2 Computing the majority of a string of bits
Every binary string of odd length has either more zeroes than ones or more ones than
zeroes. Define the majority of an odd-length string as the most common value. Here’s
a table of values of the majority function for 3-bit strings, denoted MAJ3.

a MAJ3(a)
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

Figure 89: Table of input/output values of the MAJ3 function.

Here’s a circuit that computes this majority function for 3-bit strings.

Figure 90: Classical circuit computing the majority value of three bits.

The input bits a1, a2, a3 are on the left, information flows from left to right, and the
output bit is b = MAJ3(a1, a2, a3). The circuit is based on this formula

MAJ3(a1, a2, a3) = (a1 ∧ a2) ∨ (a1 ∧ a3) ∨ (a2 ∧ a3) , (134)

where the OR gates are simulated by NOT and AND gates along the lines of Eq. (133).
The total number of OR and NOT gates is nine (and there are three implicit fan-out
gates at the inputs).

Can you construct a classical circuit for MAJn(a1, a2, . . . , an), the majority value
of (a1, a2, . . . , an), for odd n > 3? What is the gate count of your construction as a
function of n? Does it grow polynomially or exponentially with respect to n?

96

Exercise 13.2 (level of difficulty depends on your prior familiarity with logic cir-
cuits). Construct a classical circuit that computes MAJn(a1, a2, . . . , an) for arbitrarily
large odd n using a number of gates that scales polynomially with respect to n.

13.3 Classical algorithms as logic circuits
We can represent algorithms as logic circuits along the lines of this diagram.

Figure 91: Generic form of a classical circuit (information flows from left to right).

The inputs are on the left, time flows left to right and the outputs are on the right.
Classical computer algorithms are usually described in high level languages, but they
implicitly represent many low-level logic operations, like this circuit.

A reasonable overall cost measure is the number of gates. There are other measures
that we may care about such as the depth, which is the length of the longest path
from an input to an output. Or the width, which is the maximum number of gates at
any level, assuming that the gates are arranged in levels. But, to keep things simple,
let’s use the gate count as our main cost measure.

The number of gates depends on what the elementary operations are. We’ll take
these to be AND and NOT gates (and let’s not count the fan-out operations). What’s
important is that a gate does a constant amount of computational work. If we allowed
arbitrary gates then any circuit could be reduced to just one “supergate,” but the
cost of that one gate would not be very meaningful, since we expect large gates to be
expensive to implement.

13.4 Multiplication problem and factoring problem
Let’s consider the multiplication problem where one is given two n-bit binary integers
as input and the output is their product (a 2n-bit integer). For example, for inputs

97

101 (5 in binary) and 111 (7 in binary), the output should be 100011 (35 in binary)
because the product of 5 and 7 is 35.

Think of the number of bits n as being quite large, larger than the number of
bits of the arithmetic logic unit of your computer. Do you know of an algorithm
for performing this? I believe that you do know such an algorithm, because you
learned one in grade school. In principle, you could multiply two numbers consisting
of thousands of digits by pencil and paper using that method. And it can be coded up
as an algorithm (commonly referred to as the grade school multiplication algorithm).
How efficient is this algorithm? Assuming you learned the algorithm that I did,
its running time scales quadratically in its input size. By quadratic, I mean some
constant times n2 (for sufficiently large n).

The constant depends on the exact gate set that you use and we’ll often use the
big-oh notation to suppress that.

Definition 13.1 (big-oh notation). For f, g : N→ N, f(n) ∈ O(g(n)) if f(n) ≤ cg(n)
for some constant c > 0 (and for sufficiently large n).

Of course if we want to implement an algorithm then we do care about what the
constant multiple is. But if we’re looking at things theoretically then the big-oh
notation helps reduce clutter and focus attention on asymptotic growth rates, which
tend to be more important for large n.

There are more efficient algorithms than the grade school method. The current
record is O(n log n) which is quite good. (There’s a rich history of multiplication
algorithms that evolved from O(n2) to O(n1.585) to O(n log n log log n) to O(n log n),
but we won’t get into that here.)

Now, let’s look at the factoring problem, which can be roughly thought of as the
inverse of the multiplication problem. The input is an n-bit number and the output
is its prime factors. For example, for input 100011, the outputs are 101 and 111 (the
prime factors of 35).

You probably also learned this algorithm in grade school for factoring numbers:
First check if the number is divisible by 2. Then check for divisibility by 3. You can
skip 4, since that’s a multiple of 2. Then check 5, skip 6, check 7, and so on. You
can stop once you get to the square root of the number because if you haven’t found
a divisor by then, the number must be prime. To get a feel for this, try factoring the
number 91 (or show that it’s prime).

How expensive is this computationally? For large n, there are lots of divisors to
check, exponentially many. The cost is exponential in n, namely O(exp(n)). There are

98

more sophisticated algorithms than this method. The best currently-known classical
algorithm for factoring is the so-called number field sieve algorithm, which scales
exponentially in the cube root of n (to be more precise, exp(n1/3 log2/3(n))). Since
the cube root is in the exponent, this is still essentially exponential. There is no
currently-known classical algorithm for factoring whose cost scales polynomially with
respect to n.

In fact, the presumed difficulty of factoring is the basis of the security of many
cryptosystems.

13.5 Quantum algorithms as quantum circuits
Now let’s consider quantum circuits.

Figure 92: Generic form of a quantum circuit.

The input data is on the left, as computational basis states. Data flows from left to
right as a series of unitary gates. Then measurement gates occur at the end, which
yields the output of the computation.

Again, we can takes various cost measures for quantum circuits, such as the num-
ber of gates, the depth, or the width. Let’s focus on the number of gates. As with
classical circuits, we need a notion of what an elementary gate is. For now, let’s
consider the elementary gates to be the set of all 1-qubit and 2-qubit gates. We can
consider simpler gate sets later on.

Consider the factoring problem again. Peter Shor’s famous factoring algorithm can
be expressed as a quantum circuit for factoring that consists of O(n2 log n) gates—a
polynomially bounded number of gates! An efficient implementation of this algo-
rithm would break several cryptosystems, whose security is based in the presumed
computational hardness of factoring.

99

14 Simulations between quantum and classical
It is natural to ask how the classical model of computation compares with the quantum
model of computation. Can quantum circuits simulate classical circuits? Can classical
circuits simulate quantum circuits? How efficient are the simulations?

For quantum circuits to simulate classical circuits, the Pauli X gate (that maps
|0⟩ to |1⟩ and |1⟩ to |0⟩ can be viewed as a NOT gate, but what quantum gate
corresponds to the AND gate? None of the operations that we’ve considered so far
has any resemblance to the AND gate. The Toffoli gate makes such a connection.

14.1 The Toffoli gate
I’d like to show you a 3-qubit gate called the Toffoli gate, which will be useful for
simulating AND gates. It’s denoted this way, like a CNOT gate, but with an additional
control qubit.

Figure 93: Toffoli gate acting on computational basis states (a, b, c ∈ {0, 1}).

On computational basis states, it flips the third qubit if and only if both of the first
two qubits are in state |1⟩; otherwise it does nothing. The 8 × 8 unitary matrix for
this gate is 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (135)

For arbitrary 3-qubit states, that are not necessarily computational basis states, the
action of the gate on the state is to multiply the state vector by this 8× 8 matrix.

100

The Toffoli gate is sometimes called the controlled-controlled-NOT gate. This
makes sense, because the Toffoli gate is a controlled-CNOT gate.

Figure 94: Toffoli gate is a controlled-CNOT gate (also a controlled-controlled-NOT gate).

14.2 Quantum circuits simulating classical circuits
Theorem 14.1. Any classical circuit of size s can be simulated by a quantum circuit
of size O(s), where the gates used are Pauli X, CNOT, and Toffoli.

Proof. We use Toffoli gates to simulate AND gates as illustrated in figure 95.

Figure 95: Using a Toffoli gate to simulate a classical AND gate.

Bits are represented as computational basis states in the natural way (bits a, b ∈ {0, 1}
are represented by |a⟩ and |b⟩). To compute the AND of a and b, a third ancilla qubit
in state |0⟩ is added and then a Toffoli gate is applied as shown in figure 95. This
causes the state of the ancilla qubit to become |a ∧ b⟩. The first two qubits can be
discarded, or just ignored for the rest of the computation. That’s how an AND gate
can be simulated.

To simulate NOT gates, we can use the Pauli X gate.

Figure 96: Using an X-gate to simulate a classical NOT gate.

Finally, we can explicitly simulate a fan-out gate by adding an ancilla in state |0⟩
and apply a CNOT gate, as in figure 97.

101

Figure 97: Using a CNOT gate to simulate a classical fan-out gate.

■

Remember that circuit in figure 90 for computing the majority of 3 bits? Here’s a
quantum circuit that simulates that circuit using Toffoli gates for AND and X gates
for NOT.

Figure 98: Computing the majority of three bits using Toffoli and X gates.

The output is the last qubit. (Note how this quantum circuit does not need to
explicitly simulate the fan-out gates of the inputs.)

You may have noticed that we defined quantum circuits to be in terms of 1-qubit
and 2-qubit gates, but our simulation of classical circuits used 3-qubit gates: the
Toffoli gate. We can remedy this by simulating each Toffoli gate by a series 2-qubit
gates. I’m going to show how to do this.

To start, we will make use of a 2× 2 unitary matrix with the property that if you
square it you get the Pauli X. Since X is essentially the NOT gate, this matrix is
sometimes referred to as a “square root of NOT.” Note that, in classical information,
there is no square root of NOT, so the quantum square root of NOT can be regarded
as a curiosity. Let’s refer to this matrix as V .
Exercise 14.1 (straightforward). Find a 2× 2 unitary matrix V such that V 2 = X.
Henceforth, I’m going to assume that we have such a matrix V in hand. From this,
we can define a controlled-V gate. Also, we can define a controlled-V ∗ gate. Now,
consider the following circuit, consisting of 2-qubit gates.

102

Figure 99: Simulating a Toffoli gate in terms of 2-qubit gates.

I claim that it computes the Toffoli gate. How can we verify this?
Let’s discuss two possible approaches. The first approach has the advantage that

it’s completely mechanical. No creative idea is needed to carry it out. What you can
do is work out the 8 × 8 matrix corresponding to each gate and then multiply9 the
five matrices and see if the product is the matrix in Eq. (135) for the Toffoli gate.

A second approach is to try to find shortcuts based on the logic of the gates, to
avoid tedious calculations. In this case, note that it it sufficient to verify that the
circuits are equivalent in the case where the first two qubits are in computational
basis states |00⟩, |01⟩, |10⟩, |11⟩.

Consider the |00⟩ case. In this case, none of the controlled-gates have any effect,
so the state on the third qubit doesn’t change—which is consistent with what the
Toffoli gate does in this case. What about the |01⟩ case? Then none of the gates
controlled by the first qubit have any effect, so the circuit reduces to a controlled-V
followed by a controlled-V ∗, acting on the second and third qubits, which does not
change the state (since V V ∗ = I). I’ll leave it to you to analyze the other two cases.

Exercise 14.2. Continue the analysis of the correctness of the circuit in figure 99 for
the cases where the control qubits are in state |10⟩ and in state |11⟩.

This kind of approach, when it can be made to work, has two advantages. First, it
avoids a tedious calculation. Second, thinking about it this way, we can gain some
intuition about why the circuit works. In the future, if you need to design a quantum
circuit to achieve something, such intuition can be helpful.

Exercise 14.3 (Challenging). Show how to simulate a Toffoli gate using only CNOT
gates and 1-qubit gates. Thus, no controlled-U gates for U ̸= X are allowed.

Some classical algorithms make use of random number generators and we have
not captured this in our definition of classical circuits. Say we allow our classical

9A word of caution: gates go from left to right, but the corresponding matrix products go from
right to left (because we multiply vectors on the left by matrices).

103

algorithms to access random bits, that are zero with probability 1
2 and one with

probability 1
2 . Can we simulate such random bits with quantum circuits? This is

actually quite easy, since constructing a |+⟩ state and measuring it yields a random
bit.

Figure 100: Using a Hadamard and a measurement gate to generate a classical random bit.

But this entails an intermediate measurement. Our quantum circuits will not look like
the ones we defined earlier (of the form of figure 92), where all the measurements are
at the end. Can we simulate random bits without the intermediate measurements?
The answer is yes, by the following construction.

Figure 101: Simulating random bits without using measurements.

Instead of measuring the qubit in the |+⟩ state, we apply a CNOT gate to a target
qubit (an ancilla) in state |0⟩. Then we ignore that ancilla qubit for the rest of
the computation. The final probabilities when the circuit is measured at the end
will be exactly the same as if a random bit had been inserted at that place in the
computation. I will leave this as an exercise for you to prove that this works.

Using our decomposition of the Toffoli gate into 2-qubit gates and our results about
simulating classical randomness, we can strengthen Theorem 14.1 to the following.

Corollary 14.1. Any classical probabilistic circuit of size s can be simulated by a
quantum circuit of size O(s), consisting of 1-qubit and 2-qubit gates.

14.3 Classical circuits simulating quantum circuits
Classical circuits can simulate quantum circuits but the only known constructions
have exponential overhead.

Theorem 14.2. A quantum circuit of size s acting on n qubits can be simulated by
a classical circuit of size O(sn22n).

104

Proof. The idea of the simulation is quite simple. An n-qubit state is a 2n-dimensional
vector ∑x∈{0,1}n αx |x⟩. Store the 2n in an array of size 2n, each with n-bits precision
(which means accuracy within 2−n).

α000

α001

α010
...

α111

Figure 102: 2n-dimensional array storing the amplitudes of state
∑

x∈{0,1}n

αx |x⟩.

The initial state is a computational basis state. Each gate corresponds to a 2n × 2n
matrix and the effect of the gate is to multiply the state vector by that matrix. In fact
that matrix will be sparse for 1-qubit gates and 2-qubit gates, with only a constant
number of nonzero entries for each row and each column. Therefore, there are a
constant number of arithmetic operations per entry of the array. Let’s allow O(n2)
elementary gates for each such arithmetic operation10 (on n-bit precision numbers).
The simulation cost is O(n22n) for each gate in the circuit. We multiply that by the
number of gates in the quantum circuit s to get a cost of O(sn22n). That’s the gate
cost to get the final state of the computation, just before the measurement.

What about the measurements? For this, we compute the absolute value squared
of each entry of the array. Again, that’s 2n arithmetic operations. At this point, the
entries in the array are the probabilities after the measurement.

The output of the quantum circuit is not the probabilities; it’s a sample according
to the distribution. How do we generate that sample? First we sample the first bit
of the output, the probability that that this bit is 0 is the sum of the first half of
the entries of the array; the probability that bit is 1 is the sum of the second half.
Once we have the first bit, we can use a similar approach for the second bit, using
conditional probabilities, conditioned on the value of the first bit, and so on for the
other bits. This also costs O(n22n) elementary classical gates. ■

Note that if we take the quantum circuit that results from Shor’s algorithm and
then simulate it by a classical circuit then simulate that quantum circuit by a classical

10Using simple grade-school algorithms for addition and multiplication.

105

circuit, the result is not very efficient. It’s exponential and in fact it’s worse than the
best currently-known classical algorithm for factoring.

If we view the aforementioned simulation in the usual high-level language of algo-
rithms, it is exponential space in addition to exponential time (because it stores the
huge array). In fact there’s a way to reduce the storage space to polynomial—while
maintaining exponential time.

Exercise 14.4 (challenge). Show how to do the above simulation as an algorithm
using only a polynomial amount of space (memory).

106

15 Computational complexity classes in brief
In theoretical computer science, there are various taxonomies of computational prob-
lems according to their computational difficulty. I’ll briefly show you a few of these
and how the power of quantum computers fits in within them.

Consider all binary functions over the set of all binary strings (of the form f :
{0, 1}∗ → {0, 1}, where ∗ denotes the Kleene closure11 in this context). The input
is a binary string of some length n, where n can be anything. And the output is
one bit. These are sometimes called decision problems since the answer is a binary
decision, 0 or 1, yes or no, accept or reject. This is a common convention for reasons of
simplicity. Most problems that are not naturally decision problems can be reworked
to be expressed as decision problems.

P (polynomial time)
Solvable by O(nc)-size classical circuits12 (for some constant c).

BPP (bounded-error probabilistic polynomial time)
Solvable by O(nc)-size probabilistic classical circuits whose worst-case error
probability13 is ≤ 1

4 .

BQP (bounded-error quantum polynomial time)
Solvable by O(nc)-size quantum circuits with worst-case error probability ≤ 1

4 .

EXP (exponential time)
Solvable by O(2nc)-size classical circuits.

The following containments among these complexity classes are known:

P ⊆ BPP ⊆ BQP ⊆ EXP. (136)

11More specifically, {0, 1}∗ = ∅ ∪ {0, 1} ∪ {0, 1}2 ∪ {0, 1}3 ∪ · · · .
12Technically, we require uniform circuit families, one for each input size n, with an algorithmic

way of mapping n to the circuit for size n.
13There is some arbitrariness in the error bound 1

4 . Any polynomial-size circuit achieving this can
be converted into another circuit whose error probability is ≤ ϵ by repeating the process log(1/ϵ)
times and taking the majority value. Using 1

4 is simple, though any constant below 1
2 would work.

107

16 The black-box model
In the next few subsequent sections, we are going to see some simple quantum algo-
rithms in a framework called the black-box model. First, in this section, I’ll explain
this computational model.

16.1 Classical black-box queries
Imagine that f is some function that is unknown to us and we’re given a device that
enables us to evaluate f on any particular input, of our choosing, and that this is
our only way of acquiring information about f . Such a device is commonly called a
black-box for f .

Figure 103: A gate performing an f -query.

If we want to evaluate the function on some input x, we insert x into the black-box
and then the value of f(x) pops out, for us to see. We call this process of evaluating
the function at an input an f -query.

Now, suppose that we want to acquire some specific information about a func-
tion f , and that we want to do this with as few queries as possible. We can think
of this as a game, where we want to know something about an unknown function f ,
and we’re only allowed to ask questions like “what’s the value of f at point x?” for
any x of our choosing. How many such questions do we have to ask?

One example that illustrates the general idea is polynomial interpolation. Here,
one is given a black-box computing an unknown polynomial of degree up to d, and the
goal is to determine which polynomial it is. At how many points does the polynomial
have to be evaluated to accomplish this?

Figure 104: Interpolating linear and quadratic functions with as few queries as possible.

108

If f : R → R is an unknown linear function then one evaluation is insufficient for
determining what f is; however, two queries suffice (linear interpolation). If f : R→
R is quadratic then it turns out that three evaluations are necessary and sufficient.
In general, if f is a polynomial with degree up to d then the number of queries that
are necessary and sufficient is d+ 1.

We will focus our attention on functions over finite domains instead of R, such
as {0, 1}n. Let us begin by considering the simple case where we have an unknown
f : {0, 1} → {0, 1}. There are only four such functions and here are the tables of
values for each of them:

x f(x)
0 0
1 0

x f(x)
0 1
1 1

x f(x)
0 0
1 1

x f(x)
0 1
1 0

Figure 105: The four functions f : {0, 1} → {0, 1}.

Suppose that we’re given a black-box for such a function, but we don’t know of the
four functions it is.

Suppose that our goal is to determine whether:
• f(0) = f(1) (the first two cases in figure 105); or

• f(0) ̸= f(1) (the last two cases in figure 105).
To be clear, we are not required to determine which of the four functions f is; just
whether it’s among the first two or the last two. How many queries do we need
to accomplish this? Please think about this. We will get back to this question in
section 17.1.

16.2 Quantum black-box queries
A classical query is along the lines of figure 103. We can set the input to any x

in the domain of f . Then we receive as output the value of f(x). Does it make
sense to define a quantum query? Let’s keep our attention on the simple case where
f : {0, 1} → {0, 1} (figure 105); we will consider more general cases later.

I first want to show you a näıve first attempt at defining a quantum query that
does not work. The classical query maps bits to bits. Define a quantum query
(mapping qubits to qubits) that correspondingly maps computational basis states to
computational basis states, as in figure 106.

109

Figure 106: Näıve attempt to define a quantum query—that doesn’t work!

For each of the four functions f : {0, 1} → {0, 1} in figure 105, here are the corre-
sponding mappings on computational basis states.

|a⟩ |f(a)⟩
|0⟩ |0⟩
|1⟩ |0⟩

|a⟩ |f(a)⟩
|0⟩ |1⟩
|1⟩ |1⟩

|a⟩ |f(a)⟩
|0⟩ |0⟩
|1⟩ |1⟩

|a⟩ |f(a)⟩
|0⟩ |1⟩
|1⟩ |0⟩

Figure 107: Input-output relationships for näıvely defined quantum query gate.

By linearity, we get these four linear operators.[
1 1
0 0

] [
0 0
1 1

] [
1 0
0 1

] [
0 1
1 0

]
(137)

The third and fourth are familiar unitary operations: the identity operation and the
Pauli X operation. But notice that the first two are not unitary operations. This
violation of unitarity is a serious problem. For example, the first two linear operators
both map the state |−⟩ to the zero vector, a two-dimensional vector whose amplitudes
are both zero, which makes no sense as a quantum state. So this approach does not
work.

In order for a classical mapping to be quantizable in the above manner it must
be bijective. Then the underlying linear operator is given by a permutation matrix,
which is unitary.

We will first define a reversible classical f -query that is bijective whether or not
f itself is bijective. In the case where f : {0, 1} → {0, 1}, the reversible classical
f -query is the mapping {0, 1}2 → {0, 1}2 defined as (a, b) 7→ (a, b ⊕ f(a)) (for all
a, b ∈ {0, 1}). Here is notation for a reversible classical f -query.

Figure 108: Reversible classical f -query (for f : {0, 1} → {0, 1}).

110

Why is this mapping {0, 1}2 → {0, 1}2 bijective? One way to see this is to observe
that the mapping is its own inverse.

The reversible classical f -query is easy to quantize as the 2-qubit unitary operation
that maps |a⟩ |b⟩ to |a⟩ |b⊕ f(a)⟩ (for all a, b ∈ {0, 1}2). Here is notation for a
quantum f -query (in the case where f : {0, 1} → {0, 1}).

Figure 109: Quantum f -query (for f : {0, 1} → {0, 1}).

Note that the above defines the effect of the f -query on computational basis states.
This determines a unitary operator that defines the effect of the f -query on arbitrary
quantum states.

We can generalize the above definition to arbitrary functions f : {0, 1}n → {0, 1}m.
The f -query is a unitary operation acting on n+m qubits defined as follows.

Definition 16.1. Let function f : {0, 1}n → {0, 1}m. Then a quantum f -query is
defined as the unitary operation acting on n + m qubits with the property that, for
all a ∈ {0, 1}n and b ∈ {0, 1}m,

|a⟩ |b⟩ 7→ |a⟩ |b⊕ f(a)⟩ , (138)

where b⊕ f(a) denotes the bit-wise14 XOR between the m-bit strings b and f(a).

Here is notation for a general quantum f -query.

Figure 110: Quantum f -query (for f : {0, 1}n → {0, 1}m).

14The bit-wise XOR between (b1, b2, . . . , bm) and (c1, c2, . . . , cm) is (b1⊕c1, b2⊕c2, . . . , bm⊕cm).

111

17 Simple quantum algorithms in black-box model
The simple quantum algorithms in this section are admittedly curiosities, rather than
practical algorithms. It’s hard to think of real-world applications that fit their frame-
work, and where it’s worth the trouble to build a quantum device to solve these
problems. What you should pay attention to are the maneuvers that these quantum
algorithms make. After these algorithms, we’ll be seeing increasingly sophisticated
extensions of these maneuvers, that accomplish more dramatic algorithmic feats.

17.1 Deutsch’s problem
The first problem that we’ll consider involves functions f : {0, 1} → {0, 1} (the four
such functions are shown in figure 105). Remember the question of how many queries
are necessary to determine whether or not f(0) = f(1)? This is the definition of
Deutsch’s Problem.

Definition 17.1. Deutsch’s Problem is defined as the problem where one is given as
input a black box for some f : {0, 1} → {0, 1} and the goal is to determine whether
or not f(0) = f(1) by making queries to f .

Let’s first consider classical queries necessary to solve Deutsch’s problem. One
query is not sufficient. To see why this is so, suppose that you make one query at
some a ∈ {0, 1} to acquire f(a). This gives absolutely no information about the other
value, f(¬a). It is possible that f(¬a) = f(a) and it is possible that f(¬a) ̸= f(a).
Therefore, two queries necessary and clearly two queries are also sufficient.

You may wonder whether the classical query cost is different when reversible clas-
sical queries are used. In fact, reversible classical query at (a, b) provide exactly the
same amount of information as a simple classical queries of at a. The output of
the reversible query at (a, b) is (a, b⊕ f(a)), and note that (a, b) are already known.
Therefore, there are only two possibilities of interest for the output:b⊕ f(a) = b, which occurs if any only if f(a) = 0;

b⊕ f(a) ̸= b, which occurs if any only if f(a) = 1.
(139)

Therefore, even with reversible classical queries, one query is not sufficient.
Now let’s see what an algorithm solving Deutsch’s Problem with two reversible

classical queries looks like. Here’s a classical circuit expressing such an algorithm.

112

Figure 111: Classical algorithm for Deutsch that makes two reversible classical queries.

The first query XORs the value of f(0) to the second bit. Then the first bit is flipped
to 1, so the second query XORs the value of f(1) to the second bit. At the end, the
second bit contains the value of f(0)⊕ f(1), which is the solution to the problem.

There is an obvious 2-query quantum algorithm that solves Deutsch’s problem
just like the circuit in figure 111. But quantum circuits need not be restricted to
these types of operations, where states are always in computational basis states. This
quantum circuit that solves Deutsch’s problem with just one single query!

Figure 112: Quantum algorithm for Deutsch that makes just one quantum query.

How does it work? It’s very different from any classical algorithm and we’ll analyze it
carefully. There are three Hadamard transforms, and each one plays a different role in
the computation. Let’s look at how each Hadamard contributes to the computation,
in the order shown in figure 113.

Figure 113: The three separate Hadamard transforms.

❶ What the first Hadamard does

This is the Hadamard applied to the second qubit, in state |1⟩. Obviously, this
creates the |−⟩ state. What’s interesting about creating this state here is that it’s an

113

eigenvector of the Pauli X. Performing an X-operation on |−⟩ causes it to become15

1√
2 |1⟩ −

1√
2 |0⟩ = − |−⟩.

With the second qubit in state |−⟩, if the first qubit is in the computational basis
state |a⟩ then the f -query causes the second qubit to change by a factor of −1 if and
only if f(a) = 1, as shown in the following circuit diagram.

Figure 114: Caption.

Note that (−1)f(a) is a succinct notation for expressing the two cases, since

(−1)f(a) =
+1 if f(a) = 0
−1 if f(a) = 1.

(140)

Notice that the 2-qubit output state is (−1)f(a) |a⟩ |−⟩ and the (−1)f(a) does not really
belong to a specific qubit of the two. We can equivalently write the circuit this way.

Figure 115: Caption.

But this is an interesting way of thinking about what the query does when the second
qubit is in state |−⟩. Namely, the first qubit picks up a phase of (−1)f(a), and the
second qubit doesn’t change. We sometimes call this querying in the phase.

At this point, you might wonder why we should care about this, since this is a
global phase, and we know that global phases don’t matter. But it’s only a global
phase if the first qubit is in a computational basis state, of the form |a⟩. It’s not a
global phase if the first qubit is in superposition. This brings us to the role of the
second Hadamard.

15Let’s keep track of the distinction between between |−⟩ and − |−⟩, even though it’s only a global
phase. The significance of this will become clear shortly.

114

❷ What the second Hadamard does

This brings us to the role of the second Hadamard, that’s applied to the first qubit.
That causes the first input qubit to the query to be in an equally weighted superpo-
sition of |0⟩ and |1⟩, namely, the |+⟩ state. Now the state of the first output qubit
after the query is in a superposition of |0⟩ and |1⟩ with respective phases (−1)f(0) and
(−1)f(1).

Figure 116: Caption.

So, after the query, the state of the first qubit is 1√
2(−1)f(0) |0⟩+ 1√

2(−1)f(1) |1⟩. Let’s
look at what this state is for each of the four possible functions back in figure 105.
The corresponding states of the first qubit are respectively

1√
2 |0⟩+

1√
2 |1⟩ − 1√

2 |0⟩−
1√
2 |1⟩

1√
2 |0⟩−

1√
2 |1⟩ − 1√

2 |0⟩+
1√
2 |1⟩ . (141)

Notice that, for the first two cases (where f(0) = f(1)), the state is ±
(

1√
2 |0⟩+

1√
2 |1⟩

)
;

and for the last two cases (where f(0) ̸= f(1)), the state is ±
(

1√
2 |0⟩ −

1√
2 |1⟩

)
.

Therefore, to solve Deutsch’s problem, we need only distinguish between ± |+⟩ and
± |−⟩. Which brings us to the third Hadamard.

❸ What the third Hadamard does

This Hadamard maps ± |+⟩ to ± |0⟩ and ± |−⟩ to ± |1⟩. Measuring the resulting
qubit in the computational basis yields0 if f(0) = f(1)

1 if f(0) ̸= f(1).
(142)

Therefore, the output bit of the algorithm is the solution to Deutsch’s problem.

Here is a summary of the 1-query quantum algorithm for Deutsch’s problem, and
the role that each of the three Hadamard transforms plays in it.

115

Figure 117: Summary of the role that each H transformation plays in the algorithm.

This quantum algorithm accomplishes something with one query that would require
two classical queries by any classical algorithm.

Notice what this algorithm does not do. It does not somehow extract both values
of the function, f(0) and f(1), with one single query. In fact, if you run this algo-
rithm, then you get no information about the value of f(0) itself. Also, you get no
information about the value f(1) itself. You only get information about f(0)⊕ f(1).

17.2 One-out-of-four search
Now let’s try to generalize this methodology to another problem.

Let f : {0, 1}2 → {0, 1} with the special property that it attains the value 1 at
exactly one of the four points in its domain. There are four possibilities for such a
function and here are their truth tables.

x f00(x)
00 1
01 0
10 0
11 0

x f01(x)
00 0
01 1
10 0
11 0

x f10(x)
00 0
01 0
10 1
11 0

x f11(x)
00 0
01 0
10 0
11 1

Figure 118: The four functions f : {0, 1}2 → {0, 1} that take value 1 at a unique point.

Now, suppose that you’re given a black-box computing such a function. You’re
promised that it’s one of these four, but you’re not told which one. Your goal is
to determine which of the four functions it is.

116

First of all, how many classical queries do you need to do this? The answer is
three queries. You can query in the first three places and see if one of them evaluates
to 1. If none of them do then, by process of elimination, you can deduce that the 1
must be the fourth place.

Now, what about quantum queries? Let’s try to build a good quantum algorithm
for this. For functions mapping two bits to one bit, the queries look like this.

Figure 119: Query gate for a function f : {0, 1}2 → {0, 1}.

There are two qubits for the input, and a third qubit for the output of the function.
In the computational basis, the value of f(a1, a2) is XORed onto the third qubit. Of
course, that description is for states in the computational basis. But, there is a unique
unitary operation that matches this behavior on the computational basis states.

Let’s start, along the lines that we did for Deutsch’s algorithm: by setting the
target qubit to state |−⟩ so as to query in the phase; and then querying the inputs
in a uniform superposition.

Figure 120: Starting along the lines of Deutsch’s algorithm. (Intermediate stages are marked.)

Let’s trace through the execution of this quantum circuit. At each stage, we will
determine the state of the three qubits at that stage.

State at stage ❶

The state after the Hamadard operations, but just before the query is(
|00⟩+ |01⟩+ |10⟩+ |11⟩

)
|−⟩ . (143)

117

State at stage ❷

The query does not affect the state of the third qubit, but it changes the state of the
first two qubits to

− |00⟩+ |01⟩+ |10⟩+ |11⟩ in the case of f00

|00⟩ − |01⟩+ |10⟩+ |11⟩ in the case of f01

|00⟩+ |01⟩ − |10⟩+ |11⟩ in the case of f10

|00⟩+ |01⟩+ |10⟩ − |11⟩ in the case of f11.

(144)

Looking at these four states, can you think of a noteworthy property that they have?
Please pasue to think about this ...

The states are orthogonal! If you take the dot-product between any two of these
vectors then you get two positive terms and two negative terms, which cancel out.
Since they’re orthogonal, we can measure with respect to this basis. In other words,
there exists a unitary operation U that maps these states to the computational basis,
and then we can measure in the computational basis.

Figure 121: Quantum algorithm for the 1-out-of-4 search problem.

So this quantum circuit only makes one quantum query and it correctly identifies the
function (among the four). And this would require 3 classical queries.

What is U? It’s the 4× 4 matrix whose rows are the vectors in Eq. (144).
An interesting question is whether it’s possible to get a more dramatic quantum

vs. classical query separation than 1 vs. 3.

17.3 Constant vs. balanced
Next we’ll see a problem where a quantum algorithm solves a problem with exponen-
tially fewer queries than any classical algorithm.

Let f : {0, 1}n → {0, 1}. We call such a function constant if either its value is 0
everywhere, or its value is 1 everywhere. We call such a function balanced if its value
is 0 in exactly the same number of places that its value is 1. There are 2n possible

118

inputs to such a function. Therefore, a balanced function takes value 0 in exactly
2n−1 places and it takes value 1 in exactly 2n−1 places.

Here are some examples of functions for the n = 3 case:

a f1(a) f2(a) f3(a) f4(a) f5(a)
000 0 1 0 1 0
001 0 1 0 1 0
010 0 1 0 0 0
011 0 1 0 1 0
100 0 1 1 0 0
101 0 1 1 0 0
110 0 1 1 0 1
111 0 1 1 1 0

Figure 122: Examples of functions that are constant, balanced, and neither.

The first two functions, f1 and f2, are the two constant functions: the all-zero func-
tion and the all-one function. The third function f3 is a balanced function with all
the zeroes before all the ones. And f4 is another balanced function, but with the
positions of the zeros and ones mixed up. How many balanced functions are there?
Exponentially many (the number is approximately 2n

√
n
). And f5 is neither constant

nor balanced—just as a reminder that this third category exists.
For the constant-vs-balanced problem, we’re given a black-box computing a func-

tion that is promised to be either constant or balanced, but we’re not told which one.
Our goal is to figure out which of the two cases it is, with as few queries to f as
possible.

First of all, how many queries do we need to solve this problem by a classical
algorithm? If you think about this, you’ll probably realize that, even if you query
the function in many spots and always see the same value, you still might not know
which way it goes. It could be constant. But it could also be that, in many of the
places that you did not query, the function takes the opposite value and it’s actually
a balanced function. It’s only after you’ve queried in more than half of the spots
that you can be sure about which case it is. Therefore, the number of queries that a
classical algorithm must make is 2n−1 + 1. That’s a lot of queries when n is large.

How many queries can a quantum algorithm get by with? In fact, this problem
can be solved by a quantum algorithm that makes just one single query! Let’s see
how that works.

119

We’ll start off as usual, setting the target qubit to state |−⟩ and setting the the
other qubits—those where the inputs to f are—into a uniform superposition of all
n-qubit basis states. That’s what applying a Hadamard to each of n qubits in state
|0⟩ does.

Figure 123: Starting off in a manner similar to the two previous algorithms.

So the state right after the query is
1√
2n

(∑
a∈{0,1}n

(−1)f(a) |a⟩
)
⊗ |−⟩ . (145)

The first n qubits are the interesting part of this state, which is a uniform superpo-
sition of all 2n computational basis states of n qubits, with a phase of (−1)f(a) for
each |a⟩.

What does this state looks like in the constant case? In that case, either all the
phases are +1 or all the phases are−1. So the state remains in a uniform superposition
of computational basis states and just picks up a global phase of +1 or −1.

Now, what can we say about the state in the balanced case? There are lots of
possibilities, depending on which particular balanced function it is. But one thing
we can say is that the state is orthogonal to the state that arises in the constant
case. Why? Because, in the computational basis, the state will have +1 in half of
its components and −1 in the other half. So when you take the dot product, with a
vector that has (say) +1 in each component you get a sum of an equal number of +1s
and −1s, which cancel and results in zero.

Something that we’ve seen a few times before is that, when the cases that we’re
trying to distinguish between result in orthogonal states, we’re in good shape. Being
orthogonal means that, in principle, the states are perfectly distinguishable.

Let’s make this more explicit. Suppose that we now apply a Hadamard to each of
the first n qubits, and consider what happens in the constant case and in the balanced
case. In the constant case, this transforms the state to ± |00 . . . 0⟩ = ± |0n⟩. In the
balanced case, since unitary operations preserve orthogonality relationships, the state
is transformed to some state that is orthogonal to |0n⟩.

120

After this final layer of Hadamards, we measure the state of the first n qubits.

Figure 124: Quantum algorithm for the constant-vs-balanced problem.

If the outcome is 00 . . . 0 = 0n then we report “constant” and if the outcome is
any string that’s not 0n (not all zeroes) then we report “balanced”. Note that, in the
balanced case, it’s impossible to get outcome 0n, because measuring a state orthogonal
to |0n⟩ cannot result in outcome 0n.

That’s how the one-query quantum algorithm for the constant-vs-balanced prob-
lem works. It achieves something with one single query that requires exponentially
many queries by any classical algorithm.

17.4 Probabilistic vs. quantum query complexity
Although everything I’ve said about the classical and the quantum query cost for
the constant-vs-balanced problem is true, there’s something unsatisfying about the
“exponential reduction” in the number of queries that the quantum algorithm attains.
The classical query cost is expensive only if we require absolutely perfect performance.
If a classical procedure queries f in random locations then, in the case of a balanced
function, it would have to be very unlucky to always draw the same bit value.

Here’s a classical probabilistic procedure that makes just two queries and per-
forms fairly well. It selects two locations randomly (independently) and then outputs
“constant” if the two bits are the same and “balanced” if the two bit values are
different.

What happens if f is constant? In that case the algorithm always succeeds. The
two bits will always be the same. What happens if f is balanced? In that case
the algorithm succeeds with probability 1

2 . The probability that the two bits will be
different will be 1

2 .
By repeating the above procedure k times, we can make the error probability

exponentially small with respect to k. Only 4 queries are needed to obtain success
probability 3

4 . And, the success probability can be a constant that’s arbitrarily close
to 1, using a constant number of queries.

121

In summary, we’ve considered three problems in the black-box model. For each
problem, a quantum algorithm solves it with just one query, but more queries are
required by classical algorithms.

classical classical
problem quantum deterministic probabilistic
Deutsch 1 2 2
1-out-of-4 search 1 3 3
Const. vs. balanced 1 2n−1 + 1 O(1)

Figure 125: Summary of query costs for problems considered so far.

For Deutsch’s problem, any classical algorithm requires 2 queries. For the 1-out-of-4
search problem, any classical algorithm requires 3 queries. And, for the constant-
vs-balanced problem, any classical algorithm requires exponentially many queries to
solve the problem perfectly; however, for an arbitrarily small constant ε > 0, there is
a probabilistic classical algorithm that makes only a constant number of queries and
solves the problem with error probability less than ε.

Along this line of thought, the following question seems natural: Is there a black-
box problem for which the quantum-vs-classical query cost separation is stronger?
For example, for which even probabilistic classical algorithms with small constant
error probability require exponentially more queries than a quantum algorithm?

We’ll address this question in the next section.

122

18 Simon’s problem
We are going to investigate a black-box problem called Simon’s Problem. For this
problem, there is an exponential difference between the probabilistic classical query
cost and the quantum cost. Also the quantum algorithm for this problem introduces
some powerful algorithmic techniques in a simple form. Simon’s Problem is a slightly
more complicated black-box problem than those that we’ve seen up to now, involving
functions from n bits to n bits.

It is interesting for two reasons:
1. It improves on the progression of black-box problems where quantum algorithms

outperform classical algorithms. The quantum algorithm requires exponentially
fewer queries than even probabilistic classical algorithms that can err with con-
stant probability, say 1

4 .

2. The quantum algorithm for Simon’s problem introduces a technique that tran-
scends the black-box model. When looked at the right way, the ideas intro-
duced in Simon’s algorithm lead naturally to Shor’s algorithm for the discrete
log problem—which is not a black-box problem! Shor discovered his algorithms
(for discrete log and factoring) soon after seeing Simon’s algorithm, and in his
paper, he acknowledges that he was inspired by Simon’s algorithm.

18.1 Definition of Simon’s Problem
The problem concerns functions f : {0, 1}n → {0, 1}n that are 2-to-1 functions, which
means that, for every point in the range, there are exactly two pre-images. In other
words, for every value that the function attains, there are exactly two points, a and b,
in the domain that both map to that value. We call such a pair of points a colliding
pair. If a ̸= b and f(a) = f(b) then a and b are a colliding pair.

Now, there’s a special property that some 2-to-1 functions have, that we’ll call the
Simon property.

Definition 18.1. A 2-to-1 function f : {0, 1}n → {0, 1}n has the Simon property
if there exists r ∈ {0, 1}n such that: For every colliding pair (a, b), it holds that
a⊕ b = r.

For a, b ∈ {0, 1}n, a⊕ b denotes their bit-wise XOR. That is, you take the XOR of
the first bit of a with the first bit of b, and then you take the XOR of the second bit
of a with the second bit of b, and so on.

123

Let’s look at an example. Here’s a 2-to-1 function f : {0, 1}3 → {0, 1}3.

a f(a)
000 011
001 101
010 000
011 010
100 101
101 011
110 010
111 000

Figure 126: Example of function satisfying the Simon property for n = 3.

I’ve color coded the colliding pairs. For example, if you look at the two green points
in the domain, 000 and 101, you can see that f maps both of these points to 011
(and those are the only points that are mapped to 011). So the two green points
are a colliding pair. Also, the two red points 011 and 110 are a colliding pair, both
mapping to 010. And there is a blue colliding pair and a purple colliding pair.

OK, so this f is a 2-to-1 function. But it also has the additional Simon property.
If you take any colliding pair (a, b) then a ⊕ b is always the same 3-bit string. Can
you see what that string r is in this example?

Did you get r = 101? If you pick any color and take the bit wise XOR of the two
strings of that color you’ll get 101. For example, for the red pair, 011⊕ 110 = 101.

Note that, for an arbitrary 2-to-1 function, the bit-wise XORs can be different for
different colliding pairs. So the 2-to-1 functions that satisfy the Simon property are
special ones, for which these bit-wise XORs are always the same.

Now we can define Simon’s problem.

Definition 18.2 (Simon’s problem). You are given access to a black-box for a 2-to-1
function f : {0, 1}n → {0, 1}n that has the Simon property, but you are given no
other information about f . You don’t know what the colliding pairs are and you
don’t know the value of r. Your goal is to find the value of r.

In the above example, r = 101. For a general function f : {0, 1}n → {0, 1}n, r could
potentially be any non-zero n-bit string.

124

18.2 Classical query cost of Simon’s problem
Let’s try to think about how hard this black-box problem is. In the example, we could
find r by taking the bit-wise XOR of any colliding pair. So, once we have a colliding
pair, it’s easy to find r. Therefore, one way to solve this is to find a colliding pair.
But notice that any two distinct n-bit strings could be a colliding pair for some r. So
if we make a query at some point a, we learn the value of f(a), but we have no idea
for which b ̸= a, you get a colliding pair.

Here’s an example of a classical algorithm for Simon’s problem. If we a have a
budget of m queries, query f at m random points in {0, 1}n and then check if there’s
a collision among them. If any two are a colliding pair then their bit-wise XOR is the
answer r. If there are no collisions then the algorithm is out of luck; in that case it
fails to find r.

How large should m be set to so that the probability of a collision is at least 3
4?

There are 2n points in the domain, and each pair of queries will collide with probability
1

2n . Since there are around m2 pairs, the expected number of collisions is roughly m2

times 1
2n . Setting m ≈

√
2n suffices to make this expectation a constant16.

So there’s a classical algorithm that solves this with O
(√

2n
)

queries. It’s better
than querying f everyhere, which would cost 2n queries. But the square root just
amounts to a reduction by a factor of 2 in the exponent. It’s still exponentially many
queries. What’s interesting is that the above is essentially the best possible classical
algorithm.

Theorem 18.1. Any classical algorithm that solves Simon’s problem with worst-case
success probability at least 3

4 must make Ω
(√

2n
)

queries.

How do we know this? We cannot deduce this simply based in the fact that this is the
best algorithm that we could come up with. How can we be sure that there isn’t some
clever trick that we haven’t discovered? Also, notice that f is not an arbitrary 2-to-1
function. It is a 2-to-1 with the Simon property, which is a very special structure.
So it’s conceivable that a classical algorithm can somehow take advantage of that
structure to find a collision in an unusual way.

Theorem 18.1 is true, but it requires a proof. The proof is not as trivial as
the argument that two queries are needed for Deutsch’s problem, or that 3 queries

16You may recognize in this analysis the so-called “birthday paradox”, where you consider what
the chances are that there are two people in a group of (say) 23 people who have the same birthday.
It’s 50%, assuming that people’s birthdays are uniformly distributed.

125

are needed for the 1-out-of-4 search problem. It requires a more careful argument. If
you’re interested in seeing the proof, it is in the next subsection 18.2.1. The proof isn’t
particularly hard, but it requires some set-up. Feel free to skip past subsection 18.2.1
on a first reading.

18.2.1 Proof of classical lower bound for Simon’s problem (Theorem 18.1)

In this section, we prove Theorem 18.1. The proof uses some standard techniques
that arise in computational complexity; however, this account assumes no prior back-
ground in the area.

The first part of the proof is to “play the adversary” by coming up with a way of
generating an instance of f that will be hard for any algorithm. Note that picking
some fixed f will not work very well. A fixed f has a fixed r associated with it and
the first two queries of the algorithm could be 0n and r, which would reveal r to the
algorithm after only two queries. Rather, we shall randomly generate instances of f .
First, we pick r at random, uniformly from {0, 1}n−0n. Picking r does not fully spec-
ify f but it partitions {0, 1}n into 2n−1 colliding pairs of the form {x, x⊕r}, for which
f(x) = f(x⊕r) will occur. Let us also specify a representative element form each col-
liding pair, say, the smallest element of {x, x⊕r} in the lexicographic order. Let T be
the set of all such representatives: T = {s : s = min{x, x⊕ r} for some x ∈ {0, 1}n}.
Then we can define f in terms of a random one-to-one function ϕ : T → {0, 1}n
uniformly over all the 2n(2n− 1)(2n− 2)(2n− 3) · · · (2n− 2n−1 + 1) possibilities. The
definition of f can then be taken as

f(x) =
{
ϕ(x) if x ∈ T
ϕ(x⊕ r) if x ̸∈ T .

We shall prove that no classical probabilistic algorithm can succeed with probability 3
4

on such instances unless it makes a very large number of queries.
The next part of the proof is to show that, with respect to the above distribution

among inputs, we need only consider deterministic algorithms (by which we mean
ones that make no probabilistic choices). The idea is that any probabilistic algo-
rithm is just a probability distribution over all the deterministic algorithms, so its
success probability p is the average of the success probabilities of all the deterministic
algorithms (where the average is weighted by the probabilities). At least one deter-
ministic algorithm must have success probability ≥ p (otherwise the average would
be less than p). Therefore (because we have a fixed probability distribution of the
input instances), we need only consider deterministic algorithms.

126

Next, consider some deterministic algorithm and the first query that it makes:
(x1, y1) ∈ {0, 1}n × {0, 1}n, where x1 is the input to the query and y1 is the output
of the query. The result of this will just be a uniformly random element of {0, 1}n,
independent of r. Therefore the first query by itself contains absolutely no information
about r.

Now consider the second query (x2, y2) (without loss of generality, we can assume
that the inputs to all queries are different; otherwise, the redundant queries could be
eliminated from the algorithm). There are two possibilities: x1⊕x2 = r (collision) or
x1⊕x2 ̸= r (no collision). In the first case, we will have y1 = y2 and so the algorithm
can deduce that r = x1⊕x2. But the first case arises with probability only 1

2n−1 . With
probability 1 − 1

2n−1 , we are in the second case, and all that the algorithm deduces
about r is that r ̸= x1 ⊕ x2 (it has ruled out just one possibility among 2n − 1).

We continue our analysis of the process by induction on the number of queries.
Suppose that k − 1 queries, (x1, y1), . . . , (xk−1, yk−1) have been made without any
collisions so far (i.e., for all 1 ≤ i < j ≤ k − 1, yi ̸= yj). Then all that has been
deduced about r is that r ̸= xi ⊕ xj, for all 1 ≤ i < j ≤ k − 1. Therefore, at most(
k−1

2

)
= (k − 1)(k − 2)/2 possibilities for r have been eliminated (up to one value of

r is eliminated for each pair of xi and xj). Since there are 2n− 1 values of r to begin
with (recall that r ̸= 0n), it follows that there are at least 2n − 1− (k − 1)(k − 2)/2
possibilities of r that have not yet been eliminated. When the next query (xk, yk) is
made, the number of potential collisions arising from it are at most k−1 (the number
of previous queries). Therefore, the probability of a collision at query k is at most

k − 1
2n − 1− (k − 1)(k − 2)/2 ≤

2k
2n+1 − k2 . (146)

Let’s review the expression on the left side of Eq. (146). For the denominator, there
are at least 2n− 1− (k− 1)(k− 2)/2 possibilities of r remaining at the point of query
k (assuming that no collisions have occurred yet). And, for the numerator, among
those remaining values of r, there are k− 1 values of r that cause a collision to occur
for query xk, namely the values in the set {xk ⊕ x1, xk ⊕ x2, . . . , xk ⊕ xk−1}.

Since the collision probability bound in Eq. (146) holds all k, the probability of a
collision occurring somewhere among m queries is at most the sum of the right side
of Eq. (146) with k varying from 1 to m:

m∑
k=1

2k
2n+1 − k2 ≤

m∑
k=1

2m
2n+1 −m2 ≤

2m2

2n+1 −m2 . (147)

127

If this quantity is to be at least 3
4 then

2m2

2n+1 −m2 ≥
3
4 . (148)

It is an easy exercise to solve for m in the above inequality, yielding m ≥
√

(6/11)2n,
which gives the desired bound.

Actually, there is a slight technicality remaining. We have shown that
√

(6/11)2n
queries are necessary to attain a collision with probability 3

4 ; whereas the algorithm
is not technically required to make queries that include a collision. The algorithm
is only required to deduce r, and it’s conceivable that an algorithm could deduce r
some other way without a collision occurring. But any algorithm that deduces r can
be modified so that it makes one additional query that collides with a previous one.
So we have a slightly smaller lower bound of

√
(6/11)2n − 1, but this is still Ω(

√
2n).

18.3 Quantum algorithm for Simon’s problem
Before showing you the algorithm for Simon’s problem, I’d like to show you a partic-
ularly useful way of viewing the multi-qubit Hadamard transform H ⊗H ⊗ · · · ⊗H
and the structure of {0, 1}n.

18.3.1 Understanding H ⊗H ⊗ · · · ⊗H

To start with, let’s look at how H ⊗H ⊗ · · · ⊗H = H⊗n (a Hadamard transform on
each of n qubits) affects the computational basis states.

First, for the state |00 . . . 0⟩ = |0n⟩,

H⊗n |0n⟩ = 1√
2n

∑
b∈{0,1}n

|b⟩ . (149)

It turns out that there’s this nice expression for applying H⊗n to any computa-
tional basis state |a⟩ (a ∈ {0, 1}n). It’s a uniform superposition of the computational
basis states, but with certain phases.

Theorem 18.2. For all a ∈ {0, 1}n,

H⊗n |a⟩ = 1√
2n

∑
b∈{0,1}n

(−1)a·b |b⟩ , (150)

where a · b = a1b1 + a2b2 + · · ·+ anbn mod 2.

128

For example,

H ⊗H = 1√
4

00 01 10 11


+1 +1 +1 +1 00

+1 −1 +1 −1 01

+1 +1 −1 −1 10

+1 −1 −1 +1 11

(151)

Note that, for each a, b ∈ {0, 1}2, the sign of entry (a, b) is (−1)a·b.

Proof of Theorem 18.2. The proof is this simple calculation

H⊗n |a⟩ =
(
H |a1⟩

)
⊗ · · · ⊗

(
H |an⟩

)
(152)

=
(

1√
2 |0⟩+ 1√

2(−1)a1 |1⟩
)
⊗ · · · ⊗

(
1√
2 |0⟩+ 1√

2(−1)an |1⟩
)

(153)

=
(

1√
2

∑
b1∈{0,1}

(−1)a1b1 |b1⟩
)
⊗ · · · ⊗

(
1√
2

∑
bn∈{0,1}

(−1)anbn |bn⟩
)

(154)

= 1√
2n

∑
b∈{0,1}n

(−1)a1b1 · · · (−1)anbn |b⟩ (155)

= 1√
2n

∑
b∈{0,1}n

(−1)a1b1+···+anbn |b⟩ . (156)

■
So we have a nice expression for applying H⊗n on computational basis states. In

particular, notice how an expression that looks like a dot-product of two n-bit strings
(in modulo 2 arithmetic) arises.

18.3.2 Viewing {0, 1}n as a discrete vector space

Now let’s think about the set {0, 1}n. It’s often useful to associate these strings with
mathematical structures, such as the integers {0, 1, 2, . . . , 2n − 1}.

But we can also think of the set {0, 1}n as an n-dimensional vector space, where
the components of each vector are 0 and 1, and the arithmetic is modulo 2 (which
is equivalent to using ⊕ for addition and ∧ for multiplication). This is different
from a vector space over the field R or C. But the set {0, 1}, with addition and
multiplication modulo 2 (which we’ll denoted as Z2), is a field, meaning that it shares
some key structural properties that the real and complex numbers have (I won’t go

129

into the details of these properties here). It’s perfectly valid to have a vector space
over a finite field like Z2. The linear algebra notions of subspace, dimension and linear
independence, make perfect sense over such vector spaces.

And this brings us to that dot-product expression that arose in the n-fold tensor
product of the Hadamard. For vector spaces over R and C, the dot-product17 is an
inner product, and has useful properties. Two vectors are orthogonal if and only if
their inner product is zero.

Technically, the dot-product in our finite field Z2 scenario is not an inner product.
An inner product has the property that, for any vector v, it holds that v · v = 0 if
and only if v = 0 (the zero vector). In our finite field vector space, there are non-zero
binary strings whose inner products with themselves are 0. Can you think of one?
Any binary string with an even number of 1s has dot product 0 with itself.

Nevertheless, this dot product does have some nice properties. For example, the
space can be decomposed into “orthogonal” subspaces whose dimensions add up to
n. Two spaces are deemed “orthogonal” if every point in one has dot-product 0 with
every point in the other. Here is a schematic picture of a decomposition of {0, 1}3

decomposed into a 1-dimensional space and an orthogonal 2-dimensional space.

Figure 127: Schematic picture of {0, 1}3 decomposed into two orthogonal subspaces.

Of course the picture is really for vector spaces over the field R, not the finite field Z2.
So it should just be seen as an intuitive guide, rather than a literal depiction.

� A word of caution: for n-qubit systems, there are two spaces in play. One space
is the n-dimensional discrete vector space {0, 1}n which is over the finite field Z2.
This is associated with the labels of the computational basis states. The other
space is the 2n-dimensional space over C, spanned by the 2n computational basis
states (technically, a Hilbert space). Do not conflate these different spaces! For
example, 00 . . . 0 is the zero vector in the finite vector space. But |00 . . . 0⟩ lives
in the Hilbert space, and it’s definitely not the zero vector. It’s a quantum state,
which is a vector of length one.

17In the case of field C we need to take complex conjugates one of the vectors in the dot product.

130

18.3.3 Simon’s algorithm

Applying definition 16.1, the f -queries look like this.

Figure 128: f -query for Simon’s Problem.

The f -query acts on 2n qubits and, in the computational basis, f of the first n bits
is XORed onto the last n bits. With queries like this, it’s not so clear how we can
“query in the phase”, as we did for all the quantum algorithms in section 17.

We’ll start out differently, with all the n target qubits just in state |0⟩. But we
will put the inputs to f into a uniform superposition of all the n-bit strings. And
then we’ll perform an f -query.

Figure 129: Beginning of Simon’s algorithm.

What’s the output state of this circuit? The state right after the query is

1√
2n

∑
a∈{0,1}n

|a⟩ |f(a)⟩ . (157)

Let’s consider this state. It’s sometimes said that what makes quantum computers so
powerful is that they can actually perform several computations at the same time. But
this view is misleading. The state was obtained by making just one single query, and
it appears to contain information about all of the values of the function f . However,
it’s not possible to extract more than one value of the function from this state. In
particular, if we measure this state in the computational basis then what we end up

131

with is just one pair (a, f(a)), where a is sampled from the uniform distribution. And
you don’t need any quantum devices to generate such a sample. You could just flip
a coin n times to create a random a and then perform one query to get f(a).

So how should we think about quantum algorithms? With a state like that in
Eq. (157), rather than measuring in the computational basis, we can instead—via a
unitary operation—measure with respect to another basis. In some cases, for a well-
chosen basis, we can acquire information about some global property of f (instead of
the value of f at some specific point).

Let’s try to find a useful measurement basis for the case where f satisfies the
Simon property. The inputs to the function partition into colliding pairs. It helps
to look at our example in figure 126 again for reference. It’s reproduced here for
convenience.

a f(a)
000 011
001 101
010 000
011 010
100 101
101 011
110 010
111 000

Figure 130: Copy of figure 126: A function satisfying the Simon property.

Let’s define a set T so as to consist of one element from each colliding pair. In the
example, we take one of the two green points, one of the two blue points, one of the
two purple points and one of the two red points. Which one we choose won’t matter;
what’s important is that there exists such a set T . In the example, we could set
T = {000, 100, 010, 011}.

Notice that, for each element a ∈ T , the other element of the colliding pair is a⊕r.
We don’t know what r is (that’s what we’re trying to find by the algorithm). But we
know that f satisfies the Simon property and that there exists an associated r. (In
the example, r = 101.)

Therefore, if we combine the elements of T with the elements of the set T ⊕r then

132

we get all of {0, 1}n. This enables us to rewrite the state in Eq. (157) as

1√
2n

∑
a∈T

(
|a⟩ |f(a)⟩+ |a⊕ r⟩ |f(a⊕ r)⟩

)
, (158)

where we are only summing over the elements of T , but, for each a ∈ T , we include
two terms: one for a and one for a⊕ r.

Now, since f satisfies the Simon property with the associated r, for each a, we
have that f(a) = f(a⊕ r). That’s exactly what the Simon property says. So we can
write the expression in Eq. (158) as

1√
2n

∑
a∈T

(
|a⟩+ |a⊕ r⟩

)
|f(a)⟩ . (159)

Suppose that we now measure the last n qubits in the computational basis. Then the
state of the last n qubits collapses to some value f(a) and the residual state of the
first n qubits is a uniform superposition of the pre-images of that value. That is, the
state of the first n qubits becomes

1√
2 |a⟩+ 1√

2 |a⊕ r⟩ . (160)

for a random a ∈ {0, 1}n. What can we do with this state? If we could somehow
extract both a and a ⊕ r from this state then we could deduce the value of r (by
taking their XOR, a ⊕ (a ⊕ r) = r). But we can only measure the state once, after
which its state collapses.

If we measure in the computational basis, then we just get either a or a ⊕ r,
neither of which is sufficient to learn anything about the value of r. We can think
of measuring in the computational basis this way: we first randomly choose a color
(that’s what happens when we measure the last n qubits), and then we randomly
choose one of the two elements of that color (that’s what happens when we measure
the first n qubits). So the net effect of all this is to get just a random n-bit string,
which is devoid of any information about the structure of f . So, if we want make
progress than we should definitely not measure the first n qubits in the computational
basis.

Something quite remarkable happens if we apply a Hadamard transform to each
of the n qubits before measuring in the computational basis. We can calculate the

133

state resulting from the Hadamard transform using Theorem 18.2 as

H⊗n
(

1√
2 |a⟩+ 1√

2 |a⊕ r⟩
)

= 1√
2n+1

(∑
b∈{0,1}n

(−1)a·b |b⟩+
∑

b∈{0,1}n

(−1)(a⊕r)·b |b⟩
)

(161)

= 1√
2n+1

(∑
b∈{0,1}n

(−1)a·b |b⟩+
∑

b∈{0,1}n

(−1)a·b(−1)r·b |b⟩
)
(162)

= 1√
2n+1

(∑
b∈{0,1}n

(−1)a·b
(
1 + (−1)r·b

)
|b⟩
)
. (163)

Why is this interesting? Let’s think about what happens if we measure this state in
the computational basis. Notice that, for each b ∈ {0, 1}n,

(
1 + (−1)r·b

)
=
2 if r · b = 0

0 if r · b = 1.
(164)

Therefore, the probability of each b ∈ {0, 1}n occurring as the outcome is
1

2n−1 if r · b = 0
0 if r · b = 1.

(165)

In other words, the outcome of the measurement is a uniformly distributed random
b in the orthogonal complement of r (that is, for which r · b = 0).

Figure 131: Schematic illustration of r ∈ {0, 1}n and the set {b ∈ {0, 1}n : r · b = 0}.

This b does not produce enough information for us to deduce r, but it reveals partial
information about r. Namely that the bits of r satisfy the linear equation

b1r1 + b2r2 + · · ·+ bnrn ≡ 0 (mod 2). (166)

And we can acquire more information about r by repeating the procedure.

134

Figure 132: Each execution of this procedure yields a random b ∈ {0, 1}n such that r · b = 0.

Each execution of the procedure in figure 132 produces18 an independent random
b ∈ {0, 1}n that is orthogonal to r (in the sense that r · b = 0). Suppose that we
repeat the process n−1 times (so the number of f -queries is n−1). Then, combining
the resulting b’s, we obtain a system of n− 1 linear equations (in mod 2 arithmetic)

b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

bn−1,1 bn−1,2 · · · bn−1,n




r1

r2
...
rn

 =


0
0
...
0

 . (167)

If the n−1 × n matrix has rank n−1 then there is a unique nonzero r solution to
the system, which can be easily found by Guassian elimination. What’s the proba-
bility that this matrix has full rank? It turns out that this probability is a constant
independent of n.

Lemma 18.1. The matrix in Eq. (167), whose rows consist of n − 1 independent
random samples from the uniform distribution on a linear space of dimension n− 1,
has full rank with probability at least 1

4 .

Proof. Let’s start by considering the first row of the matrix in Eq. (167). This single
vector is linearly independent if and only if it’s non-zero, which occurs with probability
1− 1

2n−1 (there is one bad case among 2n−1 possibilities). Next, consider the first two
rows. Conditional on the first row being linearly independent, the first two rows are
linearly independent if and only if the second row is non-zero and not equal to the
first row. This conditional probability is 1− 2

2n−1 = 1− 1
2n−2 (there are two bad cases

among 2n−1). Similarly, conditional on the first two rows being linearly independent,
the first three rows are linearly independent if and only if the third row is not in the

18The outcome of the measurement of the first n qubits is the same whether or not the last n
qubits are measured.

135

span of the first two rows. This occurs with probability 1 − 4
2n−1 = 1 − 1

2n−3 (there
are four bad cases). Continuing in this manner, conditional on the first k − 1 rows
being linearly independent, the first k rows are linearly independent if and only if
the k-th row is not a linear combination of the first k − 1 rows. And this occurs
with probability 1− 2k−1

2n−1 = 1− 1
2n−k (there are 2k−1 bad cases). Multiplying all these

conditional probabilities for rows 1 through n− 1, we obtain(
1− 1

2

)(
1− 1

22

)
· · ·

(
1− 1

2n−2

)(
1− 1

2n−1

)
(168)

as the probability that the matrix in Eq. (167) is full rank. That this product is at
least 1

4 is left as an exercise. ■

Exercise 18.1. Show that the expression in Eq. (168) is at least 1
4 .

So we now have a quantum algorithm that makes n− 1 queries in all and succeeds in
finding r with probability at least 1

4 . This fails with probability at most 3
4 . It’s easy

to reduce the failure probability to (3
4)5 < 1

4 by repeating the entire procedure five
times.

In conclusion, Ω(
√

2n) queries are necessary for any classical algorithm to attain
success probability 3

4 , whereas order O(n) queries are sufficient for a quantum algo-
rithm to attain success probability 3

4 .

18.4 Significance of Simon’s problem
Now, what should we make of Simon’s problem and Simon’s algorithm?

It’s a black-box problem that was specially designed to be very hard for proba-
bilistic classical algorithms and easy for quantum algorithms—thereby improving on
previous classical vs quantum query cost separations.

classical classical
problem quantum deterministic probabilistic
Deutsch 1 2 2
1-out-of-4 search 1 3 3
Const. vs. balanced 1 2n−1 + 1 O(1)
Simon O(n) Ω(2n/2) Ω(2n/2)

Figure 133: Summary of query costs for problems considered so far.

136

But Simon’s problem doesn’t immediately look like a problem that one would care
about in the real world. When Simon’s work first came out, people were wondering
what to make of it. Although it provided a very strong classical vs. quantum query
cost separation, it looked like a contrived problem. Moreover, a contrived black-box
problem, which is not even a conventional computing problem, involving input data.

This may be one’s first impression, but there’s actually more to it than that. Look
again at the Simon property: for all a, f(a) = f(a⊕r). This is kind of like a periodicity
property of a function, which would be written as: for all a, f(a) = f(a + r). And
periodic functions arise naturally in many contexts. We’ll soon see that variations of
Simon’s problem in this direction are very fruitful.

137

19 The Fourier transform
Up until now, the Hadamard transform H = 1√

2 [1 1
1 −1] (acting on qubits) has played

a prominent role in quantum algorithms. There is a natural generalization of H to
m-dimensional systems, called the Fourier transform, which is also very useful for
quantum algorithms.

19.1 Definition of the Fourier transform modulo m

We begin by considering complex numbers the form

ω = e2πi/m, (169)

which we refer to as (primitive) mth roots of unity. Clearly, ωm = 1. Here’s where ω,
and all its powers, lie in the complex plane C.

Figure 134: The powers of ω are m equally spaces points on the unit circle in C.

If we sum all these powers of ω, we get zero: 1 + ω + ω2 + · · ·+ ωm−1 = 0. Can you
see why? Moreover, if we sum all the powers of ωk (assuming 1 ≤ k ≤ m− 1) we also
get zero.

Exercise 19.1 (Hint: use formula for sum of geometric sequence). Prove that, for
all k ∈ {1, 2, . . . ,m− 1}, it holds that

1 + ωk + ω2k + · · ·+ ω(m−1)k =
m−1∑
j=0

ωjk = 0. (170)

What about the powers of ωm? Since ωm = 1, it’s obvious that ∑m−1
j=0 ωjm = m.

Now we can define the Fourier transform modulo m.

138

Definition 19.1 (Fourier transform). The Fourier transform modulo m is the m×m
matrix

Fm = 1√
m



1 1 1 · · · 1
1 ω ω2 · · · ωm−1

1 ω2 ω4 · · · ω2(m−1)

...
1 ωm−1 ω2(m−1) · · · ω(m−1)2


. (171)

Note that (after the normalization factor 1√
m

) the first column is 1s, the second column
is the powers of ω, the third column is powers of ω2 and so on.

Exercise 19.2. Prove that Fm is unitary.

Exercise 19.3. Prove that the inverse Fourier transform F ∗
m is

F ∗
m = 1√

m



1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(m−1)

1 ω−2 ω−4 · · · ω−2(m−1)

...
1 ω−(m−1) ω−2(m−1) · · · ω−(m−1)2


. (172)

For all a ∈ {0, 1, . . . ,m− 1}, applying the Fourier transform Fm to the computa-
tional basis state |a⟩ results in the state

Fm |a⟩ = 1√
m

m−1∑
j=0

ωja |j⟩ , (173)

which corresponds to column a of Fm. We call this a Fourier basis state. Similarly,
applying the inverse Fourier transform F ∗

m to |a⟩ results in the state

F ∗
m |a⟩ = 1√

m

m−1∑
j=0

ω−ja |j⟩ . (174)

If there are n registers that are each m-dimensional, and you apply Fm to each
register (which is Fm ⊗ Fm ⊗ · · · ⊗ Fm = F⊗n

m on the n-register system) then, for all
(a1, a2, . . . , an) ∈ Znm,

(Fm)⊗n |a1, a2, . . . , an⟩ = 1√
mn

∑
b∈Zn

m

ωa·b |b1, b2, . . . , bn⟩ (175)

(F ∗
m)⊗n |a1, a2, . . . , an⟩ = 1√

mn

∑
b∈Zn

m

ω−a·b |b1, b2, . . . , bn⟩ , (176)

139

where a · b = (a1, a2, . . . , an) · (b1, b2, . . . , bn) = a1b1 + a2b2 + · · ·+ anbn mod m. Note
that Eqns. (175)(176) generalize Theorem 18.2 in section 18.3.1 from the modulo 2
case to the modulo m case.

19.2 A very simple application of the Fourier transform
We will soon see, in section 21, that it’s possible to efficiently solve the celebrated
discrete log problem (which will be defined in section 20) by reducing it to a general-
ization of Simon’s problem (section 21.2), where the modulus is m (as opposed to 2).
This generalization can be solved along the lines of Simon’s algorithm—using Fourier
transforms in place of Hadamard transforms.

In this section, we consider a very simple query problem where a quantum al-
gorithm that employs the Fourier transform outperforms what any classical query
algorithm can do. The reduction in query cost is modest: the quantum algorithm
makes one f -query; whereas any classical algorithm must make two f -queries. Al-
though this is not a dramatic efficiency improvement by a quantum algorithm, it
shows the Fourier transform in action in a simple setting, where some of its interest-
ing properties are easy to observe and analyze.

Definition 19.2 (Linear coefficient problem). Let m ≥ 2. Let a, b ∈ Zm and define
f : Zm → Zm as

f(x) = ax+ b mod m, (177)

for all x ∈ Zm. Assume that you are given access to a black-box for the function f ,
but you are given no other information about f . You don’t know what the linear
coefficient a is, nor the additive constant b. Your goal is to find the value of the linear
coefficient a.

It’s not hard to see that, in the special case where m = 2, this is equivalent to
Deutsch’s problem (section 17.1). In that case, the four functions are all of the form
of Eq. (177) and f(0) = f(1) if and only if a = 0. Moreover, it is straightforward
to show that, for all m ≥ 2, any classical algorithm for the linear coefficient problem
problem must make at least two f -queries.

Exercise 19.4. Show that, for classical algorithms, two f -queries are necessary and
sufficient to solve the linear coefficient problem.

140

Next, we will see a quantum algorithm that solves this problem with only one
quantum f -query.

We need to define the notion of a quantum f -query for functions of the form
f : Zm → Zm. A reasonable definition is as the unitary operation that maps each
basis state |x⟩ |y⟩ to

|x⟩ |y+f(x) mod m⟩ , (178)

for all x, y ∈ Zm. Here is notation for a quantum f -query (which makes sense for any
f : Zm → Zm).

Figure 135: Quantum f -query (for f : Zm → Zm).

Note the similarity with figure 109 (for the case where f : {0, 1} → {0, 1}).
Given the resemblance of the leading coefficient problem to Deutsch’s problem,

we can draw inspiration from the quantum algorithm for that problem (section 17.1),
substituting Fm and F ∗

m for Hadamard transforms. In fact, our quantum algorithm
will be the following quantum circuit.

Figure 136: Quantum algorithm for the linear coefficient problem.

Note the resemblance to the quantum circuit in figure 112; when m = 2, the two
quantum circuits are identical. Why is the measured output of this quantum circuit
the linear coefficient a? We will carefully go through then role that each of the Fourier
transforms plays in the computation.

In figure 112, the Hadamard transform on the second register creates the special
state |−⟩ in the target register of the f -query, so that f -queries have the effect of

141

querying in the phase: |x⟩ 7→ (−1)f(x) |x⟩ (for x ∈ {0, 1}). An analogue of querying
in the phase for Zm-valued registers is to implement a mapping of the form

|x⟩ 7→ ωf(x) |x⟩ (179)

(for x ∈ Zm), where ω = e2πi/m. This is achieved by setting the second register to the
state

|ψ⟩ = F ∗
m |1⟩ (180)

= 1√
m

m−1∑
b=0

ω−b |b mod m⟩ . (181)

To see why this causes f -queries to implement the mapping in Eq. (179), first define
a mod m generalization of the unitary operation X as the m-dimensional unitary
operation that, in the computational basis, adds 1 modulo m to a register. Let’s call
this the increment modulo m operation and denote it as Xm. For all a ∈ Zm,

Xm |a⟩ = |a+ 1 mod m⟩ . (182)

The effect of Xm on |ψ⟩ (the state defined in Eq. (180)) is

Xm |ψ⟩ = Xm

(
1√
m

m−1∑
b=0

ω−b |b⟩
)

(183)

= 1√
m

m−1∑
b=0

ω−b |b+ 1 mod m⟩ (184)

= 1√
m

m−1∑
c=0

ω−(c−1) |c mod m⟩ (185)

= 1√
m

m−1∑
c=0

ωω−c |c mod m⟩ (186)

= ω |ψ⟩ . (187)

More generally, we have (Xm)k |ψ⟩ = ωk |ψ⟩ (in other words, adding k modulo m to
state |ψ⟩ results in state ωk |ψ⟩). From this it follows that an f -query applied to state
|x⟩ |ψ⟩ produces the state ωf(x) |x⟩ |ψ⟩, thereby implementing a mapping of the form
in Eq. (179) (with respect to the first register).

Following the outline of Deutsch’s algorithm (section 17.1) as a guide, the Fourier

142

transform on the first qubit creates the superposition

Fm |0⟩ = 1√
m

(
|0⟩+ |1⟩+ · · ·+ |m− 1⟩

)
(188)

= 1√
m

m−1∑
x=0
|x⟩ . (189)

Applying an f -query to this state (with the second register set to |ψ⟩), results in the
state

1√
m

m−1∑
x=0

ωf(x) |x⟩ = 1√
m

m−1∑
x=0

ωax+b |x⟩ (190)

= ωb
(

1√
m

m−1∑
x=0

ωax |x⟩
)

(191)

= ωbFm |a⟩ . (192)

Since this state is Fm |a⟩ (with a global phase of ωb), applying F ∗
m to the first

register after the query results in the state ωb |a⟩. Applying a measurement to this
first register results in a, as required. Therefore, the quantum circuit in figure 136
does indeed solve the linear coefficient problem.

19.3 Computing the Fourier transform modulo 2n

The Fourier transform Fm is defined in section 19.1. We’re interested in computing
Fm efficiently by a quantum circuit consisting of elementary operations acting on
qubits. There’s an elegant way to do this in the case where m = 2n. Note that F2n

is a unitary operation acting on n qubits. I will show you a fairly simple quantum
circuit consisting of O(n2) gates that computes F2n .

It’s useful to visualize how the powers of a (primitive) 2n-th root of unity ω are
aligned in the complex plane. They are 2n equally spaced points on the unit circle,
and here’s what they look like when n = 3.

Figure 137: Powers of ω, a primitive 8-th root of unity in C.

143

For a 2n-th root of unity ω, a couple of simple but valuable observations are:
1. ω2n−1 = −1. (For example, in figure 137, ω is an 8-th root of unity and ω4 = −1.)

2. ω2 is a 2n−1-th root of unity. (In figure 137, ω2 is an 4-th root of unity.)

19.3.1 Expressing F2n in terms of F2n−1

To get a feeling for how this works, let’s first consider the case where n = 3. For each
a ∈ {0, 1}3 ≡ {0, 1, 2, 3, 4, 5, 6, 7}, the corresponding Fourier basis state F8 |a⟩ is

|000⟩+ ωa|001⟩+ ω2a|010⟩+ ω3a|011⟩+ ω4a|100⟩+ ω5a|101⟩+ ω6a|110⟩+ ω7a|111⟩ .

(where the normalization factor 1√
8 is omitted). Question: Are these three qubits

entangled or in a product state? In fact, this state can be written as

|0⟩ ⊗
(
|00⟩+ ωa|01⟩+ω2a|10⟩+ ω3a|11⟩

)
+ ω4a|1⟩ ⊗

(
|00⟩+ ωa|01⟩+ ω2a|10⟩+ ω3a|11⟩

)
(193)

=
(
|0⟩+ ω4a|1⟩

)
⊗
(
|00⟩+ ωa|01⟩+ ω2a|10⟩+ ω3a|11⟩

)
(194)

=
(
|0⟩+ ω4a|1⟩

)
⊗
(
|0⟩+ ω2a|1⟩

)
⊗
(
|0⟩+ ωa|1⟩

)
. (195)

So F8 |a⟩ is a product of three 1-qubit states.
This generalizes to F2n |a⟩, for all n ≥ 1, as follows.

Lemma 19.1. For all n ≥ 1 and a ∈ {0, 1}n,

F2n|a⟩ =
(
|0⟩+ ω2n−1a|1⟩

)
⊗· · ·⊗

(
|0⟩+ ω4a|1⟩

)
⊗
(
|0⟩+ ω2a|1⟩

)
⊗
(
|0⟩+ ωa|1⟩

)
,

(196)

where there is a normalization factor of 1
2n/2 .

Our quantum circuit for computing the Fourier transform will make use of this
structure. Remember that, if we compute a linear operator that matches the Fourier
transform on all computational basis states then it must be the Fourier transform.

Let’s return our attention to the n = 3 case, where the Fourier basis states are

F8 |a⟩ =
(
|0⟩+ ω4a|1⟩

)
⊗
(
|0⟩+ ω2a|1⟩

)
⊗
(
|0⟩+ ωa|1⟩

)
, (197)

for all a ∈ {0, 1}3, where ω is a primitive 8-th root of unity. Each a = a2a1a0 denotes
an element of {0, 1, 2, 3, 4, 5, 6, 7} in the usual way (a0 is the low-order bit and a2 is
the high-order bit).

144

a a2a1a0

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Figure 138: Binary representation of numbers in {0, 1, 2, 3, 4, 5, 6, 7}.

Consider the state of the first qubit in Eq. (197). Since ω4 = −1, the state of the
first qubit simplifies to |0⟩+ (−1)a |1⟩. Note that this is |+⟩ when a is even and |−⟩
when a is odd. The parity of a is determined by its low-order bit a0. Therefore the
first qubit of F8 |a⟩ is simply H |a0⟩.

What about the remaining qubits? Let |ψ⟩ denote the second and third qubit in
Eq. (197). That is,

|ψ⟩ =
(
|0⟩+ ω2a|1⟩

)
⊗
(
|0⟩+ ωa|1⟩

)
. (198)

Now, please look at the n = 2 case of the expression in Eq. (196) in Lemma 19.1.
Does |ψ⟩ look like F4 |a⟩?

There is certainly a superficial resemblance; however, |ψ⟩ and F4 |a⟩ are not exactly
the same. The state F4 |a⟩ is with respect to a 4-th root of unity—not an 8-th root
of unity. Another difference is that F4 acts on 2 qubits; whereas the parameter a in
Eq. (198) is a 3-bit integer.

It will be fruitful to explore in more detail the difference between |ψ⟩ and F4 |a⟩.
Let’s see what these states look like in terms of the digits a2a1a0 of the binary represen-
tation of a. We’ll use the Greek letter ϖ to denote the 4-th root of unity (ϖ = e2πi/4),
while reserving ω for the 8-th root of unity (ω = e2πi/8). Note that ω2 = ϖ.

If we apply F4 to |a2a1⟩ (the two higher order digits of a), the result is

F4 |a2a1⟩ =
(
|0⟩+ϖ2[a2a1] |1⟩

)
⊗
(
|0⟩+ϖ[a2a1] |1⟩

)
(199)

=
(
|0⟩+ (ω2)2[a2a1] |1⟩

)
⊗
(
|0⟩+ (ω2)[a2a1] |1⟩

)
(200)

=
(
|0⟩+ ω2[a2a10] |1⟩

)
⊗
(
|0⟩+ ω[a2a10] |1⟩

)
. (201)

145

In the exponent, I’ve surrounded the binary representations by square brackets so
that they can be clearly read; the two-digit number in the square brackets is either
0, 1, 2, or 3. Eq. (199) is due to Lemma 19.1. Eq. (200) is due to ϖ = ω2. And
Eq. (201) is due19 to 2[a2a1] = [a2a10].

Now let’s express |ψ⟩ in terms of [a2a1a0]. This is

|ψ⟩ =
(
|0⟩+ ω2[a2a1a0] |1⟩

)
⊗
(
|0⟩+ ω[a2a1a0] |1⟩

)
(202)

=
(
|0⟩+ ω2[a2a10]ω2a0 |1⟩

)
⊗
(
|0⟩+ ω[a2a10]ωa0 |1⟩

)
. (203)

Comparing Eq. (201) with Eq. (203), we can see precisely where they differ: the
factors ω2a0 and ωa0 (highlighted in red). We’ll refer to these as phase corrections.

Based on the above observations, let’s try to compute F8 |a2a1a0⟩ in terms of
F4 |a2a1⟩ and H |a0⟩, combined with additional gates that perform phase corrections.
To perform the phase corrections, we introduce the following new 2-qubit gate.

Definition 19.3 (controlled-phase gate). For any r ∈ Z, the 2-qubit controlled-phase
gate (with phase e2πi/r) is defined as the unitary operation that, for all a, b ∈ {0, 1},
maps |a⟩ |b⟩ to (e2πi/r)ab |a⟩ |b⟩. The unitary matrix for the gate is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/r

 (204)

and our circuit notation for this gate is shown in figure 139.

Figure 139: Our notation for the controlled-phase gate, with phase e2πi/r.

In the special case where m = 2, this is a controlled-Z gate. We will employ these
gates with r set to higher powers of two (r = 4, 8, 16, . . .).

Now we’ll analyze the following circuit and show that it computes F8.
19This is a simple maneuver. It’s the binary equivalent of what we do in base ten when we multiply

an integer by ten: we add a zero digit and shift all the other digits left. 10 times 23 is 230.

146

Figure 140: Caption.

We will trace through the stages of this circuit.

State at stage ❶

From Eq. (201), this is
(
|0⟩+ ω2[a2a10] |1⟩

)
⊗
(
|0⟩+ ω[a2a10] |1⟩

)
⊗ |a0⟩.

State at stage ❷

The two controlled-phase gates change the state to(
|0⟩+ ω2[a2a10]ω2a0 |1⟩

)
⊗
(
|0⟩+ ω[a2a10]ωa0 |1⟩

)
⊗ |a0⟩ (205)

=
(
|0⟩+ ω2[a2a1a0] |1⟩

)
⊗
(
|0⟩+ ω[a2a1a0] |1⟩

)
⊗ |a0⟩ (206)

=
(
|0⟩+ ω2a |1⟩

)
⊗
(
|0⟩+ ωa |1⟩

)
⊗ |a0⟩ . (207)

State at stage ❸

Applying a Hadamard gate to the third qubit changes the state to(
|0⟩+ ω2a |1⟩

)
⊗
(
|0⟩+ ωa |1⟩

)
⊗
(
|0⟩+ (−1)a0 |1⟩

)
(208)

=
(
|0⟩+ ω2a |1⟩

)
⊗
(
|0⟩+ ωa |1⟩

)
⊗
(
|0⟩+ ω4a |1⟩

)
. (209)

Notice that this is the state in Eq. (197), except the qubits are in the wrong order.

State at stage ❹

Moving the third qubit to the left and shifting the other two qubits right yields(
|0⟩+ ω4a |1⟩

)
⊗
(
|0⟩+ ω2a |1⟩

)
⊗
(
|0⟩+ ωa |1⟩

)
= F8 |a⟩ . (210)

What we have shown is a special case of the following more general recurrence for F2n .

147

Theorem 19.1. For all n ≥ 1, the Fourier transform F2n can be expressed as

Figure 141: Quantum circuit for F2n recursively constructed in terms of F2n−1 .

This is straightforward to verify, along the lines of the analysis for the n = 3 case.

19.3.2 Unravelling the recurrence

By repeatedly applying Theorem 19.1, we can construct a quantum circuit for the
Fourier transform for any n ≥ 1. The recurrence bottoms out at n = 1, where
F2 = H. Here is the circuit for the n = 4 case.

Figure 142: Quantum circuit for F24 .

Notice that there are places where the qubits are rearranged. Instead of doing these
rearrangements, we can move the gates around. Then there’s just one net rearrange-
ment at the very end, which turns out to be a reversal of the order of the qubits.

Figure 143: Quantum circuit for F24 , with rearrangements deferred until the end.

148

How do we perform this reversal of the order of the qubits? We can define a 2-qubit
SWAP gate.

Definition 19.4 (SWAP gate). The 2-qubit SWAP gate is defined as the unitary
operation that, for all a, b ∈ {0, 1}, maps |a⟩ |b⟩ to |b⟩ |a⟩. The unitary matrix for the
gate is 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (211)

and circuit notation for this gate is shown in figure 144.

Figure 144: Notation for SWAP gate.

The reversal consists of around n/2 SWAP gates.
Intuitively, the notation for SWAP gate suggests a physically movement of the

qubits. In principle, one could do that, but it would be nice not to be adding a brand
new elementary operation into our repertoire of 2-qubit gates (if we can avoid it). It
turns out this this SWAP gate can be computed by three CNOT gates.

Exercise 19.5. Show that the 2-qubit SWAP gate can be implemented by a sequence
of three CNOT gates (appropriately oriented).

Finally, let’s count the number of gates in our circuit construction (which is the
natural generalization of the construction in figure 143 to F2n). There are n Hadamard
gates, one for each qubit. The number of controlled-phase gates is

1 + 2 + 3 + · · ·+ (n− 1) = n(n− 1)
2 = O(n2). (212)

And there are most n
2 SWAP gates—which translates into 3n

2 CNOT gates. That’s a
total of O(n2) gates for computing the Fourier transform F2n .

Exercise 19.6 (straightforward). Give a quantum circuit that computes the inverse
Fourier transform F ∗

2n with O(n2) gates. (There are two different approaches that
lead to slightly different circuits.)

149

19.4 Computing the Fourier transform for arbitrary modulus
What about the case where the modulus m is not a power of 2? Here we provide
references to circuit constructions of the Fourier transform for the case where the
modulus is not a power of 2:

• There are some fairly simple constructions for the special case where the modu-
lus is a product of “small” prime factors, which are explained in this reference20

(https://cs.uwaterloo.ca/˜cleve/pubs/fourier_transform.pdf).

• The case of an arbitrary modulus is more challenging, and addressed in this
reference21 (https://arxiv.org/abs/quant-ph/0301093).

Neither reference explicitly states bounds on the number of gates, but it is clear from
the constructions that the gate counts are polynomial in n, where n is the number of
bits of the modulus.

20R. Cleve, “A note on computing Fourier transforms by quantum programs”, unpublished, 1994.
21M. Mosca and Ch. Zalka, “Exact quantum Fourier transforms and discrete logarithm algo-

rithms”, International Journal of Quantum Information, Vol. 2, No. 1, pp. 91–100, 2004.

150

https://cs.uwaterloo.ca/~cleve/pubs/fourier_transform.pdf
https://arxiv.org/abs/quant-ph/0301093

20 Definition of the discrete log problem
The quantum “algorithms” that we’ve seen up until now are not algorithms in usual
sense. They are in the black-box model, where one is given an unknown function
and the goal is to extract information about the function with as few queries to the
function as possible. Often, the unknown function is promised to have a special kind
of structure (such as the function arising in Simon’s problem).

In the next section I will describe a remarkable algorithm for solving the discrete
log problem (DLP). This is not a black box problem! It is a conventional compu-
tational problem where the input is given as a binary string and the output is also
a binary string. No classical polynomial algorithm is known for this problem. In
fact, the presumed hardness of this problem has been the basis of cryptosystems
(such as the Diffie-Hellman key exchange protocol). In 1994, Peter Shor discovered
a polynomial quantum algorithm for this problem, and it’s based on the underlying
methodologies used in Simon’s algorithm—which may sound surprising, since Simon’s
problem is a black-box problem.

In this section, I define the discrete log problem. In the next section I will describe
Shor’s polynomial quantum algorithm for this problem. In order to define the discrete
log problem, we first need to be familiar with two sets, called Zm and Z∗

m.

20.1 Definitions of Zm and Z∗m
Definition 20.1 (of the ring Zm). For any positive integer m ≥ 2, define Zm as the
set {0, 1, . . . ,m− 1}, equipped with addition and multiplication modulo m.

A more familiar example of a ring is the set of all integers Z equipped with “ordinary”
addition and multiplication. Note that there are only two elements of Z that have
multiplicative inverses (namely +1 and −1). What are the elements of Zm that have
multiplicative inverses? It depends on m. Let’s look at the case where m = 9. The
elements of Z9 that have multiplicative inverses are 1, 2, 4, 5, 7, and 8 (0, 3, and 6
do not have multiplicative inverses).

Definition 20.2 (of the group Z∗
m). For any positive integer m ≥ 2, the set Z∗

m

consists of all elements of Zm that have multiplicative inverses. Z∗
m is a group.

For the purposes of DLP, we need only consider Z∗
p for prime p. In that case, it’s

known that every non-zero element of Z∗
p has a multiplicative inverse. Therefore we

can use this simple definition of the group Z∗
p for case where p is prime.

151

Definition 20.3 (of the group Z∗
p). For any prime p, define Z∗

p as the group with
elements {1, . . . , p− 1}, where the operation is multiplication modulo p.

20.2 Generators of Z∗p and the exponential/log functions
An element g of the group Z∗

p is called a generator of the group if the set of all powers
g is the group. Whenever a group has such an element, it is called cyclic.

Let’s consider the case where p = 7 as an example. Z∗
7 = {1, 2, 3, 4, 5, 6}. Obvi-

ously 1 is not a generator, since all powers of 1 are just 1. What about 2? 2 is not
a generator either, because of we list the powers of 2, which are 20, 21, 22, and so
on, we get the sequence 1, 2, 4, 1, 2, 4, . . . so we only get the set {1, 2, 4}, which is a
proper subgroup of Z∗

7. What about 3? 3 is a generator, since the powers of 3 are
1, 3, 2, 6, 4, 5, 1, 3, 2, . . . , which is the entire set Z∗

7. It turns out that Z∗
p is cyclic for

any prime p.

Theorem 20.1. For any prime p, there exists g ∈ Z∗
p such that

Z∗
p =

{
gk : k ∈ {0, 1, . . . , p− 2}

}
. (213)

Notice that the exponents run from 0 to p− 2. This makes sense because the size of
Z∗
p is p− 1 (it’s not p because 0 ̸∈ Z∗

p). So the set of exponents of a generator is Zp−1

(it’s not Zp). And, if the elements of Z∗
p are expressed as powers of a generator g,

then gxgy = gx+y mod p−1 holds for any x, y ∈ Zp−1. It follows that multiplication in
Z∗
p corresponds to addition mod p − 1 in the exponents of g. Formally, there is an

isomorphism between the additive group Zp−1 and the multiplicative group Z∗
p.

Definition 20.4 (discrete exp function). Relative to a prime modulus p and a gen-
erator g of Z∗

p, let’s first define the discrete exponential function expg : Zp−1 → Z∗
p as,

for all r ∈ Zp−1,

expg(r) = gr. (214)

Definition 20.5 (discrete log function). Relative to a prime modulus p and a gen-
erator g of Z∗

p, define the discrete log function logg : Z∗
p → Zp−1 as the inverse of the

discrete exponential function expg. The input to logg is some s ∈ Z∗
p, and the output

is the value of r ∈ Zp−1 such that gr = s.

152

20.3 Discrete exponential problem
For the discrete exp problem, the input is (p, g, r), where

• p is an n-bit prime.

• g is a generator of Z∗
p.

• r ∈ Zp−1.
And the output is: expg(r), which is gr.

How hard is it to compute this function? Of course, gr is equal to g multiplied
by itself r times. So expg(r) can obviously be computed by r multiplications (the
precise number of multiplications is actually r − 1). But r is an n-bit number, so r
can be roughly as large as 2n. That’s an exponentially large number of multiplication
operations! Using this approach, the circuit-size would be exponential in n. But
there’s a simple trick for doing this more efficiently, called the repeated squaring trick.

20.3.1 Repeated squaring trick

The idea is the following. You multiply g by itself to get g2. Then you multiply g2

by itself to get g4. And then you multiply g4 by itself get g8, and so on. This way,
you can compute g2n at the cost of only n multiplications. That’s how the repeated
squaring trick works when the exponent r is a power of 2.

What if r is not a power of 2? The above idea can be adjusted to compute any
n-bit exponent r with fewer than 2n multiplications. The idea is based on the fact
that gr can be written as

grn...r3r2r1 = ((···(grn)2 ··· gr3)2gr2)2gr1 , (215)

where rn...r3r2r1 is the binary representation of an n-bit exponent r.
Note that O(n) multiplications, at cost O(n log(n)) gates each, leads to a classical

gate cost of order O(n2 log(n)) for computing the discrete exponential function.

20.4 Discrete log problem
For the discrete log problem (DLP), the input is (p, g, s), where

• p is an n-bit prime.

• g is a generator of Z∗
p.

• s ∈ Z∗
p.

153

And the output is: logg(s), which is the r ∈ Zp−1 for which gr = s.
How hard is it to compute this function? Currently, there is no known classical

algorithm that solves DLP with polynomially many gates (with respect to the input
size n).

154

21 Shor’s algorithm for the discrete log problem
The overall idea behind Shor’s algorithm is to convert the discrete log problem (DLP)
into a generalization of Simon’s problem, and then to solve that generalization of
Simon’s problem. Since DLP is not a black-box problem, how can such a conversion
work? It works by creating a function with a property similar to Simon’s that can be
efficiently implemented so as to simulate black-box queries to the function. This is
Shor’s function.

21.1 Shor’s function with a property similar to Simon’s
Recall that an instance of the discrete log problem consists of three n-bit numbers: p
(an n-bit prime), g (a generator of Z∗

p), and s (an element of Z∗
p).

Shor’s function f : Zp−1 × Zp−1 → Z∗
p is defined as

f(a1, a2) = ga1s−a2 , (216)

for all a1, a2 ∈ Zp−1. What’s interesting about this function is where the collisions
are. When is f(a1, a2) = f(b1, b2)?

Theorem 21.1. For an instance (p, g, s) of DLP, the function f : Zp−1×Zp−1 → Z∗
p

defined by Eq. (216) has the property that

f(a1, a2) = f(b1, b2) if and only if (a1, a2)− (b1, b2) is a multiple of (r, 1), (217)

where r = logg(s).

The significance of this is that it resembles the Simon property. It’s the analogue of
the Simon property when we switch from mod 2 arithmetic to mod p− 1 arithmetic.
To see this, recall that the Simon property can be stated as: f(a) = f(b) if and only
if a⊕ b is either a string of n zeroes or the string r. Notice that: a⊕ b is the same as
a− b in mod 2 arithmetic. So we can write the Simon property as:

Simon property for f : (Z2)n → (Z2)n
f(a1, . . . , an) = f(b1, . . . , bn) if and only if (a1, . . . , an) − (b1, . . . , bn) is a
multiple of (r1, . . . , rn) in mod 2 arithmetic.

And here’s again is the property that Shor’s function has:

155

Property of Shor’s function for f : Zp−1 × Zp−1 → Z∗
p

f(a1, a2) = f(b1, b2) if and only if (a1, a2) − (b1, b2) is a multiple of (r, 1)
in mod p− 1 arithmetic.

Proof of Theorem 21.1. The proof is elementary, but we’ll go through it carefully.
Although we do not know what r is, we do know that an r exists such that s = gr.
This means that sa2 = gra2 . Therefore, f(a1, a2) = ga1g−ra2 = ga1−ra2 . It’s nice to
write f this way, because then

f(a1, a2) = f(b1, b2) (218)
if and only if a1 − ra2 = b1 − rb2 (219)
if and only if (a1, a2) · (1,−r) = (b1, b2) · (1,−r) (220)
if and only if

(
(a1, a2)− (b1, b2)

)
· (1,−r) = 0. (221)

In equation (221), the dot-product being zero is like an orthogonality relation between
the vector (a1, a2)− (b1, b2) and the vector (1,−r). Here’s a schematic sketch of the
vector (1,−r).

Figure 145: Schematic illustration of (r, 1) orthonormal to (1,−r).

Notice that the vector (r, 1) is orthogonal to the vector (1,−r) in that their dot-
product is zero. Now, in a two-dimensional space, the vectors that are orthogonal to
a particular vector are all multiples of one of the orthogonal vectors. So, we might
expect (a1, a2) − (b1, b2) to be a multiple of (r, 1). This intuition (valid for vector
spaces with inner products) is confirmed in our context by a simple calculation:

(v1, v2) · (1,−r) = 0 (222)
if and only if v1 = rv2 (223)
if and only if v2 = k and v1 = rk, for some k ∈ Zp−1 (224)
if and only if (v1, v2) = k(r, 1), for some k ∈ Zp−1. (225)

Therefore, f(a1, a2) = f(b1, b2) if and only if (a1, a2)−(b1, b2) is a multiple of (r, 1). ■

156

21.2 The Simon mod m problem
We’ve established that Shor’s function satisfies a variant of Simon’s property where
the domain of the function is changed from {0, 1}n = (Z2)n to (Zp−1)2.

Now, what we’re going to do is digress from DLP to investigate the generalization
of Simon’s problem, where the modulus is changed from 2 to m. We’ll first find an
efficient quantum black-box algorithm for the Simon mod m problem, where we are
given a function

f : (Zm)d → T, (226)

where T can be any set—but for convenience we’ll assume that T = {0, 1}k for some
k (any T can be enlarged so that it’s size is a power of 2).

Definition 21.1 (of an m-to-1 function). A function is m-to-1 if, for every value
attained by the function, there are exactly m preimages. In other words, all colliding
sets are of size m.

Recall that, in the Simon’s original problem, we had colliding pairs. Now, here is a
mod m analogue of the original Simon property.

Definition 21.2 (Simon mod m property). An m-to-1 function f : (Zm)d → T

satisfies the Simon mod m property, if there exists a non-zero r ∈ (Zm)d such that:
for all a, b ∈ (Zm)d, it holds that f(a) = f(b) if and only if a− b is a multiple of r.

Notice that the Simon mod m property is equivalent to the property that every
colliding set of f is of the form {a, a+r, a+2r, . . . , a+(m−1)r} = {a+kr : k ∈ Zm},
for some a ∈ (Zm)d. Figure 146 is a schematic diagram of the two-dimensional case.

Figure 146: Each colliding set is one of the colored lines (an offset of the line {kr : k ∈ Zm}).

Think of {kr : k ∈ Zm} as a line in (Zm)d passing through the origin. And think of
{a+kr : k ∈ Zm} as an offset of the line by a ∈ (Zm)d. Each colliding set is an offset.

157

Recall that, for the original Simon property, the colliding pairs were of the form
{a, a ⊕ r}, which are offsets of {0, r}. In that case, the colored lines in figure 146
correspond to the colliding pairs.

Definition 21.3. For a function f : (Zm)d → T , define an f -query as unitary oper-
ation Uf such that, for every (a1, a2, . . . , an) ∈ (Zm)d and b ∈ T ,

Uf
(
|a1⟩ |a2⟩ . . . |an⟩ |b⟩

)
= |a1⟩ |a2⟩ . . . |an⟩ |b⊕ f(a1, a2, . . . , an)⟩ , (227)

where the ⊕ operation denotes bit-wise XOR (recall our assumption that T = {0, 1}k).

We use the following notation for f -queries.

Figure 147: Notation for a quantum f -query gate for f : (Zm)d → T .

Notice that the lines are drawn thicker than those in our previous quantum circuits
where the lines carried qubits. This is to help convey the fact that the data flowing
through these lines is generally not qubits, but states of dimension higher than 2.
The first d lines are carrying an m-dimensional quantum states, and the last line is
carrying a |T |-dimensional state.

Definition 21.4 (Simon mod m problem). For Simon’s problem mod m, you’re given
a black-box that computes an f -query for an unknown function f that is promised
to have the Simon mod m property, and your goal is to determine the parameter r,
based on queries to f .

How do we solve the Simon mod m problem? Let’s start by recalling the algorithm
for the original Simon’s problem. It was based on repeated runs of this circuit that
makes a single f -query.

158

Figure 148: Circuit used for Simon’s problem.

Each run of the circuit produces a uniformly random element of the orthogonal com-
plement of r. After a few runs, we obtain enough such b’s to be able to deduce r by
solving a system of linear equations in mod 2 arithmetic.

The proposed algorithm for the Simon mod m problem will be based on a quan-
tum circuit similar to the one in figure 148, but where the horizontal lines represent
m-dimensional registers (rather than qubits) and the single-register gates are the
Fourier transforms defined in section 19.1 and their inverses (rather than Hadamard
transforms).

21.3 Query algorithm for Simon mod m

The algorithm is based on the circuit in figure 149.

Figure 149: Proposed circuit for the Simon mod m problem.

Note that, in the special case where m = 2, the circuit in figure 149 is almost the
same as the circuit in figure 148. What’s the output of this circuit? We’ll analyze
this for the case where d = 2, which the circuit in figure 150.

159

Figure 150: Circuit for Simon mod m problem in the case where d = 2.

Let’s trace through the evolution of the state of the registers.

State at stage ❶

Since Fm |0⟩ = 1√
m

(|0⟩+ |1⟩+ · · ·+ |m− 1⟩), this state is

1√
m2

∑
a∈Zm×Zm

|a1, a2⟩ |0⟩ . (228)

State at stage ❷

Since the query maps each basis state |a1, a2⟩ |0⟩ to |a1, a2⟩ |f(a1, a2)⟩, when the input
is superposition, the output of the query is

1√
m2

∑
a∈Zm×Zm

|a1, a2⟩ |f(a1, a2)⟩ . (229)

State of the first two registers at stage ❸

Measuring the state of the third register causes its state to collapse to some value of
f and the state of the first two registers to collapse to a uniform superposition of all
the pre-images of that value of f . This preimage is one of the collapsing sets of f
(one of the colored lines in figure 146). Therefore, the state after this measurement is

1√
m

∑
k∈Zm

|(a1, a2) + k(r1, r2)⟩ , (230)

for some (a1, a2) ∈ Zm × Zm.
This state is identical to the state that is the outcome of the following process:
1. Randomly choose one of the colliding sets (the colored lines in figure 146).

2. Take the uniform superposition of the elements of that colliding set.

160

State of the first two registers at stage ❹

F ∗
m ⊗ F ∗

m

(
1√
m

∑
k∈Zm

|(a1, a2) + k(r1, r2)⟩
)

(231)

= 1√
m

∑
k∈Zm

(
F ∗
m ⊗ F ∗

m |(a1, a2) + k(r1, r2)⟩
)

(232)

= 1√
m

∑
k∈Zm

 1√
m2

∑
b∈Zm×Zm

ω−(a+kr)·b |b1, b2⟩

 (233)

= 1√
m

∑
k∈Zm

 1
m

∑
b∈Zm×Zm

ω−a·bω−k(r·b) |b1, b2⟩

 (234)

= 1√
m

∑
b∈Zm×Zm

ω−a·b

 1
m

∑
k∈Zm

ω−k(r·b)

 |b1, b2⟩ . (235)

Notice that Eq. (235) contains an expression for the amplitude of |b1, b2⟩ for any
(b1, b2) ∈ Zm×Zm. Since |ω−a·b| = 1, what’s important in Eq. (235) is the expression
in parentheses, which is

1
m

∑
k∈Zm

ω−k(r·b) =
1 if (r1, r2) · (b1, b2) = 0

0 if (r1, r2) · (b1, b2) ̸= 0.
(236)

This implies that, for any (b1, b2) ∈ Zm × Zm,

Pr[(b1, b2)] =


1
m

if (r1, r2) · (b1, b2) = 0
0 if (r1, r2) · (b1, b2) ̸= 0.

(237)

Therefore the output of the circuit in figure 150 is a uniformly random sample from
the set {(b1, b2) ∈ Zm × Zm : b1r1 + b2r2 = 0}, which we loosely call the orthogonal
complement of (r1, r2).

Figure 151: Schematic illustration of the orthogonal complement of (r1, r2).

161

All of the preceeding analysis generalizes in a straightforward way from two di-
mensions to d dimensions.

Figure 152: Simon mod m circuit produces a random element of the orthogonal complement of r.

In that case, output from the first d registers is a uniformly random element of the
set {b ∈ Zdm : b · r = 0} (the orthogonal complement of r).

As with Simon’s algorithm, after repeated runs of the circuit in figure 152, we
obtain several b’s, from which we can hope to deduce r by solving a system of linear
equations in mod m arithmetic (we’ll return to this matter of solving the linear
equation(s) in the context of the discrete log problem in section 21.5.1).

21.4 Returning to the discrete log problem
Now that we’ve analyzed the Simon mod m problem, let’s get back to the original
problem that we’re concerned with, which is the discrete log problem. The input is:
p, an n-bit prime number; g, a generator of Z∗

p; and s, an element of Z∗
p (all three

inputs are binary strings of length n). And the goal to produce logg(s), which is the
unique r ∈ Zp−1 for which s = gr.

The reason why we turned our attention to the Simon mod m problem is that
there is a special Shor function that satisfies the Simon mod m property (with m set
to p− 1), and a solution to that instance of Simon mod p− 1 yields r = logg(s).

How can we use our solution to Simon mod m to solve an instance of DLP, which
is not in the query framework? The idea is to efficiently implement the query gate of
the Shor function, as well as the other parts of the query circuit in terms of qubits
and elementary gates (1- and 2-qubit gates). The elements of Zp−1 and Z∗

p can be
represented by their n-bit binary representations as n-bit strings. Imagine a 3n-qubit
quantum circuit of the form of figure 153, where each grey box represents a quantum
circuit consisting of elementary gates acting on qubits.

162

Figure 153: Implementation of the query algorithm in figure 154.

This circuit is an implementation of the circuit in figure 154.

Figure 154: This is what is simulated by the circuit in figure 153.

A property of the Shor function f (defined is Eq. (216)) that’s crucial to make this
work is that f(a1, a2) = ga1sa2 can be computed efficiently by a classical circuit.
The exponentiations can be computed efficiently using the repeated squaring trick
(explained in section 20.3.1).

That’s the overall idea behind Shor’s algorithm for the discrete log problem. How-
ever, there are a few loose ends that have not been explained.

21.5 Loose ends
One loose end is that concerns technicalities in extracting r from repeated runs of the
circuit in figure 150. This is discussed in section 21.5.1.

Another loose end is an important issue that arises in implementing the f -query,
which is discussed in sections 21.5.2 and 21.5.3.

Finally, there’s the matter of efficiently computing Fm, which is discussed in sec-
tion 21.5.4.

163

21.5.1 How to extract r

As was done for the original Simon problem, we can set up a system of linear equations
in mod m arithmetic. However, a complication arises when Zm is not a field—and in
fact, it’s not a field in our case of interest, where m = p− 1, for a prime p.

Recall that, for DLP, the quantum circuit in figure 150 produces a uniformly
random (b1, b2) such that

(b1, b2) · (r, 1) ≡ 0 (mod p− 1). (238)

How do we calculate r from this? From Eq. (238), we can solve for r as

r = −b2/b1 mod p− 1. (239)

But, for this to work, b1 must have an inverse modulo p− 1. It might not.
It can be proven that the fraction of elements of Zp−1 that have inverses is not

too small. I won’t get into further details here about how this is quantified. But, as
a result of this, we can simply repeat the process of running the circuit in figure 153
a few times until we obtain a (b1, b2) where b1 has an inverse in Zp−1.

21.5.2 How not to compute an f-query

Suppose that there is an efficient classical circuit that computes a function f . How
do we simulate an f -query (as in Definition 21.3) in terms of elementary operations
on qubits?

Figure 155: A circuit on qubits (left) so as to simulate an f -query (right).

We saw back in section 14.2 that any classical circuit can be simulated by a quantum
circuit with the same efficiency (up to a constant factor). However, that simula-
tion used ancilla qubits and resulted in a quantum quantum circuit that maps each
computational basis state of the form |a⟩ |0m⟩ |b⟩ to |a⟩ |g(a)⟩ |f(a)⊕ b⟩, where |0m⟩

164

is a string of several |0⟩ qubits that are used as ancillas, and g(a) consists of some
intermediate results of the computation.

To help clarify the point, here again in the quantum circuit from figure 98 (in
section 14.2), for computing the majority of three bits.

Figure 156: Quantum circuit that simulates classical circuit for the majority function.

The first three qubits contain the input to the function. The last qubit is where the
output is XORed. And there are four ancilla qubits, whose states at the end of the
computation are shown. We can refer to this as the “garbage”, because we might
think of disposing of those four qubits. Or ignoring them.

Is this OK for simulating an f -query? No, this leads to a problem if the f -query
is applied at a state that’s a superposition of computational basis states, such as∑

a,b

αa,b |a⟩ |b⟩ |0m⟩ . (240)

The above purported implementation of an f -query maps this state to
∑
a,b

αa,b |a⟩ |b⊕ f(a)⟩ |g(a)⟩ ≠
(∑
a,b

αa,b |a⟩ |b⊕ f(a)⟩
)
|g(a)⟩ . (241)

The state of the first two registers need not be∑
a,b

αa,b |a⟩ |b⊕ f(a)⟩ . (242)

(Note that, in Eqns. (240)(241)(242), I’ve moved the garbage register to the end so
that the statement of inequality is simpler to write.)

But this problem has a simple remedy.

165

21.5.3 How to compute an f-query

The first step is to compute f with the ancilla registers. After that, the computation
is reversed, so as to restore the ancilla registers back to state |0⟩. But just before the
reversal, the answer is XORed to another register, using CNOT gates.

Figure 157: Clean computation of the majority function (the ancilla qubits are reset to |0⟩).

The resulting circuit computes the f -query and restores the ancilla qubits back to their
original states. Therefore, this works even if the f -query is applied to a superposition
of computational basis states as

∑
a,b

αa,b |a⟩ |b⊕ f(a)⟩ |0m⟩ =
(∑
a,b

αa,b |a⟩ |b⊕ f(a)⟩
)
|0m⟩ . (243)

The garbage register ends end up in a product state with the other registers.
Computing the function this way roughly doubles the number of gates needed.

21.5.4 How to compute the Fourier transform Fp−1

Another issue is how to compute the Fourier transform modulo p − 1. It’s an ex-
ponentially large matrix, and we need to compute it with a polynomial number of
elementary gates acting on n qubits.

In fact, for modulus p − 1, computing Fp−1 is tricky (references in section 19.4).
Shor’s algorithm doesn’t actually compute Fp−1. Rather, it uses a Fourier transform
with modulus a power of 2, which was shown to be easy to compute efficiently in
section 19.3. The power of 2 is set so as to be close to p− 1 (within a factor of 2).

166

So Shor’s algorithm uses the “wrong” Fourier transform. But it’s not too wrong.
Shor uses careful error analysis to show that, if the modulus is only off by a factor of
two then the resulting wrong output state of the circuit is not too wrong. The result
of the measurement still succeeds with some constant probability. I won’t go into the
details of this error analysis here. If you would like to see these details, you can find
them in section 6 of Shor’s paper22 (https://arxiv.org/abs/quant-ph/9508027).

22P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer”, SIAM Journal on Computing, Vol. 26, No. 5, pp. 1484–1509, October 1997.

167

https://arxiv.org/abs/quant-ph/9508027

22 Phase estimation algorithm
In this section, we are going to investigate the phase estimation problem, which in-
volves finding an eigenvalue of an unknown unitary operation, given as a black-box.
This is an abstract problem that turns out to be a powerful algorithmic primitive.

22.1 A simple introductory example
Let U be an n-qubit unitary and |ψ⟩ be an eigenvector of U with eigenvalue either
+1 or −1. Suppose that we’re given a controlled-U gate as a black-box

Figure 158: A controlled-U gate as a black box.

and we are also given n qubits that are in state |ψ⟩. We’re given no other information
about U . Our controlled-U gate is essentially a black-box. Also, we’re given no
information about what state |ψ⟩ is. All we know is that |ψ⟩ is an eigenvector of U
with eigenvalue λ ∈ {+1,−1}. Our goal is to determine whether λ is +1 or −1.

It turns out that we can solve this problem with just one single query to the
controlled-U gate. I’d like to you to think about how this can be done. What state
should you set the control qubit to? What state should you set the n target qubits
to? Now is a good time to stop reading and think about this ...

So how did it go? Did you come up with a quantum circuit for this? If you did
not then I’d like to urge you to try again. The solution is a pretty simple circuit.
And here is a hint: it’s similar to the very first quantum algorithm that we saw, for
Deutsch’s problem. So please give it another shot ...

Spoiler alert: a solution is on the next page.

168

Here’s a quantum circuit that works.

Figure 159: Quantum circuit determining the eigenvalue of U in the special case.

Let’s trace through this to see how it works.

State at stage ❶

Applying H to the control qubit results in the state(
1√
2 |0⟩+ 1√

2 |1⟩
)
|ψ⟩ = 1√

2 |0⟩ |ψ⟩+ 1√
2 |1⟩ |ψ⟩ . (244)

State at stage ❷

After the controlled-U gate, the state is

1√
2 |0⟩ |ψ⟩+ 1√

2 |1⟩U |ψ⟩ = 1√
2 |0⟩ |ψ⟩+ 1√

2 |1⟩λ |ψ⟩ (245)

=
(

1√
2 |0⟩+ 1√

2λ |1⟩
)
|ψ⟩ . (246)

Notice that, since λ ∈ {+1,−1}, the control qubit is in either the state |+⟩ or state
|−⟩ (depending in λ).

State at stage ❸

It follows that, when H is applied again to the control qubit becomes|0⟩ if λ = +1
|1⟩ if λ = −1.

(247)

We have just solved a special case of the phase estimation problem.
I will show you how the general case is defined—and then we’ll see that it turns

out not to be not that much harder than this case to solve. In order to define the
phase estimation problem in full generality, we first need to extend our notion of a
controlled-U gate.

169

22.2 Multiplicity controlled-U gates
Let’s begin with a review of what a standard controlled-U gate is.

Figure 160: Controlled-U gate.

The unitary matrix is the block matrix[
I 0
0 U

]
. (248)

When the control qubit is in computational basis state |a⟩ and the target qubit is
in state |ψ⟩, we can write the output state of the target qubit succinctly as Ua |ψ⟩
(where U0 = I means “do nothing”, and U1 = U means “apply U”). So, in the
computational basis, the control qubit is a number which indicates how many times
U should be applied to the target: 0 times or 1 time.

We can define a more general type of controlled-U gate where there are ℓ control
qubits, and the number of times that U is applied is an ℓ-bit integer.

Figure 161: Multiplicity-controlled-U gate.

In this case, U can be applied zero times, U can be applied once, twice, three times,
all the way up to 2ℓ − 1 times. For example, if ℓ = 5 and the control qubits are in
state |11010⟩ then U gets applied 26 times. Why 26? because 11010 is the number
26 in binary.

170

The unitary matrix of this kind of controlled-U gate is the block matrix

I 0 0 · · · 0
0 U 0 · · · 0
0 0 U2 · · · 0
...
0 0 0 · · · U2ℓ−1


. (249)

Let’s call this a multiplicity-controlled-U gate. In the computational basis, the state
of the control qubits specifies how many times U should be applied.

As an aside, I want to distinguish this kind of gate from a different generalization
of a controlled-U that we saw previously in the Toffoli gate.

22.2.1 Aside: multiplicity-control gates vs. AND-control gates

For the Toffoli gate, there are two control qubits and the unitary U is the Pauli X
gate (a.k.a. NOT gate). For the Toffoli gate, the NOT is applied to the target qubit
if both control qubits are |1⟩, and nothing happens for the other computational basis
states |00⟩, |01⟩, |10⟩.

Our notation distinguishes between these controlled gates and our multiplicity-
controlled gate.

Figure 162: AND-controlled-U gate.

When we have a separate dot at each control qubit, that means that the U gets
applied once if all control qubits are in state |1⟩ and, for other computational basis
states, nothing happens. So the unitary matrix is the block matrix

I 0 · · · 0 0
0 I · · · 0 0
...
0 0 · · · I 0
0 0 · · · 0 U


. (250)

171

Our multiplicity-controlled-U gates are denoted differently, with one single dot, that’s
stretched out so as to cover all of the control qubits (figure 161).

22.3 Definition of the phase estimation problem
Now, we can define the phase estimation problem in generality.

Let U be an arbitrary unknown unitary operation acting on n qubits. Let |ψ⟩ be
an eigenvector of U . But now the eigenvalue is not restricted to being +1 or −1. The
eigenvalue can be any complex number on the unit circle. So the eigenvalue is of the
form e2πiφ, where φ can be any element of the interval [0, 1].

Definition 22.1 (Phase estimation problem). In the phase estimation problem we
are given: a black-box for a multiplicity-controlled-U gate with ℓ control qubits and

Figure 163: Caption.

one copy of state |ψ⟩, which is an eigenvector of U with eigenvalue e2πiφ for some
φ ∈ [0, 1). The goal is to determine an ℓ-bit approximation of the value of φ. (Since
φ can take on a continuum of values, determining it exactly is unreasonable.)

There’s an exact case of this where φ is an ℓ-bit binary fraction. This case is
simpler to work with than the general case. An ℓ-bit binary fraction is a rational
number with 2ℓ in the denominator and an integer a ∈ {0, 1, . . . , 2ℓ − 1} in the
numerator. In other words, the binary representation of φ can be written exactly
with only ℓ bits occurring after the radix point. For example, for ℓ = 6,

19
26 = 0.010011. (251)

The general case is where φ is arbitrary. For example, if φ = 1
3 then

ϕ = 0.01 = 0.010101010101 . . . (252)

(where the pattern repeats forever). That’s not a binary fraction for any ℓ. The
8-bit approximation of this number is 0.01010101 (it’s 1

3 rounded down to the closest

172

8-bit binary fraction). The 7-bit approximation of this number is 0.0101011 (note
that last bit is 1, not 0, because we round up to the closest 7-bit binary fraction.
We always round φ towards the ℓ-bit binary fraction that’s closest. Sometimes that
means rounding down and sometimes that means rounding up.

For our applications, we will want to solve the general case of phase estimation,
but it’s conceptually useful to to first solve this problem in the exact case.

22.4 Solving the exact case
Here we will solve the phase estimation problem in the exact case—which turns out
to be quite easy. In the exact case,

φ = a

2ℓ = 0.a1a2 . . . aℓ , (253)

where a ∈ {0, 1, . . . , 2ℓ − 1}. Note that the eigenvalue can be written as

e2πiφ = e2πia/2ℓ =
(
e2πi/2ℓ

)a
= ωa, (254)

where ω is a primitive 2ℓ-th root of unity. It clarifies things to think of the eigenvalue
as ωa in this manner. Note that the goal of determining the eigenvalue parameter φ
is now equivalent to determining the value of the number a.

We’ll start by putting the control qubits into a uniform superposition of all com-
putational basis sates on ℓ qubits, which is accomplished by ℓ Hadamard transforms.
And then we’ll perform the multiplicity-controlled-U gate.

Figure 164: Caption.

Let’s determine the output state of this quantum circuit.

173

State at stage ❶

The H⊗ℓ operation on |0⟩⊗ℓ produces that state(
|0...00⟩+ |0...01⟩+ |0...10⟩+ |0...11⟩+ · · ·+ |1...11⟩

)
|ψ⟩

=
(
|0⟩+ |1⟩+ |2⟩+ |3⟩+ · · ·+

∣∣∣2ℓ−1
〉)
|ψ⟩ . (255)

State at stage ❷

The multiplicity-controlled-U gate changes the state to

|0⟩ |ψ⟩+ |1⟩U |ψ⟩+ |2⟩U2 |ψ⟩+ |3⟩U3 |ψ⟩+ · · ·+
∣∣∣2ℓ−1

〉
U2ℓ−1 |ψ⟩

= |0⟩ |ψ⟩+ |1⟩ωa |ψ⟩+ |2⟩ω2a |ψ⟩+ |3⟩ω3a |ψ⟩+ · · ·+
∣∣∣2ℓ − 1

〉
ω(2ℓ−1)a |ψ⟩ (256)

=
(
|0⟩+ ωa |1⟩+ ω2a |2⟩+ ω3a |3⟩+ · · ·+ ω(2ℓ−1)a

∣∣∣2ℓ−1
〉)
|ψ⟩ . (257)

Now, do you recognize this state of the first ℓ qubits? Haven’t you seen the state
|0⟩+ ωa |1⟩+ ω2a |2⟩+ · · ·+ ω(2ℓ−1)a

∣∣∣2ℓ−1
〉

before?
It’s the Fourier basis state F2ℓ |a⟩ (see Eq. (173)). Remember that our goal is

to determine a. The fact that the Fourier basis states for all the potential values of
parameter a are orthogonal is a good sign. It means that they are distinguishable
in principle. But we can also explicitly compute the value of a using a polynomial
number of gates. Can you see how?

We can compute a by applying the the inverse Fourier transform. If we apply F ∗
2ℓ

to F2ℓ |a⟩, the result is |a⟩. So our phase estimation algorithm for the exact case is
the quantum circuit in figure 165.

Figure 165: Quantum algorithm for phase estimation in the exact case.

The output of the ℓ measured qubits is a, the numerator of the binary fraction for φ,
or, equivalently, the ℓ bits of the binary representation of φ.

174

Note that the algorithm makes only one query to the multiplicity-controlled-U
gate, and all the other operations in the algorithm (the grey boxes) can be imple-
mented with a polynomial number of elementary gates (with respect to ℓ, the number
of control qubits). The dominant cost is that of computing F ∗

2ℓ , which costs O(ℓ2)
elementary gates (using the method of section 19.3).

By the way, the ℓ = 1 version of the exact case is that simple example that we
solved in section 22.1 (and in that case ω = −1).

22.5 Solving the general case
Now, what happens if we use this same algorithm for the general case, where φ can
be any real number between 0 and 1? Recall that, in that case, we need to determine
the ℓ-bit binary number that best approximates the true value of φ. We can write φ
as an ℓ-bit binary fraction plus a quantity δ that represents the remaining bits that
get rounded up23 or down. More precisely,

φ = a

2ℓ + δ, (258)

where a ∈ {0, 1, . . . , 2ℓ − 1} and

|δ| ≤ 1
2ℓ+1 . (259)

If φ gets rounded down then δ is positive; if φ gets rounded up then δ is negative. If
δ = 0, we are in the exact case. Let’s analyze what the circuit that we used for the
exact case does in the case where δ ̸= 0.

Figure 166: Quantum algorithm for phase estimation applied in the general case.

Since |ψ⟩ is an eigenvector of U , the state of the second register (the last n qubits)
does not change. All the action is with the first register (the first ℓ qubits). We trace
through the evolution of the first ℓ qubits.

23Since e2πi·1 = e2πi·0, we define distances within the interval [0, 1) with “wrap-around”, repre-
senting φ = 1 as φ = 0. By this convention, if 1− 1

2ℓ+1 < φ < 1 then φ rounds up to 0.

175

State at stage ❶

After the multiplicity-controlled-U gate, the state of the first ℓ qubits is

1√
2ℓ

2ℓ−1∑
b=0

(
e2πiφ

)b
|b⟩ = 1√

2ℓ
2ℓ−1∑
b=0

e
2πi
(

a

2ℓ +δ
)
b |b⟩ (260)

= 1√
2ℓ

2ℓ−1∑
b=0

ωabe2πiδb |b⟩ , (261)

where ω = e2πi/2ℓ . The effect of δ is highlighted in red. If δ = 0 then e2πiδb = 1 and
the expression is F2ℓ |a⟩, which is consistent with what we obtained for the exact case.

State at stage ❷

After applying the inverse Fourier transform, the state becomes

F ∗
2ℓ

 1√
2ℓ

2ℓ−1∑
b=0

ωabe2πiδb |b⟩

 = 1√
2ℓ

2ℓ−1∑
b=0

ωabe2πiδb

 1√
2ℓ

2ℓ−1∑
c=0

ω−bc |c⟩

 (262)

= 1
2ℓ

2ℓ−1∑
c=0

2ℓ−1∑
b=0

ωb(a−c)e2πiδb

 |c⟩ . (263)

Now, recall that the correct outcome for the phase estimation problem is a (the bits
of an ℓ-bit approximation of φ). What’s the probability that measuring the state in
Eq. (263) results in outcome a? To figure this out, we look at the amplitude of the
|a⟩ term in this expression. Notice that if we substitute a for c then the factor ωb(a−c)

simplifies to ω0 = 1. So the amplitude of the |a⟩ term in Eq. (263) is the sum

1
2ℓ

2ℓ−1∑
b=0

e2πiδb. (264)

As a reality check, what is this sum in the exact case, where δ = 0? Can you see
why it’s 1? This makes sense, because, for the exact case, we’ve already seen that
the measurement outcome is a with probability 1.

Returning to our case of interest, where 0 ̸= |δ| ≤ 1/2ℓ+1, we’re interested in the
absolute value squared of the amplitude in Eq. (264). At first glance, the sum may
look a little daunting, but there’s a closed-form expression for it. Can you see what
it is?

176

The sum in Eq. (264) is a geometric series.24 Therefore, we can use the formula
for the sum of a geometric series to obtain

1
2ℓ

2ℓ−1∑
b=0

e2πiδb = 1
2ℓ

1− (e2πiδ)2ℓ

1− e2πiδ . (265)

What we’re going to do next is use some simple geometric reasoning to show that the
absolute value of this expression is at least 2

π
.

Lemma 22.1. If δ is such that 0 ̸= |δ| ≤ 1/2ℓ+1 then

1
2ℓ

∣∣∣∣∣∣1− (e2πiδ)2ℓ

1− e2πiδ

∣∣∣∣∣∣ ≥ 2
π
. (266)

Proof. To lower-bound the expression, we’ll show that the numerator is not too small
and the denominator is not too large. We give the proof for the case where δ > 0
(the case where δ < 0 is similar, with upside-down versions of figures 167 and 168).

First, let’s show that the denominator is not too large. Figure 167 shows 1 and
e2πiδ as points in the complex plane.

Figure 167: Geometric view of |1− e2πiδ| as the distance between two points in C.

The length of the red line segment is |1 − e2πiδ|. The length of the red line is upper
bounded by the arc-length between the two points, which is 2πδ. Therefore, we can
upper bound of the denominator as

|1− e2πiδ| ≤ 2πδ. (267)

Next, we’ll lower bound the numerator. In this case, |1 − e2πiδ2ℓ | is the length of
the red line in figure 168.

Figure 168: Geometric view of |1− e2πiδ2ℓ | as the distance between two points in C.

24For s ̸= 1, the formula for the sum of the geometric series 1 + s+ s2 + · · ·+ sm−1 = 1− sm

1− s .

177

Let’s also consider the arc length between the two points, which is 2πδ2ℓ. Note that
the arc-length is not a lower bound of the distance—it’s longer than the line segment.
Think of the arc-length as the length of the line times some stretch-factor. How big is
the stretch-factor? If the line segment is short then the stretch-factor is just slightly
larger than 1 (in that case, the line and arc have almost the same lengths).

But the line and arc need not be short. The extremal case is where δ is as large
as possible: δ = 1/2ℓ+1. In that case, (e2πiδ)2ℓ = eπi = −1, so the length of the line
is 2 and the length of the arc is π. Thus, the maximum possible stretch-factor is π/2.

Therefore, we can lower bound the length of the line by the arc-length times 2/π.
Multiplying the arc-length by the reciprocal of the maximum stretch-factor compen-
sates for how much longer the arc-length can be than the line segment. Therefore,
the numerator is lower bounded as

|1− e2πiδ2ℓ | ≥ 2πδ2ℓ
(2
π

)
= 4δ2ℓ. (268)

Now, we can substitute in our bounds in Eq. (267) and Eq. (268) for the numerator
and the denominator to obtain

1
2ℓ

∣∣∣∣∣∣1− (e2πiδ)2ℓ

1− e2πiδ

∣∣∣∣∣∣ ≥ 1
2ℓ

4δ2ℓ
2πδ = 2

π
. (269)

■

This means that, if we measure (in the computational basis), we get the correct
answer a with probability at least 4/π2 = 0.405... (squaring the amplitude). That’s
slightly more than 40%. This might not seem like a very high success probability.
But, for our purposes, what’s important is that it’s a constant (independent of ℓ
and n). In the contexts where we will use phase estimation to achieve something else
(such as to factor a number), we will be able to amplify the success probability by
repeating the entire process a few times.

In summary, for the phase estimation problem, you are given an multiplicity-
controlled-U gate with ℓ control-qubits and a state |ψ⟩ that’s an eigenvector of U
with eigenvalue e2πiφ. Your goal is to find an ℓ-bit approximation of φ. The following
quantum circuit solves this problem with success probability at least 4

π2 = 0.405

178

Figure 169: Summary of phase-estimation algorithm for approximating the eigenvalue e2πiφ of |ψ⟩.

The algorithm makes one query to the multiplicity-controlled-U gate and has O(ℓ2)
elementary gates (the dominant cost being the implementation of F ∗

2ℓ).

22.6 The case of superpositions of eigenvectors
Before ending this section, I’d like to bring your attention to a slightly different
scenario. Suppose that, instead of being given an eigenvector of U , we’re given a
superposition of two eigenvectors with different eigenvalues.

Suppose that we’re provided with a state of the form α1 |ψ1⟩+ α2 |ψ2⟩, where:
• |ψ1⟩ is an eigenvector of U with eigenvalue e2πiφ1 ,

• |ψ2⟩ is an eigenvector of U with eigenvalue e2πiφ2 ,

• |α1|2 + |α2|2 = 1, and φ1 ̸= φ2.
What happens if we run our phase estimation algorithm with this state in the target
register?

Figure 170: Scenario where input to phase algorithm is a superposition of two eigenvectors.

Exercise 22.1. For the exact case, where φ1 and φ2 are both ℓ-bit binary integers,
show that the output of the circuit in figure 170 isφ1 with probability |α1|2

φ2 with probability |α2|2.
(270)

179

So the net result is exactly the same as what occurs if, instead of a superposition of
eigenvalues, we had just randomly selected one of the eigenvectors as|ψ1⟩ with probability |α1|2

|ψ2⟩ with probability |α2|2
(271)

and then input the selected eigenvector to the target register.
That’s for the exact case. For the general case, it’s similar, with the statement

of the result qualified as “with success probability at least 4/π2.” Also, although I’ve
described the case of a superposition of two eigenvectors, there’s nothing so special
about two. There are similar results for the case of superpositions of more than two
eigenvectors.

180

23 The order-finding problem

23.1 Greatest common divisors and Euclid’s algorithm
In section 24, I will show you quantum algorithms for two problems: one is called
the order-finding problem and the other is the factoring problem. I will show you how
these algorithms can be based on the framework of the phase estimation problem that
we saw in section 22.

In the present section, I will review some basics about divisors, common divisors,
and the greatest common divisor of two integers.

Of course, we know that factoring a number x (a positive integer) is about finding
its divisors (where the divisors are the numbers that divide x). If we have two
numbers, x and y, then the common divisors of x and y are the numbers that divide
both of them. For example, for the numbers 28 and 42 the common divisors are: 1,
2, 7, and 14. (4 is not a common divisor because, although 4 divides 28, it does not
divide 42.)

Definition 23.1 (greatest common divisor (GCD)). For two numbers x and y, their
greatest common divisor is the largest number that divides both x and y. This is
commonly denoted as gcd(x, y).

The GCD of 28 and 42 is 14. What is the GCD of 16 and 21?
The answer is 1, since there is no larger integer that divides both of them.

Definition 23.2 (relatively prime). We say that numbers x and y are relatively prime
if gcd(x, y) = 1. That is, they have no common divisors, except the trivial divisor 1.

Note that 16 and 21 are not prime but they are relatively prime.
Superficially, the problem of finding common divisors resembles the problem of

finding divisors—which is the factoring problem. If x and y are n-bit numbers then
a brute-force search would have to check among exponentially many possibilities.

In fact, the problem of finding greatest common divisors is considerably easier
than factoring. It has been known for a long time that there is an efficient algorithm
for computing GCDs. By long time, I mean approximately 2,300 years! That’s how
long ago Euclid published his algorithm (now known as the Euclidean algorithm). Of
course, there were no computers back then, but Euclid’s algorithm could be carried
out by a hand calculation and it requires O(n) arithmetic operations for n-digit
numbers. This translates into a gate cost of O(n2 log n). Let’s remember that Euclid’s
GCD algorithm exists, because we’re going to make use of it.

181

Now, I’d like to briefly review a few more properties of numbers. Let m ≥ 2 be
an integer that’s not necessarily prime. Recall that Zm = {0, 1, 2, . . . ,m− 1} and

Z∗
m =

{
x ∈ Zm : x has a multiplicative inverse mod m

}
, (272)

where the latter is a group, with respect to multiplication mod m. For example,

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}. (273)

It turns out that x has a multiplicative inverse mod m if and only if gcd(x,m) = 1.
We do not prove this here, but you can see that 3, 6, and 7, and the other numbers
in Z21 that are excluded from Z∗

21 are exactly those that have non-trivial common
factors with 21.

So we have an equivalent way of defining Z∗
m as

Z∗
m =

{
x ∈ Zm : GCD(x,m) = 1

}
. (274)

Now, let’s take an element of Z∗
21 and list all of its powers. Suppose we pick 5.

The powers of 5 (50, 51, 52, ...) are

1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, . . . (275)

Notice that it’s periodic (56 = 1, and then the subsequent powers repeat the same
sequence). The period of the sequence is 6.

If we were to pick 4 instead of 5 then the period of the sequence is different. The
powers of 4 are:

1, 4, 16, 1, 4, 16, . . . (276)

so the period is 3.

Definition 23.3 (order of a ∈ Z∗
m). For any a ∈ Z∗

m define the order of a modulo m
(denoted as ordm(a)) as the minimum positive r such that ar ≡ 1 (mod m). This is
the period of the sequence of powers of a.

Related to all this, we can define the computational problem of determining ordm(a)
from m and a. This problem has an interesting relationship to the factoring problem.

182

23.2 The order-finding problem and its relation to factoring
Definition 23.4 (order-finding problem). The input to the order-finding problem is
two n-bit integers m and a, where m ≥ 2 and a ∈ Z∗

m. The output is ordm(a), the
order of a modulo m.

A brute-force algorithm for order-finding is to compute the sequence of powers of a
(a, a2, a3, . . .) until a 1 is reached. That can take exponential-time when the mod-
ulus is an n-bit number because the order can be exponential in n. Each power of
a can be computed efficiently by the repeated-squaring trick, but there are poten-
tially exponentially many different powers of a to check. In fact, there is no known
polynomial-time classical algorithm for the order-finding problem.

But why should we care about solving the order-finding problem efficiently? It
might come across as an esoteric problem in computational number theory. One
reason to care is that the factoring problem reduces to the order-finding problem.
If we can solve the order finding-problem efficiently then we can use that to factor
numbers efficiently.

What I’m going to do next is show how any efficient algorithm (classical or quan-
tum) for the order-finding problem can be turned into an efficient algorithm for fac-
toring. This is true for the general factoring problem; however, for simplicity, I’m
only going to explain it for the case of factoring numbers that are the product of two
distinct primes. That’s the hardest case, and the case that occurs in cryptographic
applications.

Let our input to the factoring problem be an n-bit number m, such that m = pq,
where p and q are distinct primes. Our goal is to determine p and q, with a gate-cost
that is polynomial in n.

The first step is to select an a ∈ Z∗
m and use our quantum order-finding algorithm25

as a subroutine to compute r = ordm(a). Note that, since ar ≡ 1 (mod m), it holds
that ar − 1 is a multiple of m. In other words, m divides ar − 1.

Now, the order r is either an even number or an odd number (it can go either way,
depending on which a we pick). Something interesting happens when r is an even
number. If r is even then ar is a square, with square root ar/2, and we can express
ar − 1 using the standard formula for a difference-of-squares as

ar − 1 = (ar/2 + 1)(ar/2 − 1). (277)
25In the next section, we’ll see that there is an efficient quantum algorithm for the order-finding

problem that we can use for this.

183

Since m divides ar−1 and m = pq, it follows that p and q each divide ar−1. It’s well
known that if a prime divides a product of two numbers then it must divide one of
them. Also, it’s not possible that both p and q divide the factor ar/2 − 1. Why not?
Because that would contradict the fact that r is, by definition, the smallest number
for which ar ≡ 1 (mod m). Therefore, there are three possibilities for the factors that
p and q divide:

1. p divides ar/2 + 1 and q divides ar/2 − 1.

2. q divides ar/2 + 1 and p divides ar/2 − 1.

3. p and q both divide ar/2 + 1.
In the first two cases, p and q divide different factors; in the third case, they divide
the same factor. Our reduction works well when r is even and p and q divide different
factors. With this in mind, let’s define a to be “lucky” when these conditions occur.

Definition 23.5 (of a lucky a ∈ Z∗
m). With respect to some m ≥ 2, define an a ∈ Z∗

m

to be lucky if r = ordm(a) is an even number and m does not divide ar/2 + 1.

Given an a ∈ Z∗
m that is lucky in the above sense, it holds that

gcd(ar/2 + 1,m) ∈ {p, q}. (278)

This enables us to easily factor m by computing gcd(ar/2 + 1,m). The repeated-
squaring trick enables us to compute ar/2 with a gate cost of O(n2 log n) and Euclid’s
algorithm enables us to compute gcd(ar/2 + 1,m) with a gate cost of O(n2 log n).

The outstanding matter is to find a lucky a ∈ Z∗
m. How do we do that? Unfortu-

nately, there is no efficient deterministic method known for finding a lucky a ∈ Z∗
m.

However, it’s known that, for any m ≥ 2, the number of lucky a ∈ Z∗
m is quite large.

Lemma 23.1. For all m = pq, where p and q are distinct primes, at least half of the
elements of Z∗

m are lucky.

So what we can do is randomly select an a ∈ Z∗
m. The selection will be lucky with

probability at least 1
2 , and therefore the resulting procedure produces a factors of m

with probability at least 1
2 . And we can check whether the output of the procedure is a

factor of m. We can repeat the process several times to boost the success probability.
So that’s how an efficient algorithm for the order-finding problem can be used to

factor a number efficiently. Now we can focus our attention on finding an efficient
algorithm for order-finding.

184

24 Shor’s algorithm for order-finding
In this section, I will first show you an efficient quantum algorithm for the order-
finding problem. And then, in section 25, I will show you an efficient algorithm for
factoring (using the reduction to the order-finding algorithm from section 23.2).

Let’s begin with an input instance to the order-finding problem, m and a, which
are both n-bit numbers and for which a ∈ Z∗

m. The goal of the algorithm is to
determine r = ordm(a).

24.1 Order-finding in the phase estimation framework
Our approach makes use of the framework of the phase-estimation algorithm (ex-
plained in section 22). Recall that, for this framework, we need a unitary operation
and an eigenvector. Our unitary operation is Ua,m defined such that, for all b ∈ Z∗

m,

Ua,m |b⟩ = |ab⟩ (279)

(where by ab we mean the product of a and b modulo m). As for the eigenvector,
we’ll begin with

|ψ1⟩ = 1√
r

(
|1⟩+ ω−1 |a⟩+ ω−2|a2⟩+ · · ·+ ω−(r−1)|ar−1⟩

)
(280)

= 1√
r

r−1∑
j=0

ω−j
∣∣∣aj〉 , (281)

where ω = e2πi(1/r) (a primitive r-th root of unity).
To see why |ψ1⟩ is an eigenvector of Ua,m, consider what happens if we apply Ua,m

to |ψ1⟩. Note that Ua,m maps each |ak⟩ to |ak+1⟩, where |ar⟩ = |1⟩. Therefore,

Ua,m |ψ1⟩ = 1√
r

r−1∑
j=0

ω−j
∣∣∣aj+1

〉
(282)

= 1√
r

r−1∑
j=0

ω ω−(j+1)
∣∣∣aj+1

〉
(283)

= ω |ψ1⟩ . (284)

Therefore |ψ1⟩ is an eigenvector of Ua,m with eigenvalue ω = e2πi(1/r). What’s in-
teresting about this is that, if we can estimate the eigenvalue’s parameter 1/r with
sufficiently many bits of precision, then we can deduce what r is. In order to do this
using the phase estimation algorithm, we need to efficiently simulate a multiplicity-
controlled-Ua,m gate and also to construct the state |ψ1⟩.

185

24.1.1 Multiplicity-controlled-Ua,m gate

Here I will show you a rough sketch of how to efficiently compute a multiplicity-
controlled-Ua,m gate. Consider the mapping of the multiplicity-controlled-Ua,m gate
with ℓ control qubits.

Figure 171: Multiplicity-controlled-Ua,m gate.

For each x ∈ {0, 1}ℓ ≡ {0, 1, . . . , 2ℓ − 1} and b ∈ Z∗
m, this gate maps |x⟩ |b⟩ to

|x⟩ (Ua,m)x |b⟩ = |x⟩ |axb⟩ (285)

(which is equivalent to Ua,m being applied x times).
We can compute this efficiently(with respect to ℓ and n) by using the repeated

squaring trick to exponentiate a. The number of gates is O(ℓn log n).
� A word of caution: Note that, in general, if we can efficiently compute some

unitary U then it does not always follow that we can compute a multiplicitly-
controlled-U gate efficiently. The Ua,m that arises here has special structure that
permits this.

24.1.2 Precision needed to determine 1/r

Now, how many bits of precision ℓ should we use in our phase estimation of 1
r
? It

should be sufficient to uniquely determine 1
r
. We know that r ∈ {1, 2, 3, . . . ,m} and

the corresponding reciprocals are
{

1
1 ,

1
2 ,

1
3 , . . . ,

1
m

}
. The positions of these reciprocals

on the real line are shown in figure 172.

Figure 172: The positions of
{ 1

1 ,
1
2 ,

1
3 , . . . ,

1
m

}
on the real line.

186

The smallest gap occurs between 1
m

and 1
m−1 . The size of this gap is

1
m− 1 −

1
m

= m− (m− 1)
m(m− 1) = 1

m(m− 1) ≈
1
m2 . (286)

This means the approximation must be within 1
2

1
m2 of 1

r
. Since m is an n-bit number,

m ≈ 2n and 1
2

1
m2 ≈ 1

22n+1 which corresponds to setting ℓ = 2n+ 1.

24.1.3 Can we construct |ψ1⟩?

So far so good. But to efficiently implement the phase estimation algorithm, we also
need to be able to efficiently create the eigenvector |ψ1⟩. Of course, if we already
know what r is, then this is straightforward. But the algorithm does not know r at
this stage; r is what the algorithm is trying to determine.

It seems very hard to construct this state without knowing what r is. This is
a serious problem; it’s not known how to construct this state directly. Instead of
producing that state |ψ1⟩, our way forward will be to use a different state.

24.2 Order-finding using a random eigenvector |ψk⟩

Let’s consider alternatives to the eigenvector |ψ1⟩ = 1√
r

r−1∑
j=0

ω−j
∣∣∣aj〉 (with ω = e2π(1

r
)).

Other eigenvectors of Ua,m are

|ψ2⟩ = 1√
r

r−1∑
j=0

ω−2j
∣∣∣aj〉 (287)

... ...

|ψk⟩ = 1√
r

r−1∑
j=0

ω−kj
∣∣∣aj〉 (288)

... ...

|ψr⟩ = 1√
r

r−1∑
j=0

ω−rj
∣∣∣aj〉 . (289)

For each k ∈ {1, 2, . . . , r}, the eigenvalue of |ψk⟩ is e2π(k
r

).
Suppose that we are able to devise an efficient procedure that somehow produces

a random sample from the r different eigenvectors (where each |ψk⟩ occurrs with
probability 1

r
). Can we deduce r from this? There are two versions of this scenario,

depending on whether or not the procedure reveals k.

187

24.2.1 When k is known

First, let’s suppose that the output of the procedure is the pair (k, |ψk⟩), with each
possibility occurring with probability 1

r
. In this case, we can use the phase estimation

algorithm (with the random |ψk⟩) to get an approximation of k
r

and then divide the
approximation by k to turn it into an approximation of 1

r
, and proceed from there as

with the case of |ψ1⟩. The details of this case are straightforward.

24.2.2 When k is not known

Now, let’s change the scenario slightly and assume that we have an efficient procedure
that somehow generates a random |ψk⟩ (uniformly distributed among the r possibili-
ties) as output—but without revealing k. Can we still extract r from |ψk⟩ alone?

Using the phase estimation algorithm, we can obtain a binary fraction 0.b1b2 . . . bℓ
that estimates k

r
within ℓ-bits of precision (where we can set the value of ℓ). But how

can we determine k and r from this? This is a tricky problem, because we don’t know
what k to divide by in order to turn an approximation of k

r
into an approximation

of 1
r
. But there is a way to do this using the fact that we have an upper bound m on

the denominator.
Let’s carefully restate the situation as follows. We have an n-bit integer m and

we are also given an ℓ-bit approximation 0.b1b2 . . . bℓ of one of the elements of{
k

r

∣∣∣∣ where r ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , r}
}
. (290)

Our goal is to determine which element of the set is being approximated.
Consider the example where m = 8 (so the maximum denominator is m). Fig-

ure 173 shows all the candidates for k
r
.

Figure 173: The set of candidates for k
r in the m = 8 case.

188

Note that denominators 2, 3, and 4 are covered by the cases of 6 and 8 in the
denominator. Figure 174 shows what all these candidates look like when they’re
combined on one line.

Figure 174: The set of candidates for k
r in the m = 8 case (shown combined).

Now, suppose that we are able to obtain a 7-bit approximation of one of these candi-
dates. Say it’s 0.0110011. This number is exactly 51/128, but that’s not one of the
candidates. The rational number 2

5 is the unique candidate within distance 1
27 from

0.0110011.
In general, how good an approximation do we need in order to single out a

unique k
r
? This depends on the smallest gap among the set of candidates. It turns

out that the gap is smallest at the ends: 1
m−1−

1
m
≈ 1

m2 . Therefore, setting ℓ = 2n+1
provides the correct level of precision to guarantee that there is a unique rational
number k

r
that’s close to the approximation.

But how do we find the rational number? If m is an n-bit number then there are
exponentially many candidates to search among. So a brute-force search is not going
to be efficient.

It turns out that there is a known efficient algorithm that’s tailor-made for this
problem, called the continued fractions algorithm.26 The continued-fractions algo-
rithm enables us to determine k and r efficiently from a (2n + 1)-bit approximation
of k

r
.
But perhaps you’ve already noticed that there is a major problem with all this:

that of reduced fractions.

24.2.3 A snag: reduced fractions

The problem of reduced fractions is that different k and r can correspond to exactly
the same number. For example, if k = 34 and r = 51 then k

r
= 34

51 = 2
3 . There is no

way to distinguish between 34
51 and 2

3 . The continued fractions algorithm only provides
26The continued fractions algorithm was discovered in the 1600s by Christiaan Huygens, a Dutch

physicist, astronomer, and mathematician who made several amazing contributions to diverse fields
(for example, he discovered Saturn’s rings, and he contributed to the theory of how light propagates).

189

a k and r in reduced form, which does not necessarily correspond to the actual r. If
it happens that gcd(k, r) = 1 then this problem does not occur. In that case, the
fraction is already in reduced form.

Recall that, in our setting, we are assuming that k is uniformly sampled from the
set {1, 2, . . . , r}. What can we say about the probability of such a random k being
relatively prime to r? This probability is the ratio of the size of the set Z∗

r to the set
Zr. The ratio need not be constant, but is not too small. It is known to be at least
Ω(1/ log log r) in size. When the modulus is n-bits, this is at least Ω(1/ log n).

This means that O(log n) repetitions of the process is sufficient for the probability
of a k that’s relatively prime to r to arise with constant probability. Procedurally, in
the case where gcd(k, r) > 1, the result is an r that’s smaller than the order (which
can be detected because in such cases ar mod m ̸= 1). The O(log n) repetitions just
introduces an extra log factor into the gate cost.

In fact, we can do better than that. If we make two repetitions then there are
two rational numbers k1

r
and k2

r
(where r is the order, which is unknown to us). Call

the reduced fractions that we get from the continued fractions algorithm k′
1
r′

1
and k′

2
r′

2
(where r is a multiple of r′

1 and of r′
2). It turns out that, with constant probability,

the least common multiple of r′
1 and r′

2 is r. So, with just two repetitions of the phase
estimation algorithm, we can obtain the order r with constant success probability
(independent of n), assuming we use an independent random eigenvector in each run.

24.2.4 Conclusion of order-finding with a random eigenvector

Now, lets step back and see where we are. We’re trying to solve the order-finding
problem using the phase-estimation algorithm.

We have a multiplicity-controlled-Ua,m gate that’s straightforward to compute
efficiently.

Regarding the eigenvector, if we could construct the eigenvector state |ψ1⟩ then
we could determine the order r from that. Unfortunately, we don’t know how to
generate the state |ψ1⟩ efficiently. We also saw that: if we could generate a randomly
sampled pair (k, |ψk⟩) then we could also determine r from that. Unfortunately, we
don’t know how to generate such a random pair efficiently.

Next, we saw that: if we could generate a randomly sampled |ψk⟩ (without the k)
then we could still determine r from that. In that case, we had to do considerably more
work. But, using the continued-fractions algorithm and some probabilistic analysis,
we could make this work. So . . . can we generate a random |ψk⟩? Unfortunately, we

190

don’t know how to efficiently generate such a random |ψk⟩ either.
Are we at a dead end? No, in fact we’re almost at a solution! What I’ll show next

is that if, instead of generating a random |ψk⟩ (with probability 1
r

for each k), we can
instead generate a superposition of the |ψk⟩ (with amplitude 1√

r
for each k) then we

can determine r from this. And this is a state that we can generate efficiently.

24.3 Order-finding using a superposition of eigenvectors
The phase estimation algorithm was explained in section 22. Remember, at the
very end, in subsection 22.6, I discussed what happens if the target register is in a
superposition of eigenvectors? In that case, the outcome is an approximation of the
phase of a random eigenvector of the superposition, with probability the amplitude
squared. Therefore, setting the target register to state

1√
r

r∑
k=1
|ψk⟩ (291)

results in the same outcome that occurs when we use a randomly generated eigenvec-
tor state—which is the case that we previously analyzed in section 24.2. So we have
an efficient algorithm for order-finding using the superposition state in Eq. (291) in
place of an eigenvector (it succeeds with constant probability, independent of n).

24.4 Order-finding without requiring an eigenvector
How can we efficiently generate the superposition state in Eq. (291)? In fact, this is
extremely easy to do. To see how, expand the state as

1√
r

r∑
k=1
|ψk⟩ = 1

r

(
|1⟩ + ω |a⟩ + ω2

∣∣∣a2
〉

+ · · · + ωr−1
∣∣∣ar−1

〉)

+ 1
r

(
|1⟩ + ω2 |a⟩ + ω4

∣∣∣a2
〉

+ · · ·+ ω2(r−1)
∣∣∣ar−1

〉)

+ 1
r

(
|1⟩ + ω3 |a⟩ + ω6

∣∣∣a2
〉

+ · · ·+ ω3(r−1)
∣∣∣ar−1

〉)
...

+ 1
r

(
|1⟩ + ωr |a⟩+ ω2r

∣∣∣a2
〉

+ · · ·+ ωr(r−1)
∣∣∣ar−1

〉)
(292)

= |1⟩ (293)

191

where the simplification to |1⟩ is a consequence of ωr = 1 and the fact that, for all
k ∈ {1, 2, . . . , r − 1}, it holds that 1 + ωk + ω2k + · · ·+ ω(r−1)k = 0.

So we’re left with |1⟩. The n-bit binary representation of the number 1 is 00...01.
So the superposition of eigenvectors in Eq. (291) is merely the computational basis
state |00...01⟩, which is indeed trivial to construct. The quantum part of the order-
finding algorithm looks like this.

Figure 175: Caption.

The accuracy parameter ℓ is set to 2n+1. The output of the measurement is then post-
processed by the classical continued fractions algorithm, which produces a numerator
k and denominator r. After two runs, taking the least common multiple of the two
denominators, we obtain r, with constant probability. This constant probability is
based on the phase estimation algorithm succeeding, in addition to r occurring via
the continued fractions algorithm. The total gate cost is O(n2 log n).

24.4.1 A technicality about the multiplicity-controlled-Ua,m gate

In section 24.1.1, I glossed over some technical details about how the multiplicity-
controlled-Ua,m gate can be implemented. That gate is a unitary operation such that

|x, b⟩ 7→ |x, axb⟩, (294)

for all x ∈ {0, 1}ℓ and b ∈ Z∗
m. But our framework for computing classical functions

in superposition (in sections 21.5.2 and 21.5.3) is different from this. What we showed
there is that we can compute an f -query

|x, c⟩ 7→ |x⟩ |f(x)⊕ c⟩ (295)

in terms of a classical implementation of f .

192

There are two remedies. One is a separate construction for efficiently computing
the mapping in Eq. (294). Such a efficient construction exists; however, I will not
explain it here. Instead, I will show how to use a mapping of the form in Eq. (295)
instead of the mapping in Eq. (294).

Define fa,m : {0, 1}ℓ → {0, 1}n as fa,m(x) = ax. Then, since there is a classical
algorithm for efficiently computing axb mod m in terms of (x, a, b) we can efficiently
compute the mapping |x, c⟩ 7→ |x, fa,m(x)⊕ c⟩. And then we can use the circuit in
figure 176 instead of the circuit in figure 175.

Figure 176: Caption.

The outputs of the two circuits are the same because, for both circuits, the state right
after the multiplicity-controlled-Ua,m gate (in figure 175) and the state right after the
fa,m-query (in figure 176) are the same, namely

1√
2ℓ

∑
x∈{0,1}ℓ

|x⟩ |ax⟩ . (296)

193

25 Shor’s factoring algorithm
Figure 177 describes the factoring algorithm (for factoring an n-bit number m), where
the heavy lifting is done by a quantum subroutine for the order-finding problem
(section 24). The algorithm is based on the reduction of the factoring problem to the
order-finding problem which is explained in section 23.2.

1: choose a random a ∈ {1, 2, . . . ,m− 1}
2: g ← gcd(a,m)
3: if g = 1 then (case where a ∈ Z∗

m)
4: r ← ordm(a) (the quantum part of the algorithm)
5: if r is even then
6: f ← gcd(ar/2 + 1,m)
7: if f properly divides m then
8: output f
9: end if

10: end if
11: else (case where g > 1, so g is a proper divisor of m)
12: output g
13: end if

Figure 177: Factoring algorithm (using quantum algorithm for order-finding as a subroutine).

The algorithm samples uniformly from Z∗
m by sampling an a uniformly from the

simpler set {1, 2, . . . ,m − 1} and then checking whether or not gcd(a,m) = 1. If
gcd(a,m) = 1 then a ∈ Z∗

m and the algorithm proceeds. If gcd(a,m) > 1 then,
although the algorithm could randomly sample another element from {1, 2, . . . ,m−1},
that’s not necessary because, in that event, gcd(a,m) is a proper divisor of m.

In the event that a ∈ Z∗
m, the probability that a is lucky (as defined in section 23.2)

is at least 1
2 . If a is lucky then the algorithm computes gcd(ar/2 + 1,m) to obtain a

factor of m. This part can be computed by repeated squaring and Euclid’s algorithm.
The implementation cost of this algorithm is O(n2 log n) gates. Although we only

analysed this algorithm for the case where m is the product of two distinct primes,
it turns out that this factoring algorithm succeeds with probability at least 1

2 for
any number m that’s not a prime power. For the prime power case (where m = pk

for a prime p) there’s a simple classical algorithm. That algorithm can be run as a
preprocessing step to the algorithm in figure 177.

194

26 Grover’s search algorithm
In this section, I will show you Grover’s search algorithm, which solves several search
problems quadratically faster than classical algorithms. Although quadratic improve-
ment is less dramatic than the exponential improvement possible by Shor’s algorithms
for factoring and discrete log, Grover’s algorithm is applicable to a very large number
of problems.

Let’s begin by defining an abstract black-box search problem. You are given a
black-box computing a function f : {0, 1}n → {0, 1}. Here’s what the black-box looks
like in the classical case (in reversible form) and the quantum case.

Figure 178: Classical reversible f -query (left) and quantum f -query (right).

In the notation of figure 178, Bf : {0, 1}n+1 → {0, 1}n+1 is a bijection and Uf is a
unitary operation acting on n+ 1 qubits.

The goal is to find an x ∈ {0, 1}n such that f(x) = 1. This is called a satisfying
assignment (or satisfying input) because it is a setting of the logical variables so that
the function value is “true” (denoted by the bit 1). It is possible for the function to be
the constant zero function, in which case there does not exist a satisfying assignment.
In that case, the solution to the problem is to report that f is “unsatisfiable”. There
is also a related decision problem, where the goal is to simply determine whether or
not f is satisfiable. For that problem, the answer is one bit.

How many classical queries are needed to solve this search problem? It turns out
the 2n queries are necessary in the worst case. If f is queried in 2n − 1 places and
the output is 0 for each of these queries then there’s no way of knowing whether f is
satisfiable or not without querying f in the last place.

Remember back in section 17.4 we saw that there can be a dramatic difference
between the classical deterministic query cost and the classical probabilistic cost?
For the constant-vs-balanced problem, we saw that exponentially many queries are
necessary for for an exact solution, but that there is a classical probabilistic algorithm
that succeeds with probability (say) 3

4 using only a constant number of queries.
So how does the probabilistic query cost work out for this search problem? What’s

the classical probabilistic query cost if we need only succeed with probability 3
4? It

195

turns out that order 2n queries are still needed. Suppose that f is satisfiable in
exactly one place that was set at random. Then, by querying f in random places,
on average, the satisfying assignment will be found after searching half of the inputs.
So the expected number of queries is around 1

22n. Based on these ideas, it can be
proven that a constant times 2n queries are necessary to find a satisfying x with
success probability at least 3

4 . So, asymptotically, this problem is just as hard for
probabilistic algorithms as for deterministic algorithms.

What’s the quantum query cost? We will see that it’s O(
√

2n) by Grover’s algo-
rithm, which is the subject of the rest of this section. Notice that the query cost is still
exponential. The difference is only by a factor of 2 in the exponent. But this speed-up
should not be dismissed. If you’re familiar with algorithms then you are probably
aware of clever fast sorting algorithms that make O(n log n) steps instead of the O(n2)
steps that you get if you use the most obvious algorithm. The improvement is only
quadratic, but for large n this quadratic improvement can make a huge difference.
Similarly, in signal processing, there’s a famous Fast Fourier Transform algorithm,
whose speed-up is again quadratic over trivial approaches to the same problem.

A natural application of Grover’s algorithm is when a function f : {0, 1}n → {0, 1}
can be computed in polynomial-time, so there is a quantum circuit of size O(nc) that
implements an f -query.

Figure 179: Implementation of a quantum f -query by a quantum circuit.

We can use Grover’s algorithm to find a satisfying assignment with a circuit of size
O(
√

2nnc) (which is O(
√
N logcN) if N = 2n). For many of the so-called NP-complete

problems, this is quadratically faster than the best classical algorithm known.
The order-finding algorithm and factoring algorithm use interesting properties of

the Fourier transform. Grover’s algorithm uses properties of simpler transformations.

26.1 Two reflections is a rotation
Consider the two-dimensional plane. There’s a transformation called a reflection
about a line. The way it works is: every point on one side of the line is mapped to a
mirror image point on the other side of the line, as illustrated in figure 180.

196

Figure 180: The reflection about the line of each red item is shown in blue.

Now suppose that we add a second line of reflection, with angle θ between the lines.

Figure 181: Two refection lines with angle θ between them.

What happens if you compose the two reflections? That is, you apply reflection 1
and then reflection 2? Let the origin be where the two lines intersect and think of
each point as a vector to that point. Now, start with any such vector.

Figure 182: Effect of reflection 1 followed by reflection 2 on a vector.

This vector makes some angle—call it θ1—with the first line. After we perform the
first reflection, the reflected vector makes the same angle θ1 on the other side of the

197

line. The reflected vector also makes some angle with the second line. Call that
angle θ2. Notice that θ1 + θ2 = θ. Now, if we apply the second reflection then the
twice reflected vector makes an angle θ2 on the other side of the second line. So
what happened to the original vector as a result of these two reflections? It has been
rotated by angle 2θ.

Notice that the amount of the rotation depends only on θ, it does not on depend
on what θ1 and θ2 are. This is an illustration of the following lemma.

Lemma 26.1. For any two reflections with angle θ between them, their composition
is a rotation by angle 2θ.

The picture in Figure 182 is intuitive, but is not a rigorous proof. A rigorous proof
can be obtained by expressing each reflection operation as a 2 × 2 matrix, and then
multiplying the two matrices. The result will be a rotation matrix by angle 2θ. The
details of this are left as an exercise.

Exercise 26.1. Prove Lemma 26.1.

This simple geometric result will be a key part of Grover’s algorithm.

26.2 Overall structure of Grover’s algorithm
Grover’s algorithm is based on repeated applications of three basic operations.

One operation is the f -query that we’re given as a black-box.
Another operation that will be used, is one that we’ll call U0 that is defined as,

for all a ∈ {0, 1}n and b ∈ {0, 1},

U0 |a⟩ |b⟩ = |a⟩ |b⊕ [a = 0n]⟩ , (297)

where [a = 0n] denotes the predicate

[a = 0n] =
1 if a = 0n

0 if a ̸= 0n.
(298)

In other words, in the computational basis, U0 flips the target qubit if and only if the
first n qubits are all |0⟩. Our notation for the U0 gate is shown in Figure 183 (which
also shows one implementation in terms of an n-ary Toffoli gate).

198

Figure 183: Notation for U0 gate (implementable by Pauli X gates and an n-fold Toffoli gate).

A third operation that we’ll use is an n-qubit Hadamard gate, by which we mean
H⊗n (the n-fold tensor product of 1-qubit Hadamard gates). However, in this context,
we will denote this gate as H (without the superscript ⊗n).

Figure 184: Notation for H⊗n gate.

Also, we will use the Uf and U0 gates with the target qubit set state |−⟩, which causes
the function value to be computed in the phase as, for all x ∈ {0, 1}n,

Uf |x⟩ |−⟩ = (−1)f(x) |x⟩ |−⟩ (299)

U0 |x⟩ |−⟩ = (−1)[x=00...0] |x⟩ |−⟩ . (300)

Here’s what the main part of Grover’s algorithm looks like in terms of the three
basic operations.

Figure 185: Quantum circuit for Grover’s algorithm.

It starts with a preliminary step, which is to apply H to the state |0...0⟩.
Next, the sequence of operations Uf , H, U0, H is applied several times. Each

instance of this sequence, HU0HUf , is called an iteration. After the iterations, the
state of the first n qubits is measured (in the computational basis) to yield an x ∈
{0, 1}n. Then a classical query on input x is performed to check if f(x) = 1. If it is
then the algorithm has solved the search problem.

199

Here’s a summary of the algorithm in pseudocode, where k is the number of
iterations performed.

1: construct state H |00 . . . 0⟩ |−⟩
2: repeat k times:
3: apply −HU0HUf to the state
4: measure state, to get x ∈ {0, 1}n, and check if f(x) = 1

Figure 186: Pseudocode description of Grover’s algorithm (including classical post-processing).

You might notice that, in the pseudocode, a minus sign in the iteration−HU0HUf .
This is just a global phase, which has no affect on the true quantum state, but it makes
the upcoming geometric picture of the algorithm nicer.

What is k, the number of iterations, set to? This is an important issue that will
be addressed later on.

What I will show next is that Uf is a reflection and −HU0HUf is also a reflection
(and then we’ll apply Lemma 26.1 about two reflections being a rotation). The
function f partitions {0, 1}n into two subsets, A0 and A1, defined as

A1 = {x ∈ {0, 1}n : f(x) = 1} (301)

A0 = {x ∈ {0, 1}n : f(x) = 0}. (302)

The set A1 consists of the satisfying inputs to f and A0 consists of the unsatisfying
inputs to f . Let s1 = |A1| and s0 = |A0|. Then s1 + s0 = N (where N = 2n).

Note that, if f has many satisfying assignments (for example if half the inputs are
satisfying) then it’s easy to find one with high probability by just random guessing.
The interesting case is where there are very few satisfying assignments to f . To
understand Grover’s algorithm, it’s useful to focus our attention on the case where s1

is at least 1 but much smaller than N (for example, if s1 = 1 or a constant). In that
case, finding a satisfying assignment is nontrivial.

Now let’s define these two quantum states

|A1⟩ = 1√
s1

∑
x∈A1

|x⟩ (303)

|A0⟩ = 1√
s0

∑
x∈A0

|x⟩ . (304)

The states |A1⟩ and |A0⟩ make sense as orthonormal vectors as long as 0 < s1 < N .

200

Consider the two-dimensional space spanned by |A1⟩ and |A0⟩. Notice that
H |0...0⟩ (the state of the first n qubits right after the preliminary Hadamard op-
erations) resides within this two-dimensional space, since

1√
N

∑
x∈{0,1}n

|x⟩ =
√

s0
N

(
1√
s0

∑
x∈A0

|x⟩
)

+
√

s1
N

(
1√
s1

∑
x∈A1

|x⟩
)

(305)

=
√

s0
N
|A0⟩+

√
s1
N
|A1⟩ . (306)

Let θ be the angle between |A0⟩ and H |0...0⟩, as illustrated in figure 187.

Figure 187: The state H |0...0⟩ within the subspace spanned by |A0⟩ and |A1⟩.

Then cos(θ) =
√

s0
N

and sin(θ) =
√

s1
N

. In the case where 1 ≤ s1 ≪ N , the angle θ is
small and approximately

√
s1
N

.
If the system were in state |A0⟩ then measuring (in the computational basis)

would result in a random unsatisfying assignment. If the system were in state |A1⟩
then measuring would result in a random satisfying assignment. After the preliminary
step, the system is actually in state H |0...0⟩, and measuring at that point would result
in an unsatisfying assignment with high probability.

A useful goal is to somehow rotate the state H |0...0⟩ towards |A1⟩. Note that,
although the states |A0⟩ and |A1⟩ exist somewhere within the 2n-dimensional space
of all states of the first n qubits, the algorithm does not have information about what
they are. It’s not possible to directly apply a rotation matrix in the two-dimensional
space without knowing what |A0⟩ and |A1⟩ are.

The key idea in Grover’s algorithm is that the iterative step −HU0HUf consists of
two reflections in this two-dimensional space, whose composition results in a rotation.
In the analysis below, we omit the last qubit, whose state is |−⟩ and doesn’t change.
We write Uf |x⟩ = (−1)f(x) |x⟩ as an abbreviation of Uf |x⟩ |−⟩ = (−1)f(x) |x⟩ |−⟩ (and
similarly for U0).

201

The first reflection is Uf , which is a reflection about the line in the direction of
|A0⟩. Why? Because Uf |A0⟩ = |A0⟩ and Uf |A1⟩ = − |A1⟩.

The second reflection is−HU0H. This is a reflection about the line in the direction
of H |0...0⟩. To see this requires a little bit more analysis.

Lemma 26.2. −HU0H is a reflection about the line passing through H |0...0⟩.

Proof. First, note that (−HU0H)H |0...0⟩ = H |0...0⟩ because

(−HU0H)H |0...0⟩ = −HU0 |0...0⟩ (307)
= −H(− |0...0⟩) (308)
= H |0...0⟩ . (309)

Next, consider any vector v that is orthogonal to H |0...0⟩. Then Hv is orthogonal to
|0...0⟩. Therefore, U0Hv = Hv, from which it follows that −HU0Hv = −v. We have
shown that the effect of −HU0H on any vector w is to leave the component of w in
the direction of H |0...0⟩ fixed and to multiply any orthogonal component by −1. ■

Now, since each iteration −HU0HUf is a composition of two reflections, and the
angle between them is θ, the effect of −HU0HUf is a rotation by 2θ. And the effect
of k iterations is to rotate by k2θ, as illustrated in figure 188.

Figure 188: The state |0...0⟩ rotates by angle 2θ after each iteration.

What should k be set to? How many iterations should the algorithm make to move
the state close to |A1⟩? Let us begin by focusing on the case where there is one unique
satisfying input to f .

26.3 The case of a unique satisfying input
Consider the case where there is one satisfying assignment (that is, where s1 = 1). In
that case, sin(θ) = 1√

N
. Since 1√

N
is small, we have θ ≈ 1√

N
.

202

Then setting k = π
4

√
N (rounded to the nearest integer) causes the total rotation

to be approximately π
2 radians (that is, 90 degrees). The resulting state will not be

exactly |A1⟩. In most cases, |A1⟩ will be somewhere between two rotation angles. But
the state will be close to |A1⟩, so measuring will produce a satisfying assignment with
high probability (certainly at least 3

4).
The resulting algorithm finds the satisfying x with high probability and makes

O(
√
N) queries to f (one per iteration).

26.4 The case of any number of satisfying inputs
What if f has more than one satisfying input? One might be tempted to think
intuitively that the “hardest” case for the search is where there is just one satisfying
input. Finding a needle in a haystack is harder if the haystack contains a single
needle. So how well does the algorithm with k ≈ π

4

√
N iterations do when there are

more satisfying inputs? Unfortunately, it’s not very good.
Suppose that there are four satisfying inputs. Then θ ≈ 2√

N
(double the value

in the case of one satisfying input), which causes the rotation to overshoot. The
total rotation is by 180 degrees instead of 90 degrees. The state starts off almost
orthogonal to |A1⟩. Then, midway, it gets close to |A1⟩. And then it keeps on
rotating and becomes almost orthogonal to |A1⟩ again.

When there are four satisfying inputs, the ideal number of iterations is half the
number for the case of one satisfying input. More generally, when there are s satisfying
inputs, the ideal number of iterations is k ≈ π

4

√
N/s. If we know the number of

satisfying inputs in advance then we can tune k appropriately.
But suppose we’re given a black box for f without any information about the

number of satisfying inputs that f . What do we do then? For any particular setting
of k, it’s concievable that number of satisfying inputs to f is such that the total
rotation after k iterations is close to a multiple of 180 degrees.

I will roughly sketch an approach that resolves this by setting k to be a random
selection from the set

{
1, 2, . . . , ⌈π4

√
N ⌉

}
. To see how this works, let’s begin by consid-

ering again the case where there is one satisfying input. Figure 189 shows the success
probability as a function of the number iterations k, for any k ∈

{
1, 2, . . . , ⌈π4

√
N ⌉

}
.

203

Figure 189: Success probability of measurement as a function of k, the number of iterations.

The curve is sinusoidal (of the form of a sine function). In the case of a single
satisfying input, setting k = ⌈π4

√
N ⌉ results in a success probability close to 1. But

if k is set randomly then the success probability is the average value of the curve. By
the symmetry of the sine curve, the area under the curve is half of the area of the
box, so the success probability is 1

2 .
Now, let’s consider the cases of two, three or four satisfying assignments. These

cases result in a larger θ, and the corresponding success probability curves are shown
in figure 190 (they are sinusoidal curves corresponding to more total rotation).

Figure 190: Success probability function in cases of 2, 3, and 4 satisfying inputs.

By inspection, the area under each of these curves is at least 1
2 . Each curve is a 90

degree rotation, for which the average is 1
2 , followed by another rotation less than or

equal to 90 degrees, for which the average can be seen to be more than 1
2 .

But there are cases where the average is less than 1
2 . Let’s look at the case of six

satisfying inputs.

Figure 191: Success probability function in cases of 6 and 100 satisfying inputs.

204

There are two 90-degree rotations, followed by a rotation less than 90 degrees for
which the average is less than 1

2 . The average for the whole curve can be calculated
to be around 0.43. For larger numbers of satisfying inputs, the proportion of the
domain associated with the last partial rotation becomes small enough so as to be
inconsequential.

The above explains at a heurustic level why choosing k randomly within the
range results in a success probability that’s at least 0.43, regardless of the number of
satisfying assignments. That’s one way to solve the case of an unknown number of
satisfying inputs to f .

To summarize, we have a quantum algorithm that makes O(
√
N) queries and

finds a satisfying assignment with constant probability. By repeating the process a
constant number of times, the success probability can be made close to 1.

What happens if there is no satisfying assignment? In that case, the algorithm
will not find a satisfying assignment in any run and outputs “unsatisfiable.”

There’s a refined version of the search algorithm that stops early, depending on
the number of satisfying inputs. The number of queries is O

(√
N/s

)
, where s is the

number of satisfying inputs. This refined algorithm does not have information about
the value of s. When the algorithm is run, we don’t know in advance for how long it
will need to run. I will not get into the details of this refined algorithm here here.

Finally, you might wonder if Grover’s search algorithm can be improved. Could
there be a better quantum algorithm that performs the black-box search with fewer
than order

√
N queries? Say, O(N1/3) or O(logN) queries? Actually, no. It can

be proven that the above query costs are the best possible, as explained in the next
section.

205

27 Optimality of Grover’s search algorithm
In this section, I will show you a proof that Grover’s search algorithm is optimal in
terms of the number of black-box queries that it makes.

Theorem 27.1 (optimality of Grover’s algorithm). Any quantum algorithm for the
search problem for functions of the form f : {0, 1}n → {0, 1} that succeeds with
probability at least 3

4 must make Ω
(√

2n
)

queries.

In this proof, I make two simplifying assumptions. First, I assume that the function
is always queried in the phase (as occurs with Grover’s algorithm).

Figure 192: Query of f in the phase.

Second, I assume that the algorithm uses only n qubits. That is, no ancilla qubits
are used. The purpose of these simplifying assumptions is to reduce clutter. It is
very straightforward to adjust this proof to the general case, where the function is
queried in the standard way, and where the quantum algorithm is allowed to use
ancilla qubits. The more general proof will be just a more cluttered-up version of the
proof that I’m about to explain. Nothing of importance is being swept under the rug
in this simplified proof.

Under our assumptions, any quantum algorithm that makes k queries is a circuit
of the following form.

Figure 193: Form of a k query quantum circuit.

The initial state of the n qubits is |0n⟩. Then an arbitrary unitary operation U0 is
applied, which can create any pure state as the input to the first query. Then the first
f -query is performed. Then an arbitrary unitary operation U1 is applied. Then the
second f -query is performed. And so on, up the k-th f -query, followed by an arbitrary
unitary operation Uk. The success probability is the probability that a measurement
of the final state results in a satisfying input of f .

206

The quantum algorithm is the specification of the unitaries U0, U1, . . . , Uk. The
input to the algorithm is the black-box for f , which is inserted into the k query gates.
The quantum output is the final state produced by the quantum circuit.

The overall approach will be as follows. For every r ∈ {0, 1}n, define fr as

fr(x) =
1 if x = r

0 otherwise.
(310)

We’ll show that, for any algorithm that makes asymptotically fewer than
√

2n queries,
it’s success probability is very low for at least one fr.

Assume we have some k-query algorithm, specified by U0, U1, . . . , Uk. Suppose
that we insert one of the functions fr into the query gate.

Figure 194: Quantum circuit making k queries to function fr.

Call the final state |ψrk⟩. The superscript r is because this state depends on which r

is selected. The subscript k is to emphasize that k queries are made.
Now consider the exact same algorithm, run with the identity operation in each

query gate.

Figure 195: Quantum circuit with I substituted for the k queries.

Whenever the identity is substituted into a query gate, we’ll call that a blank query.
Let’s call the final state produced by this |ψr0⟩. Although the superscript r is redun-
dant for this state (because the state is not a function of r), it’s harmless and it will
be convenient to keep this superscript r in our notation. The circuit in figure 194
corresponds to the function fr. The circuit in figure 195 corresponds to the zero
function (the function that’s zero everywhere).

What we are going to show is that, for some r ∈ {0, 1}n, the Euclidean distance
between |ψrk⟩ and |ψr0⟩ is upper bounded as∥∥∥|ψrk⟩ − |ψr0⟩∥∥∥ ≤ 2k√

2n
. (311)

207

This implies that, if k is asymptotically smaller than
√

2n then the bound asymp-
totically approaches zero. If ∥ |ψrk⟩ − |ψr0⟩ ∥ approaches zero then the two states are
not distinguishable in the limit. This implies that the algorithm cannot distinguish
between fr and the zero function with constant probability.

Now let’s consider the quantum circuits in figures 194 and 195, along with some
intermediate circuits.

Figure 196: Quantum circuits with i blanks, followed by k − i queries to fr (for i ∈ {0, 1, . . . , r}).

The circuit on top makes all k queries to fr, and recall that we denote the final state
that it produces as |ψrk⟩. The next circuit uses the identity in place of the first query
and makes the remaining k − 1 queries to fr. Call the final state of this |ψrk−1⟩. The
next circuit uses the identity in place of the first two queries and makes the remaining
k − 2 queries to fr. Call the final state that this produces |ψrk−2⟩. And continue for
i = 3, . . . , k with circuits using the identity in place of the first i queries and then
making the remaining k − i queries to fr. Call the final states |ψrk−i⟩.

Note that each query where the identity is substituted (blanks query) reveals no
information about r.

Recall that our goal is to show that the ∥ |ψrk⟩ − |ψr0⟩ ∥ is small. Notice that we
can express the difference between these states as the telescoping sum

|ψrk⟩ − |ψr0⟩ =
(
|ψrk⟩ − |ψrk−1⟩

)
+
(
|ψrk−1⟩ − |ψrk−2⟩

)
+ · · ·+

(
|ψr1⟩ − |ψr0⟩

)
(312)

which implies that∥∥∥|ψrk⟩ − |ψr0⟩∥∥∥ ≤ ∥∥∥|ψrk⟩ − |ψrk−1⟩
∥∥∥+

∥∥∥|ψrk−1⟩ − |ψrk−2⟩
∥∥∥+ · · ·+

∥∥∥|ψr1⟩ − |ψr0⟩∥∥∥. (313)

208

Next, we’ll upper bound each term ∥ |ψri ⟩ − |ψri−1⟩∥ in Eq. 313. To understand the
Euclidean distance between |ψri ⟩ and |ψri−1⟩, let’s look at the circuits that produce
them.

Figure 197: Circuit with k−i blanks and i queries (top) and k−i+1 blanks and i−1 queries (bottom).

Notice that both computations are identical for the first k− i blank queries. We can
write the state at stage ❶ (for both circuits) as∑

x∈{0,1}n

αi,x |x⟩ , (314)

where of course the state is a unit vector in Euclidean norm (a.k.a, the 2-norm)∑
x∈{0,1}n

|αi,x|2 = 1. (315)

These states make sense for each i ∈ {1, . . . , k}, and they are independent of r.
It’s interesting to consider what happens to the state at the next step. For the

bottom computation, nothing happens to the state, since the identity is performed
in the query. For the top computation, a query to fr is performed. Since fr takes
value 1 only at the point r, the fr-query in the phase negates the amplitude of |r⟩
and has no effect on the other amplitudes of the state. Therefore, the state of the top
computation at stage ❷ is ∑

x∈{0,1}n

(−1)[x=r]αi,x |x⟩ . (316)

The difference between the state in Eq. (314) and the state in Eq. (316) is only
in the amplitude of |r⟩, which is negated in Eq. (316). So, at stage ❷ the Euclidean
distance between the states of the two circuits is |αr,i − (−αr,i)| = 2|αr,i|.

209

Now let’s look at what the rest of the two circuits in figure 197 do. The remain-
ing steps for each circuit are the same unitary operation. Since unitary operations
preserve Euclidean distances, this means that∥∥∥|ψri ⟩ − |ψri−1⟩

∥∥∥ = 2|αi,r|. (317)

And this holds for all i ∈ {1, . . . , k}.
Now consider the average Euclidean distance between |ψrk⟩ and |ψr0⟩, averaged over

all n-bit strings r. We can upper bound this as

1
2n

∑
r∈{0,1}n

∥∥∥|ψrk⟩ − |ψr0⟩ ∥ ≤ 1
2n

∑
r∈{0,1}n

 k∑
i=1

∥∥∥|ψri ⟩ − |ψri−1⟩
∥∥∥
 telescoping sum (318)

= 1
2n

∑
r∈{0,1}n

 k∑
i=1

2|αi,r|
 by Eq. (317) (319)

= 1
2n

k∑
i=1

2
 ∑
r∈{0,1}n

|αi,r|

 reordering sums (320)

≤ 1
2n

k∑
i=1

2
(√

2n
)

Cauchy-Schwarz (321)

= 2k√
2n
. (322)

In Eq. (321) we are using the the Cauchy-Schwarz inequality, which implies that, for
any vector whose 2-norm is 1, its maximum possible 1-norm is the square root of the
dimension of the space, which in this case is

√
2n.

Since an average of Euclidean distances is upper bounded by 2k/
√

2n, there must
exist an r for which the Euclidean distance upper bounded by this amount.

Since the denominator is
√

2n and the numerator is 2k, it must be the case that
k is proportional to

√
2n, in order for this Euclidean distance to be a constant. And

the Euclidean must be lower bounded by a constant if the algorithm distinguishes
between fr and the zero function with probability 3

4 . This completes the proof that
the number of queries k much be order

√
2n.

210

Quantum Information Processing Richard Cleve

Part III

Quantum information theory

211

28 Quantum states as density matrices
Let’s begin by considering a couple of situations where Alice has an apparatus for
creating quantum states for Bob, who has no apparatus. When Bob needs a specific
state, he asks Alice to create it and send it to him.

Figure 198: Alice uses her apparatus to prepare states for Bob.

The story of the fake-plus state

Suppose that Bob asks Alice to create a qubit in state |+⟩ = 1√
2 |0⟩+

1√
2 |1⟩ and send

it to him. But suppose that Alice’s state preparation device is broken in that it can
only prepare qubits in state |0⟩ or |1⟩.

What is Alice to do? She cannot create the state |+⟩ literally. Suppose she tries
to fake it by flipping a fair coin and then creating either |0⟩ or |1⟩, depending on the
coin’s outcome—while keeping the coin’s outcome secret from Bob. The state that
Alice creates can be described as|0⟩ with probability 1

2

|1⟩ with probability 1
2 .

(323)

Let’s call this the fake-plus state.
How good is this fake-plus state as a substitution for the real plus state |+⟩? Is

there any way that Bob can tell the difference? If, for any measurement that Bob
can perform, the outcome probabilities are exactly the same then the substitution is
a good one. Note that if Bob measures the fake plus state in the computational basis
then the outcome probabilities are the same as measuring |+⟩ in the computational
basis. So far so good.

But there are other measurements for which the outcome probabilities are differ-
ent. Can you think of one?

Exercise 28.1. Give a measurement which has different outcome probabilities for
the fake-plus state (323) than for the true plus state |+⟩.

So the fake-plus state is not a good substitute for the plus state.

212

The story of the fake-fake-plus state

Now, let’s consider a different scenario. Suppose that Bob doesn’t want a |+⟩ state;
instead, he wants Alice to prepare for him a fake-plus state, the state in Eq. (323).
But this time, let’s suppose that Alice’s apparatus is broken in a different way: it can
only prepare |+⟩ and |−⟩ states.

What can Alice do in this case? It won’t do to send Bob a |+⟩ state, because we
already know that the plus state and the fake-plus state do not behave the same for
all measurements. What if Alice tries to fake it this time by flipping a fair coin and
then sending |+⟩ or |−⟩, depending on the outcome (again keeping the coin outcome
secret). Such a state can be described as|+⟩ with probability 1

2

|−⟩ with probability 1
2 .

(324)

Let’s call this the fake-fake-plus state. Is the fake-fake-plus state (324) a good sub-
stitute for the fake-plus state (323)?

The two states certainly don’t look the same. So your first guess might be that
there’s a measurement for which the outcome probabilities are different. But it turns
out that, for every measurement that Bob can make, the outcome probabilities for
state (323) are exactly the same as they are for state (324). Even though the two
states don’t look the same, the fake-fake-plus state is a good substitute for the fake-
plus state.

28.1 Probabilistic mixtures of states
We are now in the realm of probabilistic mixtures of states. These are states where
a random process is used to decide which pure state to prepare. Let (p1, p2, ..., pm)
be a probability vector and let |ψ1⟩ , |ψ1⟩ , . . . , |ψm⟩ be d-dimensional quantum states
(they need not be orthogonal). Imagine that k ∈ {1, 2, . . . ,m} is sampled according
the the probability distribution (p1, p2, ..., pm), and then state |ψk⟩ is produced (but
k is not revealed). Such a state can be described as

|ψ1⟩ with probability p1

|ψ2⟩ with probability p2
...
|ψm⟩ with probability pm.

(325)

213

These states are called mixed states. The “ordinary” states, describable by a single
normalized vector |ψ⟩, are called pure states. In Eq. (325), if one of the probabilities
is 1 and any others are 0 then the state is a pure state.

Let’s look at some examples of probabilistic mixtures of states. We have already
seen these two mixed states:|0⟩ with probability 1

2

|1⟩ with probability 1
2

and
|+⟩ with probability 1

2

|−⟩ with probability 1
2 ,

(326)

and I claimed that they are indistinguishable—but I did not explain why. How do
these two states compare with|0⟩ with probability 1

2

|−⟩ with probability 1
2?

(327)

Are they also indistinguishable from this state?
Mixed states for qubits can be probability distributions on any number of vectors,

for example

|0⟩ with prob. 1
4

|1⟩ with prob. 1
4

|+⟩ with prob. 1
4

|−⟩ with prob. 1
4

and


|0⟩ with prob. 1

3

−1
2 |0⟩+

√
3

2 |1⟩ with prob. 1
3

−1
2 |0⟩ −

√
3

2 |1⟩ with prob. 1
3 .

(328)

And the probability distribution need not be uniform, as shown in this examplecos(π8) |0⟩ − sin(π8) |1⟩ with prob. cos2(π8)
sin(π8) |0⟩+ cos(π8) |1⟩ with prob. sin2(π8).

(329)

Definition 28.1 (indistinguishable states). Two probabilistic mixtures of states are
indistinguishable if, for all possible measurements, the outcome probabilities are the
same for the two states.

Now, consider the six mixed states appearing in in (326)(327)(328)(329) above.
Which pairs are indistinguishable? To address such questions, we need to understand
these kinds of states better. A very useful approach is to express these states in terms
of their density matrices.

214

28.2 Density matrices
Given a probability distribution on a set of state vectors, one might be tempted to
consider the weighted average of the state vectors p1 |ψ1⟩+ p2 |ψ2⟩+ · · ·+ pm |ψm⟩ as
a useful object. However, this kind of average turns out to be of little use. One indi-
cator that it’s not worth much is that the weighted average can change dramatically
depending on the global phases associated with the vectors—which shouldn’t matter.
Also, notice that, for the second mixed state in Eq. (328), the weighted average is the
zero vector.

Mixed states can be nicely characterized by a different kind of averaging, which
occurs in the definition of the density matrix.

Definition 28.2 (density matrix). For a mixed state of the form of Eq. (325), where
|ψ1⟩ , |ψ1⟩ , . . . , |ψm⟩ are d-dimensional, its density matrix is the d× d matrix

ρ = p1 |ψ1⟩ ⟨ψ1|+ p2 |ψ2⟩ ⟨ψ2|+ · · ·+ pm |ψm⟩ ⟨ψm| . (330)

Note that the density matrix of any pure state |ψ⟩ is |ψ⟩ ⟨ψ|. For example, the
state |ψ⟩ = α0 |0⟩+ α1 |1⟩ has density matrix

ρ =
(
α0 |0⟩+ α1 |1⟩

)(
ᾱ0 ⟨0|+ ᾱ1 ⟨1|

)
(331)

=
[
α0

α1

] [
ᾱ0 ᾱ1

]
(332)

=
|α0|2 α0ᾱ1

α1ᾱ0 |α1|2

 . (333)

The entries along the diagonal are the absolute values squared of the amplitudes and
the off-diagonal entries are cross-terms involving the amplitudes.

Also note from Definition 28.2 that the density matrix of a probabilistic mixture
of pure states is the weighted average of the density matrices of the pure states. For
example, the density matrices of |0⟩ and |1⟩ are

|0⟩ ⟨0| =
 1 0

0 0

 and |1⟩ ⟨1| =
 0 0

0 1

 (334)

and the density matrix of the first mixed state in Eq. (326) is

1
2 |0⟩⟨0|+

1
2 |1⟩⟨1| =

1
2

 1 0
0 0

+ 1
2

 0 0
0 1

 =
 1

2 0
0 1

2

 . (335)

215

Regarding the second mixed state in Eq. (326), the density matrices of |+⟩ and |−⟩
are

|+⟩ ⟨+| =
 1

2
1
2

1
2

1
2

 and |−⟩ ⟨−| =
 1

2 −
1
2

−1
2

1
2

 (336)

and the density matrix of their mixture is

1
2 |+⟩⟨+| + 1

2 |−⟩⟨−| =
1
2

 1
2

1
2

1
2

1
2

+ 1
2

 1
2 −

1
2

−1
2

1
2

 =
 1

2 0
0 1

2

 . (337)

Notice that the density matrices for the two mixed states in Eq. (326) are the same.
This is related to the fact that the states are indistinguishable—which will be ex-
plained shortly.

Exercise 28.2 (a straightforward calculation). Work out the density matrices of the
mixed states appearing in (327)(328)(329).

Let me make a comment about global phases in vector states. When we repre-
sent (pure) states as vectors, there’s this issue that if multiply the vector by a unit
complex number (of the form eiθ, for θ ∈ R) then it’s essentially the same state; it’s
indistinguishable from the original state. The density matrix of eiθ |ψ⟩ is

eiθ |ψ⟩ ⟨ψ| e−iθ = |ψ⟩ ⟨ψ| . (338)

So global phases don’t even show up in density matrices, which is nice. It means that,
using density matrices, we don’t need to define an equivalence relation to account for
global phases.

Now, let’s look at some examples of density matrices for higher dimensional sys-
tems than qubits. The density matrix of |00⟩ is

|00⟩ ⟨00| =


1
0
0
0


[
1 0 0 0

]
=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (339)

and the density matrices of the other computational basis states are also diagonal
matrices with a 1 in one position.

216

The density matrix of the Bell state 1√
2 |00⟩+ 1√

2 |11⟩ is
1√
2

0
0
1√
2


[

1√
2 0 0 1√

2

]
=


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 (340)

and the density matrix of the state|00⟩ with probability 1
2

|11⟩ with probability 1
2

(341)

is

1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ 1
2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 =


1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 . (342)

If we were adopt the terminology used for state (323), we might call state (341) a
fake-Bell state. Notice that the difference between the density matrices of the Bell
state 1√

2 |00⟩+ 1√
2 |11⟩ and the fake-Bell state (341) is in the two off-diagonal entries

of their density matrices.

28.3 Information processing in terms of density matrices
Every probabilistic mixture of states has a density matrix associated with it; however,
different probabilistic mixtures can result in the same density matrix (for example
the two states in Eq. (326)). Here we will see that information processing on mixed
states can be understood solely in terms of density matrices.

Suppose that we apply operation U to a probabilistic mixture of states, where U
is unitary, or more generally U is an isometry.27 How does this affect the density
matrix? If we begin with a mixed state of the form

|ψ1⟩ with prob. p1

|ψ2⟩ with prob. p2
...
|ψm⟩ with prob. pm

(343)

27Isometries are defined in Definition 9.1 of Part I.

217

then applying U changes the state to

U |ψ1⟩ with prob. p1

U |ψ2⟩ with prob. p2
...

U |ψm⟩ with prob. pm.

(344)

This is because, whatever |ψk⟩ is randomly selected, it gets converted to U |ψk⟩.
Let ρ denote the density matrix of the original state. That is,

ρ =
m∑
j=1

pj |ψj⟩ ⟨ψj| . (345)

Then the density matrix after U is applied is
m∑
j=1

pj
(
U |ψj⟩

)(
U |ψj⟩

)∗
=

m∑
j=1

pjU |ψj⟩ ⟨ψj|U∗ (346)

= U

 m∑
j=1

pj |ψj⟩ ⟨ψj|

U∗ (347)

= UρU∗. (348)

What is remarkable is that the density matrix of the modified state depends only
on the density matrix of the original state. It does not depend on what specific
probabilistic mixture is used to create the original state.

Now, let’s consider the effect of a measurement of a d-dimensional mixed state,
with respect to the computational basis |0⟩ , |1⟩ , . . . , |d− 1⟩. Let the mixture be

|ψ1⟩ with prob. p1

|ψ2⟩ with prob. p2
...
|ψm⟩ with prob. pm.

(349)

There are two different ways that randomness arises in such a measurement: the
randomness that was used to select one of the pure states; and, the randomness that
arises in the measurement process for the selected state.

218

If the selected state is |ψj⟩ then the probability of measurement outcome k is

| ⟨k|ψj⟩ |2 = ⟨k|ψj⟩ ⟨ψj|k⟩ = ⟨k|
(
|ψj⟩ ⟨ψj|

)
|k⟩ (350)

(where we are using the fact that the expressions are all products of row matrices and
column matrices and that matrix multiplication is associative).

If we average this over all possibilities of |ψj⟩ then the probability of outcome k is

m∑
j=1

pj ⟨k|
(
|ψj⟩ ⟨ψj|

)
|k⟩ = ⟨k|

 m∑
j=1

pj |ψj⟩ ⟨ψj|

 |k⟩ (351)

= ⟨k| ρ |k⟩ , (352)

where ρ is the density matrix of the original state. Also, when the measurement
outcome is k, the residual state is |k⟩⟨k|. Once again, the result of the operation
depends only on the density matrix of the original state. It does not depend on what
specific probabilistic mixture is used to create the original state.

In summary, we have proved the following.

Theorem 28.1. For a d-dimensional mixed state with density matrix ρ:
• Applying an isometry U to the state changes it to one with density matrix UρU∗.

• Applying a measurement in the computational basis to the state produces clas-
sical and quantum outcomes

(
0, |0⟩⟨0|

)
with prob. ⟨0| ρ |0⟩(

1, |1⟩⟨1|
)

with prob. ⟨1| ρ |1⟩
...(

d−1, |d−1⟩⟨d−1|
)

with prob. ⟨d−1| ρ |d−1⟩.

(353)

In both cases, the result of the operation depends only on the density matrix of the
state; not on the specific probabilistic mixture that generates the state.

Any measurement of a d-dimensional system can be converted to the form of
first applying an isometry U : Cd → Cc and then measuring with respect to the
computational basis in Cc (possibly discarding some information about the outcome).
Therefore, states with the same density matrix are indistinguishable.

In particular, the fake-plus state (323) and the fake-fake-plus state (324) are in-
distinguishable.

219

28.4 Normal matrices, positive matrices, and the trace
Prior to our use of the density matrix framework, states have been vectors and ma-
trices have been associated with the operations performed on states (unitaries, isome-
tries, as well as the projectors arising in measurements). With density matrices, states
themselves are represented as matrices.

Henceforth, more types of matrices will arise as we develop our models of quantum
information theory. In this section, we review some useful definitions and properties
of matrices that will be used.

Definition 28.3 (normal matrix). A matrix M ∈ Cd×d is normal if M∗M = MM∗.

An important property of normal matrices is that they are diagonalizable in some
orthonormal basis.

Theorem 28.2 (spectral theorem). A matrix M ∈ Cd×d is normal if and only if
there exists a unitary U ∈ Cd×d such that

M = U


λ1 0 · · · 0
0 λ2 · · · 0
...
0 0 · · · λd

U∗. (354)

Although Definition 28.3 is the common textbook definition of normal, the statement
of Theorem 28.2 can be taken as an alternative definition.

To help understand normal matrices, it’s useful to see examples of abnormal ma-
trices. Consider these two: [

1 1
0 1

] [
1 1
0 2

]
. (355)

The first matrix is not normal because it is not even diagonalizable. The second
matrix is diagonalizable but not unitarily (it has eigenvectors [1

0] and [1
1], which are

not orthogonal).
For any normal matrix, by Theorem 28.2, we can imagine it to be diagonal in

the coordinate system of some orthonormal basis. Note that a normal matrix M is
unitary (defined as M∗M = I) if and only if all its eigenvalues have absolute value 1
(i.e., they are points on the unit circle in C. And a normal matrix M is Hermitian
(defined as M = M∗) if and only if all its eigenvalues are in R.

All density matrices have the property that they are positive28 , defined as follows.
28In some communities, the terminology positive semidefinite is used instead of positive.

220

Definition 28.4 (positive). A matrix M ∈ Cd×d is positive if and only if, for all
states |ψ⟩ ∈ Cd, it holds that ⟨ψ|M |ψ⟩ ≥ 0.

There are several alternate definitions of positive that are equivalent. Here are two.

Definition 28.5 (equivalent definition of positive). A matrix M ∈ Cd×d is positive if
and only if M is normal and all of its eigenvalues are in R and greater than or equal
to 0.

Definition 28.6 (equivalent definition of positive). A matrix M ∈ Cd×d is positive if
and only if M = LL∗ for some matrix L ∈ Cd×d′ .

The trace of a square matrix is simple to define, yet very useful in calculations.

Definition 28.7 (trace). The trace of a matrix M ∈ Cd×d (denoted as Tr(M)) is
defined as the sum of its diagonal entries

Tr(M) =
d−1∑
k=0

Mk,k =
d−1∑
k=0
⟨k|M |k⟩ . (356)

Let’s review some properties of the trace. An obvious property is that it is linear.
That is, for all A,B ∈ Cd×d and all α, β ∈ C,

Tr(αA+ βB) = αTr(A) + β Tr(B). (357)

Also, for all A ∈ Cc×d and B ∈ Cd×c,

Tr(AB) = Tr(BA). (358)

Equation (358) implies that the trace is coordinate system independent, in the sense
that, for all S,A ∈ Cd×d where S is invertible,

Tr(S−1AS) = Tr(A). (359)

Also, notice that, in Eq. (358), A and B need not be square matrices. For example,

Tr(|ψ⟩ ⟨ϕ|) = Tr(⟨ϕ| |ψ⟩) = ⟨ϕ|ψ⟩ . (360)

A word of caution: In general, the trace does not have these properties:
� In general, the trace is not multiplicative (in the sense that the determinant is).

In general, Tr(AB) ̸= Tr(A) Tr(B).

� Moreover, Eq. (358) does not mean that you can arbitrarily reorder any product
in the argument of the trace. For example, in general, Tr(ABC) ̸= Tr(BAC).
But, for the trace of a product, the product can always be cyclically permuted as
Tr(A1A2 . . . Am−1Am) = Tr(AmA1A2 . . . Am−1).

221

28.5 Characterizing density matrices
Not all matrices arise as the density matrix of some probabilistic mixture of states.
The following theorem precisely characterizes which matrices are density matrices.

Theorem 28.3 (characterization of valid density matrix). A matrix ρ ∈ Cd×d is the
density matrix of some probabilistic mixture of pure states if and only if ρ is positive
and Tr(ρ) = 1.

Proof. For the “if” part, assume that ρ is positive and Tr(ρ) = 1. By the spectral
theorem, ρ = UDU∗ for a diagonal D and unitary U . Let |ϕ0⟩ , |ϕ1⟩ , . . . , |ϕd−1⟩ be the
columns of U (which are orthonormal), and p0, p1, . . . , pd−1 be the diagonal elements
of D. Then we can write

ρ =
d−1∑
j=0

(
|ϕj⟩

)(
pj
)(
⟨ϕj|

)
=

d−1∑
j=0

pj |ϕj⟩ ⟨ϕj| . (361)

Since positivity and unit trace imply that p0, p1, . . . , pd−1 is a probability distribution,
it follows that this corresponds to a probabilistic mixture.

For the “only if” part, assume that ρ arises from a probabilistic mixture of states

ρ =
r−1∑
k=0

pk |νk⟩ ⟨νk| , (362)

where |ν0⟩ , |ν1⟩ , . . . , |νr−1⟩ are unit vectors, but they need not be orthogonal. Then,
for all |ψ⟩,

⟨ψ| ρ |ψ⟩ = ⟨ψ|
r−1∑
k=0

pk |νk⟩ ⟨νk|

 |ψ⟩ (363)

=
r−1∑
k=0

pj ⟨ψ|νk⟩ ⟨νk|ψ⟩ (364)

=
r−1∑
k=0

pk|⟨ψ|νk⟩|2 (365)

≥ 0, (366)

which implies that ρ is positive.

222

Also,

Tr(ρ) =
d−1∑
j=0
⟨j|

r−1∑
k=0

pk |νk⟩ ⟨νk|

 |j⟩ (367)

=
d−1∑
j=0

r−1∑
k=0

pk ⟨j|νk⟩ ⟨νk|j⟩ (368)

=
r−1∑
k=0

pk

d−1∑
j=0
|⟨νk|j⟩|2

 (369)

=
r−1∑
k=0

pk (370)

= 1, (371)

where Eq. (370) follows from ∑d−1
j=0 |⟨νk|j⟩|2 = 1, which is the fact that the sum of the

squares of the absolute values of the components of a unit vector is 1. ■

Theorem 28.4 (characterization of pure states). If ρ ∈ Cd×d is a density matrix
then ρ is a pure state if and only if Tr(ρ2) = 1.

Exercise 28.3. Prove Theorem 28.4.

28.6 Bloch sphere for qubits
The set of density matrices for qubits has a nice representation as points in the Bloch
sphere. In this section, I explain this correspondence. Consider the Pauli matrices

I =
[

1 0
0 1

]
X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i
i 0

]
(372)

(where in this context I is an honorary Pauli matrix). Every 2 × 2 matrix can be
expressed as a linear combination of I, X, Y , Z. Since Tr(I) = 2 and Tr(X) =
Tr(Y) = Tr(Z) = 0, we can express any density matrix ρ as

ρ = I + cxX + cyY + czZ

2 . (373)

Let’s develop a geometric picture for the set of all possible triples (cx, cy, cz) that
correspond to valid 2 × 2 density matrices. Let’s start with pure states. Any pure
state of a qubit can be written as

|ψ⟩ = cos(θ2) |0⟩+ eiϕ sin(θ2) |1⟩ , (374)

223

for some θ, ϕ ∈ [0, 2π].
The density matrix of this state is

|ψ⟩ ⟨ψ| =
 cos2(θ2) e−iϕ cos(θ2) sin(θ2)

eiϕ cos(θ2) sin(θ2) sin2(θ2)

 (375)

= 1
2

1 + cos(θ) e−iϕ sin(θ)
eiϕ sin(θ) 1− cos(θ)

 (376)

= 1
2

 1 + cos(θ)
(
cos(ϕ)− i sin(ϕ)

)
sin(θ)(

cos(ϕ) + i sin(ϕ)
)

sin(θ) 1− cos(θ)

 (377)

= I + cos(ϕ) sin(θ)X + sin(ϕ) sin(θ)Y + cos(θ)Z
2 . (378)

Therefore, the coefficients in Eq. (373) are

(cx, cy, cz) = (cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)). (379)

These triples are the polar coordinates of points on the surface of a sphere, as shown
in figure 199.

Figure 199: The coordinates (cx, cy, cz) of a pure state are a point on the surface of a sphere.

Think of this sphere as the Earth with the North Pole at the top. Points on the surface
can be expressed in terms of their latitude and longitude. The latitude θ is the angular
distance away from the North Pole. The longitude ϕ is an angle representing the East-
West distance from some arbitrary29 starting point. So all the pure states correspond
to points30 on the surface of this sphere, called the Bloch sphere.

29In geography, the convention is to set 0◦ at the Prime Meridian in Greenwich, UK.
30To avoid redundancy, it is natural to restrict the range of θ to [0, π].

224

Where are states |0⟩ and |1⟩ situated on the Bloch sphere? State |0⟩ lies at the
North Pole and |1⟩ is at the South Pole, as illustrated in figure 200.

Figure 200: Position of states |0⟩, |1⟩, |+⟩, |−⟩, |+i⟩, and |−i⟩ on the Bloch sphere.

Notice that |0⟩ and |1⟩ are orthogonal as vectors; however, their positions on the
Bloch sphere are 180◦ apart. Any two orthogonal vectors map to antipodal points on
the sphere (180◦ apart).

Where are |+⟩ and |−⟩? They lie on the equator. State |+⟩ has longitude ϕ = 0
(it lies at the intersection of the equator and the Prime Meridian) and |−⟩ is at the
antipodal point.

Notice the angle-doubling again. The angle between |0⟩ and |+⟩ is 45◦, but the
angle between their points on the Bloch sphere is 90◦. In general, for any two state
vectors, if we map them to the sphere, the angular distance between them doubles.

There are two other points on the sphere that are in natural positions relative to
the points we have considered so far: those that are 90◦ from |0⟩, |1⟩, |+⟩, and |−⟩.
They correspond to the states

|+i⟩ = 1√
2 |0⟩+ i√

2 |1⟩ (380)

|−i⟩ = 1√
2 |0⟩ −

i√
2 |1⟩ . (381)

There is some nice symmetry among the six states |0⟩, |1⟩, |+⟩, |−⟩, |+i⟩, and |−i⟩.
The surface of the Bloch sphere consists of all the pure states, and it turns out

the mixed states are all the points inside the sphere. For any probabilistic mixture of
pure states, its position in the Bloch sphere is the weighted average of the positions
of the pure states. More precisely, suppose that we have an arbitrary 2 × 2 density
matrix ρ and

ρ = p1 |ψ1⟩ ⟨ψ1|+ · · ·+ pm |ψm⟩ ⟨ψm| , (382)

225

for pure states |ψ1⟩ , . . . , |ψm⟩. For each k ∈ {1, . . . ,m}, let vk denote the the point
on the surface of the Bloch sphere corresponding to |ψk⟩ ⟨ψk|. Then the point in the
Bloch sphere corresponding to ρ is

p1v1 + · · ·+ pmvm. (383)

For example, an equally weighted mixture of |0⟩ and |1⟩ (the so-called fake-plus state
from Eq. (323)) is the point right at the centre of the sphere. And an equally weighted
mixture of |0⟩ and |+⟩ is the midpoint of the line connecting their positions on the
sphere.

For qubit systems, it’s often useful to think of states—and the operations acting
on them—on the Bloch sphere.

A word of caution:
� Do not conflate state vectors with points on the Bloch sphere!

� The Bloch sphere is for one-qubit states. For higher dimensional systems, there’s
an analogous geometric shape—but it’s not a hypersphere. It’s shape is somewhat
complicated and it doesn’t satisfy all the properties that one might expect to hold
based on the case of qubits. For example, not all points on the surface of this shape
are pure states (some are mixed states). For qutrits, the shape is 8-dimensional.

226

29 Density matrices on multi-register systems
Consider a two-register system, where the first register is c-dimensional and the second
register is d-dimensional. The compound register that consists of both systems is cd-
dimensional. Mixed states on the compound register can be represented by density
matrices of size cd× cd. But there is a rich structure among the subsystems.

When we describe operational procedures involving the two registers, we will often
imagine that the first register is in Alice’s lab and the second register is in Bob’s lab.

Figure 201: A c-dimensional register in Alice’s lab and a d-dimensional register in Bob’s lab.

29.1 Product states
A product state on a compound register, consisting of a c-dimensional register com-
bined with a d-dimensional register, is is a cd× cd density matrix of the form

ρ = σ ⊗ µ, (384)

where σ is a c× c density matrix (representing the state of the first system) and µ is
a d× d density matrix (representing the state of the second system).

A simple example of such a state (where c = d = 2) is |0⟩⟨0| ⊗ |0⟩⟨0|, which can
also be written as

(
|0⟩ ⊗ |0⟩

)(
⟨0| ⊗ ⟨0|

)
= |00⟩⟨00|. Another example is the state

3
4

1
4

1
4

1
4

⊗
1

2 0
0 1

2

 =



3
8 0 1

8 0
0 3

8 0 1
8

1
8 0 1

8 0
0 1

8 0 1
8

 . (385)

Clearly a product state among Alice and Bob’s labs can be created by having
each of them independently create a state within their separate labs. They need no
communication whatsoever to do this.

227

29.2 Separable states
A separable state on a compound register, consisting of a c-dimensional register com-
bined with a d-dimensional register, is a cd× cd density matrix of the form

ρ =
r∑

k=1
pk
(
σk ⊗ µk

)
, (386)

where (p1, . . . , pr) is a probability vector, σ1, . . . , σr are c × c density matrices, and
µ1, . . . , µr are d× d density matrices.

If the first system is in Alice’s lab and the second system is in Bob’s lab then the
state corresponds to the probabilistic mixture of product states

σ1 ⊗ µ1 with prob. p1

σ2 ⊗ µ2 with prob. p2
...

σr ⊗ µr with prob. pr.

(387)

There is a natural way of preparing this state with only classical communication. One
preparation procedure is for Alice to sample a random k ∈ {1, 2, . . . , r} according to
the probability distribution (p1, p2, . . . , pr) and send k (classical information) to Bob.
At this point, Alice can prepare σk in her lab and Bob can prepare µk in his lab. This
shows that a separable state can be prepared without any quantum communication.
Another procedure is for Bob to sample k and send it’s value to Alice. Yet another
procedure is for a third party to sample k and then send this information to both
Alice and Bob.

An example of a separable state that is not a product state is

1
2 |0⟩⟨0| ⊗ |0⟩⟨0|+

1
2 |1⟩⟨1| ⊗ |1⟩⟨1| =


1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 , (388)

which corresponds to the probabilistic mixture|00⟩ with probability 1
2

|11⟩ with probability 1
2 .

(389)

Exercise 29.1. How do we know that the density matrix in Eq. (388) is not that of
a product state? (This is at least worth thinking about intuitively; a formal proof
would be to show that it cannot be expressed in the form of Eq. (384).)

228

29.3 Entangled states
A state is defined to be entangled if it is not separable.

The Bell state 1√
2 |00⟩+ 1√

2 |11⟩, whose density matrix is

(
1√
2 |00⟩+ 1√

2 |11⟩
) (

1√
2 ⟨00|+ 1√

2 ⟨11|
)

=


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 , (390)

is an example of a state that is not separable, hence it is entangled (all Bell states
are entangled). How do we know it’s not separable? We’ll address this later on, in
section 31.3, where we’ll see a nice way of proving that Bell states are not separable.

In general, determining whether a state is separable or not can be difficult. One
reason for this is the fact that probabilistic mixtures of states are not unique. For
example, consider the 2-qubit state whose density matrix is

ρ =



1
4 0 0 1

4

0 1
4

1
4 0

0 1
4

1
4 0

1
4 0 0 1

4

 . (391)

Is this state separable or entangled? Since ρ is the density matrix of the mixture
1√
2 |00⟩+ 1√

2 |11⟩ with probability 1
2

1√
2 |01⟩+ 1√

2 |10⟩ with probability 1
2 ,

(392)

an operational way of thinking about ρ is that Alice and Bob somehow obtain a
random bit and then generate 1√

2 |00⟩ + 1√
2 |11⟩ if the bit is 0; and 1√

2 |01⟩ + 1√
2 |10⟩

if the bit is 1. In either case, the state that they generate is entangled (thus not a
product state). So does this imply that the state is entangled?

No. In fact, ρ is a separable state. The reason why is that there is another
probabilistic mixture that also generates the density matrix ρ, namely|+⟩ |+⟩ with probability 1

2

|−⟩ |−⟩ with probability 1
2 ,

(393)

and the states |+⟩ |+⟩ and |−⟩ |−⟩ (whose density matrices are |+⟩⟨+| ⊗ |+⟩⟨+| and
|−⟩⟨−| ⊗ |−⟩⟨−|, respectively) are product states.
Exercise 29.2 (should be easy). Show that ρ, as defined in Eq. (391), is the density
matrix of the probabilistic mixture in Eq. (393).

229

29.4 The identity
(
I ⊗ |ϕ⟩

)
|ψ⟩ = |ψ⟩ ⊗ |ϕ⟩

Section 9 in Part I: a primer for beginners began with a simple example of an isom-
etry that can be described operationally as adding a second qubit in state |0⟩. This
mapping |ψ⟩ 7→ |ψ⟩ ⊗ |0⟩ is represented by 4 × 2 matrix. It was not mentioned in
section 9 that this matrix can be expressed as the tensor product

1 0
0 0
0 1
0 0

 =
[
1 0
0 1

]
⊗
[
1
0

]
= I2 ⊗ |0⟩ . (394)

What if the input state is c-dimensional and the operation is to add some fixed
d-dimensional pure state |ϕ⟩ after the input state? The cd× c matrix corresponding
to this is Ic ⊗ |ϕ⟩, where Ic is the c× c identity matrix. Let’s carefully check this.

First of all, Ic ⊗ |ϕ⟩ is an isometry because(
Ic ⊗ |ϕ⟩

)∗(
Ic ⊗ |ϕ⟩

)
=
(
Ic ⊗ ⟨ϕ|

)(
Ic ⊗ |ϕ⟩

)
(395)

= Ic ⊗ I1 (396)
= Ic. (397)

To be clear about the steps, at Eq. (396), we are using the multiplicative property
of tensors (Lemma 6.1) and equating the scaler 1 with the 1 × 1 identity matrix I1.
Also, at Eq. (397), we are using the trivial fact that M ⊗ I1 = M , for any matrix M .

The following lemma implies that the matrix Ic⊗|ϕ⟩ corresponds to the mapping
|ψ⟩ 7→ |ψ⟩ ⊗ |ϕ⟩. The lemma is of independent interest because Eq. (398) arises in
calculations; it is worth remembering.

Lemma 29.1. For all c-dimensional states |ψ⟩ and d-dimensional states |ϕ⟩,(
Ic ⊗ |ϕ⟩

)
|ψ⟩ = |ψ⟩ ⊗ |ϕ⟩ . (398)

Proof. (
Ic ⊗ |ϕ⟩

)
|ψ⟩ =

(
Ic ⊗ |ϕ⟩

)(
|ψ⟩ ⊗ I1

)
(399)

= (Ic |ψ⟩)⊗ (|ϕ⟩ I1) (400)
= |ψ⟩ ⊗ |ϕ⟩ , (401)

where Eq. (400) uses the multiplicative property of tensors (Lemma 6.1). ■

230

29.5 Quantum states of subsystems and the partial trace
Suppose that ρ is a cd × cd density matrix that represents the joint state of a c-
dimensional system in Alice’s lab and a d-dimensional system in Bob’s lab. Is there
a c × c density matrix σ, which represents the state of Alice’s c-dimensional system
alone?

Figure 202: Alice’s c-dimensional state (ignoring Bob’s part of the global state).

In the special case where ρ is a product state of the form ρ = σ ⊗ µ it is natural
to consider the state of the first system to be σ. Similarly, for the special case of
separable states, of the form of Eq. (386), it is natural to think of the state of the
first system as

ρ =
r∑

k=1
pkσk, (402)

since the procedure that Alice performs to construct her state is to sample σ1, . . . , σr
according to the distribution (p1, . . . , pr).

But what about states that are not separable? Does there always exist a density
matrix that captures the state of the first system? In the context of pure states, this
question was discussed back in section 6.3 of Part I: a primer for beginners and it
turned out that, for entangled states such as the Bell state 1√

2 |00⟩ + 1√
2 |11⟩, the

subsystems do not have pure states of their own (stated in exercise 6.2).
We shall soon see that, in the context of the increased expressive power of mixed

states, subsystems always have states of their own. But, before doing that, let’s
digress to consider the analogous situation in the context of classical probabilistic
states.

29.5.1 Aside: marginal distributions

Suppose that Alice is in possession of a ∈ {1, . . . , c} and Bob is in possession of
b ∈ {1, . . . , d} and the joint distribution of their states is given by

Pr[Alice and Bob’s joint state is (a, b)] = pab, (403)

231

where the bivariate probability distribution is often written as a c× d matrix
p11 p12 · · · p1d

p21 p22 · · · p1d
...
pc1 pc2 · · · pcd

 (404)

and need not be a product distribution. If we want the probability distribution of
Alice’s state alone, we can simply compute the marginal distribution, consisting of
the sums the probabilities in each row of Eq. (404). Namely,

Pr[Alice’s state is a] =
d∑
b=1

Pr[Alice and Bob’s joint state is (a, b)] (405)

=
d∑
b=1

pab. (406)

29.5.2 Quantum analogue of marginal distributions

Returning to our context, Alice and Bob’s joint state is ρ, a quantum analogue of
a bivariate distribution, and we are seeking a quantum analogue of the marginal
distribution corresponding to the state of Alice’s system.

One way of deriving the state of Alice’s system is to use the fact that what
happens to Bob’s system is inconsequential, provided that there is no longer any
communication whatsoever from Bob to Alice—that Bob essentially ghosts Alice.
This is alluded to in section 8.3 of Part I: a primer for beginners.

Suppose that Alice’s system is measured with respect to some orthonormal basis
|ϕ0⟩ , |ϕ1⟩ , . . . , |ϕc−1⟩. To determine the outcome probabilities, make the hypothetical
assumptions that:

• Bob also measures his system with respect to the basis, |0⟩ , |1⟩ , . . . , |d− 1⟩.

• There is no communication whatsoever from Bob to Alice.
Under these assumptions, Bob’s measurement has no effect on Alice’s outcome prob-
abilities, but it becomes easier to calculate them. We can first consider the outcome
probabilities for the joint system of Alice and Bob where the joint measurement is with
respect to the orthonormal basis {|ϕk⟩⊗|ℓ⟩ : k ∈ {0, 1, . . . , c−1}, ℓ ∈ {0, 1, . . . , d−1}},
and the outcome probabilities are

Pr[Alice and Bob’s joint outcome is (k, ℓ)] =
(
⟨ϕk| ⊗ ⟨ℓ|

)
ρ
(
|ϕk⟩ ⊗ |ℓ⟩

)
. (407)

232

If we want the distribution of Alice’s part of the measurement outcome only, we can
take the marginal distribution of the joint outcome as

Pr[Alice’s outcome is k] =
d−1∑
ℓ=0

Pr[Alice and Bob’s joint outcome is (k, ℓ)] (408)

=
d−1∑
ℓ=0

(
⟨ϕk| ⊗ ⟨ℓ|

)
ρ
(
|ϕk⟩ ⊗ |ℓ⟩

)
(409)

= ⟨ϕk|
d−1∑
ℓ=0

(
Ic ⊗ ⟨ℓ|

)
ρ
(
Ic ⊗ |ℓ⟩

) |ϕk⟩ , (410)

where at Eq. (410), we are using the fact that
(
Ic ⊗ |ℓ⟩

)
|ϕk⟩ = |ϕk⟩ ⊗ |ℓ⟩, which is

proven in Lemma 29.1.
Now, consider the expression in the large parenthesis in Eq. (410), which we refer

to as

σ =
d−1∑
ℓ=0

(
Ic ⊗ ⟨ℓ|

)
ρ
(
Ic ⊗ |ℓ⟩

)
. (411)

This is a good candidate for the state of Alice’s system because, from Eq. (410), the
measurement outcome probabilities for Alice’s system are ⟨ϕk|σ |ϕk⟩.

It is straightforward to check that σ is a valid density matrix. Moreover, σ is
the only c × c density matrix whose outcome probabilities arising from measur-
ing Alice’s system with respect to any orthonormal basis |ϕ0⟩ , |ϕ1⟩ , . . . , |ϕc−1⟩ are
⟨ϕ0|σ |ϕ0⟩ , ⟨ϕ1|σ |ϕ1⟩ , . . . , ⟨ϕc−1|σ |ϕc−1⟩.

This is our justification for defining the state of the first system of the bipartite
state ρ ∈ Cc×c ⊗ Cd×d as the expression in Eq. (411). The operation that maps ρ to
σ, via Eq. (411), is called the partial trace.

29.5.3 Definition of the partial trace

The following definition is in the context of a two-register system, where the first
register is c-dimensional and the second register is d-dimensional.

Definition 29.1 (partial trace). Define the operation of tracing out the second system
as Tr2 : Cc×c ⊗ Cd×d → Cc×c where

Tr2(ρ) =
d−1∑
ℓ=0

(
Ic ⊗ ⟨ℓ|

)
ρ
(
Ic ⊗ |ℓ⟩

)
. (412)

233

The subscript of Tr2 indicates which register is being traced out. Along similar lines,
define the operation of tracing out the first system as Tr1 : Cc×c⊗Cd×d → Cd×d where

Tr1(ρ) =
c−1∑
ℓ=0

(
⟨ℓ| ⊗ Id

)
ρ
(
|ℓ⟩ ⊗ Id

)
. (413)

Recall that the trace of a square matrix is the sum of its diagonal entries. We can
also call this the full trace and its definition can be written as Tr(ρ) = ∑d−1

k=0 ⟨k| ρ |k⟩.
The entries of the partial trace of ρ are also sums of the matrix entries of ρ. For
example, for the case of two 1-qubit registers,

Tr1


ρ00,00 ρ00,01 ρ00,10 ρ00,11

ρ01,00 ρ01,01 ρ01,10 ρ01,11

ρ10,00 ρ10,01 ρ10,10 ρ10,11

ρ11,00 ρ11,01 ρ11,10 ρ11,11

 =
[
ρ00,00 + ρ10,10 ρ00,01 + ρ10,11

ρ01,00 + ρ11,10 ρ01,01 + ρ11,11

]
(414)

Tr2


ρ00,00 ρ00,01 ρ00,10 ρ00,11

ρ01,00 ρ01,01 ρ01,10 ρ01,11

ρ10,00 ρ10,01 ρ10,10 ρ10,11

ρ11,00 ρ11,01 ρ11,10 ρ11,11

 =
[
ρ00,00 + ρ01,01 ρ00,10 + ρ01,11

ρ10,00 + ρ11,01 ρ10,10 + ρ11,11

]
. (415)

It should be noted that, although a measurement was introduced to derive the
formulas for the partial trace, the measurement does not have to occur. If one register
is discarded then the state of the other register is given by the formula for the partial
trace whether or not the discarded register is measured.

An alternative way of deriving the formula for Tr2 : Cc×c ⊗ Cd×d → Cc×c is to
define Tr2 as the unique linear operator with the property that, for all A ∈ Cc×c and
B ∈ Cd×d,

Tr2(A⊗B) = ATr(B). (416)

In particular, for density matrices σ ∈ Cc×c and µ ∈ Cd×d, Tr2(σ ⊗ µ) = σ.
Now, let’s apply the partial trace to calculate the state of the second qubit of the

Bell state 1√
2 |00⟩+ 1√

2 |11⟩. Applying the formula in Eq. (414) to the density matrix

234

of the state, we obtain

Tr1

((
1√
2 |00⟩+ 1√

2 |11⟩
)(

1√
2 ⟨00|+ 1√

2 ⟨11|
))

= Tr1


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 (417)

=
[1

2 0
0 1

2

]
. (418)

There’s something remarkable about this. Until now, all our mixed states have
been assumed be the result of some probabilistic mixture of pure states. However, a
mixed state can arise from a process without any explicit occurrence of randomness or
measurement. For the pure state 1√

2 |00⟩+ 1√
2 |11⟩, the state of each of its individual

qubits is
[1

2 0
0 1

2

]
.

29.6 Purifications
Next, I’d like to show you what a purification of a quantum state is. Any mixed state
can be viewed as a pure state on some larger system with part of that larger system
traced out.

Let ρ be any density matrix of a d-dimensional system. Suppose ρ can be written
as a probabilistic mixture of r pure states, as

ρ =
r−1∑
k=0

pk |νk⟩⟨νk| . (419)

Now, consider the pure state on a d-dimensional register and an r-dimensional register

|ϕ⟩ =
r−1∑
k=0

√
pk |νk⟩ ⊗ |k⟩ . (420)

It’s easy to see that the state of the first register (namely, with the second system
traced out) is Tr2 |ϕ⟩⟨ϕ| = ρ. (Remember that, for the purposes of calculation, one
can assume that the traced out system is measured.)

Figure 203: |ϕ⟩ is a purification of the state ρ.

235

The pure state |ϕ⟩ is called a purification of ρ. The above shows one way to purify ρ,
but the purification of a state is not unique.

In Eq. (419), it is possible that r is much larger than d, in which case the dimension
of the second register in the pure state of Eq. (420) is much larger than the first
register. However, it is always possible to find a purification of a d-dimensional state
where the additional register is also d-dimensional.

Exercise 29.3 (straightforward). Show that, for any ρ ∈ Cd×d, there exists a purifi-
cation for which the dimension of the ancillary state is d. In other words, that there
exists a purification of the form |ϕ⟩ ∈ Cd ⊗ Cd.

236

30 State transitions in the Kraus form
So far, we have seen two types of operations that can be performed on quantum sys-
tems: isometries and projective measurements. The Kraus form is a unified framework
for describing all of these, as well as some other kinds of quantum operations.

Definition 30.1 (Kraus operators). A sequence of c × d matrices A0, A2, . . . , Am−1

are Kraus operators if
m−1∑
k=0

A∗
kAk = Id. (421)

Note that the matrices need not be square. If Ak is c× d then A∗
kAk is d× d.

At first glance, Definition 30.1 may look mysterious. In this section, we’ll see that
several natural transformations are expressible in terms of Kraus operators.

30.1 Measurements via Kraus operators
For a sequence of Kraus operators A0, A2, . . . , Am−1 ∈ Cc×d, define the following
measurement operation, whose classical output is k ∈ {0, 1, . . . ,m− 1}.
Input to the measurement: a d-dimensional quantum system in state ρ ∈ Cd×d.

Output of the measurement: the probabilistic mixture

(
0 , A0ρA

∗
0

Tr(A0ρA∗
0)

)
with prob. Tr(A0ρA

∗
0)(

1 , A1ρA
∗
1

Tr(A1ρA∗
1)

)
with prob. Tr(A1ρA

∗
1)

...(
m−1 , Am−1ρA

∗
m−1

Tr(Am−1ρA∗
m−1)

)
with prob. Tr(Am−1ρA

∗
m−1).

(422)

In other words, for input state ρ ∈ Cd×d, the classical part of the measurement
outcome is k ∈ {0, 1, . . . ,m− 1}, where

Pr[classical outcome is k] = Tr(AkρA∗
k), (423)

and the corresponding residual state is
AkρA

∗
k

Tr(AkρA∗
k)
. (424)

237

Let’s first check that the above makes sense. Are the probabilities non-negative
real numbers that sum to 1? Are the residual states valid density matrices? To get
an idea of why this measurement makes sense, let us first consider the case of pure
states. If ρ = |ψ⟩⟨ψ| then, for all k,

Tr(AkρA∗
k) = Tr(Ak |ψ⟩⟨ψ|A∗

k) = Tr(⟨ψ|A∗
kAk |ψ⟩) = ⟨ψ|A∗

kAk |ψ⟩ . (425)

Clearly, ⟨ψ|A∗
kAk |ψ⟩ ≥ 0, since this is the inner product of Ak |ψ⟩ with itself. Also,

the sum of the outcome probabilities is

m−1∑
k=0

Tr(AkρA∗
k) =

m−1∑
k=0
⟨ψ|A∗

kAk |ψ⟩ = ⟨ψ|
m−1∑
k=0

A∗
kAk

 |ψ⟩ = ⟨ψ|ψ⟩ = 1. (426)

And the residual state corresponding to classical outcome k is

AkρA
∗
k

Tr(AkρA∗
k)

= Ak |ψ⟩⟨ψ|A∗
k

⟨ψ|A∗
kAk |ψ⟩

(427)

= Ak |ψ⟩⟨ψ|A∗
k

∥Ak |ψ⟩ ∥2 (428)

=
 Ak |ψ⟩
∥Ak |ψ⟩ ∥

 ⟨ψ|A∗
k

∥Ak |ψ⟩ ∥

, (429)

which is the density matrix of the (normalized) pure state Ak |ψ⟩ /∥Ak |ψ⟩ ∥. What if
∥Ak |ψ⟩ ∥ = 0? In that case, ⟨ψ|A∗

kAk |ψ⟩ = 0, so those outcomes never occur.
To understand the measurement in the case of arbitrary mixed states, we can use

the fact that that every d-dimensional state can be expressed as

ρ =
d−1∑
j=0

pj |ψj⟩⟨ψk| (430)

and interpret this as a probabilistic mixture of pure states (whether or not the state is
actually generated by such a probabilistic process). Then the probability of classical
outcome k is the weighted average of the probabilities for the pure states in the
mixture

d−1∑
j=0

pj ⟨ψj|A∗
kAk |ψj⟩ , (431)

238

which is clearly non-negative, and these probabilities sum to
m−1∑
k=0

d−1∑
j=0

pj ⟨ψj|A∗
kAk |ψj⟩ =

d−1∑
j=0

pj

(m−1∑
k=0
⟨ψj|A∗

kAk |ψj⟩
)

(432)

=
d−1∑
j=0

pj (433)

= 1. (434)

Also, the residual state corresponding to outcome k is the mixed state expressible as

Ak |ψ0⟩
∥Ak |ψ0⟩ ∥

with prob. p0

Ak |ψ1⟩
∥Ak |ψ1⟩ ∥

with prob. p1

...
Ak |ψd−1⟩
∥Ak |ψd−1⟩ ∥

with prob. pd−1.

(435)

Next, we’ll see some measurements expressed in terms of Kraus operators.

30.1.1 Projective measurements

Projective measurements, which are defined in definition 8.3 of section 8, are a special
case of Kraus measurements. Let Π0,Π1, . . . ,Πm−1 ∈ Cd×d be a sequence of pairwise-
orthogonal and complete projectors. These are valid Kraus operators since

m−1∑
k=0

Π∗
kΠk =

m−1∑
k=0

(Πk)2 =
m−1∑
k=0

Πk = I. (436)

Recall these special cases of projective measurements:
• A measurement with respect to an orthonormal basis |ϕ0⟩ , |ϕ1⟩ , . . . , |ϕd−1⟩ can

be expressed as the projective measurement with projectors

|ϕ0⟩⟨ϕ0| , |ϕ1⟩⟨ϕ1| , . . . , |ϕd−1⟩⟨ϕd−1| . (437)

• If there are two registers, with dimensions c and d, then a measurement of the
first register with respect to the orthonormal basis |ϕ0⟩ , |ϕ1⟩ , . . . , |ϕc−1⟩ can be
expressed as the projective measurement with projectors

|ϕ0⟩⟨ϕ0| ⊗ Id, |ϕ1⟩⟨ϕ1| ⊗ Id, . . . , |ϕc−1⟩⟨ϕc−1| ⊗ Id. (438)

But Kraus measurements are much more general than projective measurements.

239

30.1.2 A Kraus measurement for the trine states

The trine states (which arose as a running example in Part I, sections 5.1.2 and 9.2.1)
are three vectors in C2, with angle 120◦ between each pair

|ϕ0⟩ = |0⟩ (439)
|ϕ1⟩ = −1

2 |0⟩+
√

3
2 |1⟩ (440)

|ϕ2⟩ = −1
2 |0⟩ −

√
3

2 |1⟩ . (441)

Define these three Kraus operators

A0 =
√

2
3 |ϕ0⟩ ⟨ϕ0| =

√2/3 0
0 0

 (442)

A1 =
√

2
3 |ϕ1⟩ ⟨ϕ1| = 1

4

√2/3 −
√

2
−
√

2
√

6

 (443)

A2 =
√

2
3 |ϕ2⟩ ⟨ϕ2| = 1

4

√2/3
√

2
√

2
√

6

 . (444)

Notice that these are not projectors (because of the factor
√

2/3) and they are not
orthogonal. Nevertheless, since A∗

0A0 + A∗
1A1 + A∗

2A2 = I, these are valid Kraus
operators. It is straightforward to calculate that using this measurement for the trine
state distinguishing problem results in success probability 2

3 .
This is an alternative to the “exotic” measurement procedure explained in sec-

tion 9.2.1, where the 2-dimensional system system is isometrically embedded into
a 3-dimensional space and then a projective measurement is applied. With Kraus
measurements, there is no need to embed into a larger space.

30.1.3 POVM measurements

Kraus measurements are frequently expressed in a simplified form, called POVM
measurements (where POVM stands for positive operator valued measure31). This
simplified form makes the most sense when we only care about the classical outcome
(and not the residual quantum state).

31Regarding terminology, a positive operator valued measure is a generalization of the notion of
a measure, that you may have seen in probability theory or functional analysis. The meaning of
“measure” is completely distinct from “measurement”. So “POVM measurement” is not redundant.

240

Recall that, for Kraus operators A0, A1, . . . , Am−1, the associated measurement of
a state ρ produces outcome k ∈ {0, 1, . . . ,m− 1} with probability

Tr(AkρA∗
k) = Tr(ρA∗

kAk). (445)

For each Kraus operator Ak, define Ek = A∗
kAk. All we need to know is the sequence

E0, E1, . . . , Em−1 to define the classical part of the measurement outcome. And we
can characterize such sequences E0, E1, . . . , Em−1 in a simple way.

Definition 30.2 (POVM elements). A sequence E0, E1, . . . , Em−1 is a sequence of
POVM elements if, for all k, it holds that Ek is positive,32 and

E0 + E1 + · · ·+ Em−1 = I. (446)

For a sequence of POVM elements E0, E1, . . . , Em−1 ∈ Cd×d and a d-dimensional
quantum state ρ, applying the associated POVM measurement produces outcome
k ∈ {0, 1, . . . ,m− 1} with probability Tr(ρEk).

� A word of caution: if we care about the residual quantum state after the
measurement then POVM measurements are less expressive than Kraus measure-
ments. We can find an Ak such that Ek = A∗

kAk, but this Ak is not unique, and
for different choices of Ak the residual state is different.

The POVM measurement elements corresponding to the trine state measurement
in section 30.1.2 are

E0 = 2
3 |ϕ0⟩ ⟨ϕ0| , E1 = 2

3 |ϕ1⟩ ⟨ϕ1| , E2 = 2
3 |ϕ2⟩ ⟨ϕ2| . (447)

30.2 Quantum channels via Kraus operators
For a sequence of Kraus operators, A0, A2, . . . , Am−1 ∈ Cc×d, define the following state
transformation, called a quantum channel, which maps quantum states to quantum
states with no classsical side information.
Input to the channel: is a d-dimensional quantum system, whose state can be de-

scribed by a d× d density matrix ρ.

Output of the channel: is a c-dimensional quantum system, whose state is

A0ρA
∗
0 + A1ρA

∗
1 + · · ·+ Am−1ρA

∗
m−1. (448)

32Meaning that Ek is normal and all its eigenvalues are nonnegative reals.

241

One interpretation of the quantum channel with Kraus operators A0, A2, . . . , Am−1

is as a process where the Kraus measurement (as defined in section 30.1) occurs, but
the classical part of the outcome is withheld. We can imagine that Bob sends the
state to Alice, who performs the measurement (and sees the classical outcome) and
then Alice sends the residual quantum state back to Bob, but she does not send him
the classical output of the measurement.

Therefore, from Bob’s perspective, the quantum state is the probabilistic mixture
of states in Eq. (422), but with the classical part of the outcome omitted. This state
has density matrix

m−1∑
k=0

AkρA
∗
k

Tr(AkρA∗
k)

Tr(AkρA∗
k) =

m−1∑
k=0

AkρA
∗
k (449)

(any terms where Tr(AkρA∗
k) = 0 correspond to outcomes that never occur and where

AkρA
∗
k = 0). This interpretation is sometimes useful—though there are other fruitful

ways of thinking about channels. The subject of quantum channels is quite large, and
has an extensive underlying theory.

What follows are a few simple examples of quantum channels.

30.2.1 Unitary operations and isometries

Any d × d unitary operation U corresponds to a quantum channel with one single
Kraus operator U . The channel maps each d × d density matrix ρ maps to UρU∗.
Similarly, for any c× d isometry V . So quantum channels generalize isometries.

The examples that follow are channels that have more than one Kraus operator.

30.2.2 Decoherence of a qubit

I will first explain what this channel does, and then show you two different ways of
“implementing” the channel in terms of Kraus operators. The decoherence channel
changes the state of its input qubit from

ρ =
[
ρ00 ρ01

ρ10 ρ11

]
to

[
ρ00 0
0 ρ11

]
. (450)

The diagonal density matrix can be viewed as a probabilistic mixture of |0⟩⟨0| and
|1⟩⟨1|. On the Bloch sphere, the diagonal density matrices are on the axis connecting

242

|0⟩⟨0| and |1⟩⟨1|. The effect of the channel is to move the state “horizontally” (i.e.,
parallel to the equatorial plane) to the vertical axis connecting |0⟩⟨0| and |1⟩⟨1|.

Figure 204: Effect of the decoherence channel on pure state |ψ⟩⟨ψ| on the Bloch sphere.

Below are two operationally different ways of implementing this channel.

Decoherence by measuring without looking at the outcome

Our first way of implementing the decoherence channel is intuitively based on the
operation of measuring the qubit in the computational basis, but without seeing the
classical part of the outcome. Imagine Bob sends his qubit to Alice, who measures in
the computational basis (and sees the outcome), and then Alice sends the qubit back
to Bob, but does not send the classical output of the measurement.

The quantum part of the outcome of Alice’s measurement is|0⟩ with prob. ⟨0| ρ |0⟩
|1⟩ with prob. ⟨1| ρ |1⟩.

(451)

Since Alice obtains the classical outcome, from her perspective, the quantum outcome
is always either |0⟩⟨0| or |1⟩⟨1|. But Bob does not receive the classical outcome so,
from his perspective, the quantum outcome is the density matrix

⟨0|ρ|0⟩ |0⟩⟨0|+ ⟨1|ρ|1⟩ |1⟩⟨1| . (452)

This can be expressed as a channel by setting the Kraus operators to A0 = |0⟩⟨0|
and A1 = |1⟩⟨1|. Then a density matrix ρ = [ρ00 ρ01

ρ10 ρ11] maps to[
1 0
0 0

] [
ρ00 ρ01

ρ10 ρ11

] [
1 0
0 0

]
+
[
0 0
0 1

] [
ρ00 ρ01

ρ10 ρ11

] [
0 0
0 1

]
=
[
ρ00 0
0 ρ11

]
. (453)

243

Decoherence by applying a probabilistic mixture of I and Z

Another way of implementing the decoherence channel is intuitively based on applying
a randomly selected unitary to the state. Bob sends the qubit to Alice, who does the
following. She flips a fair coin, and then either applies I or Z to the qubit, depending
on the outcome of the coin flip. Then she sends the qubit back to Bob, but she does
not reveal the coin flip.

Since Alice knows outcome of the coin flip, from her perspective, the state is either
ρ or ZρZ. But Bob does not know the coin flip so, from his perspective, the state is ρ with prob. 1

2

ZρZ with prob. 1
2 .

(454)

and the density matrix of this mixture is

1
2ρ+ 1

2ZρZ. (455)

This can be expressed in the Kraus form by setting the Kraus operators of a quantum
channel to A0 = 1√

2I and A1 = 1√
2Z. Then a density matrix ρ = [ρ00 ρ01

ρ10 ρ11] maps to
(

1√
2I
)
ρ
(

1√
2I
)∗

+
(

1√
2Z
)
ρ
(

1√
2Z
)∗

= 1
2ρ+ 1

2ZρZ (456)

= 1
2

[
ρ00 ρ01

ρ10 ρ11

]
+ 1

2

[
1 0
0 −1

] [
ρ00 ρ01

ρ10 ρ11

] [
1 0
0 −1

]
(457)

=
[
ρ00 0
0 ρ11

]
. (458)

Comparison of the two implementations of the decoherence channel

From Bob’s perspective, who doesn’t receive any classical measurement outcomes or
coin flip outcomes, the two implementations of the decoherence channel are identical.
However, they are not the same if we include Alice’s perspective. In the first imple-
mentation, the state is actually measured and it cannot be recovered at a later time,
even with the classical information that Alice has. In the second implementation,
Alice performs no measurement. If, at some later time, she reveals the coin flip to
Bob then he can recover the initial state (by applying either I or Z to the state).

So there’s an advantage to the second implementation. But there is also a dis-
advantage: if Bob asks Alice later on “what was the measurement outcome?”, she

244

cannot answer that question. There is no classical bit b ∈ {0, 1} that Alice can pro-
duce and send to Bob such that, if Bob then measures his decohered state in the
computational basis, the outcome is guaranteed to be b.

Exercise 30.1 (conceptual). Suppose that Bob believes that he has figured out a
new way of measuring a qubit that is reversible. His idea is to first implement the
random unitary method to create the decohered state, which can serve as the quantum
outcome (remembering what the coin flip is, so that the can undo the unitary later
on). Now all that’s lacking is that classical outcome. Bob’s idea is to measure the
decohered qubit in the computational basis to obtain a bit that can serve as the
the classical outcome of the measurement. Will doing all this result in a faithful
simulation of the measurement operation? And, after all these operations have been
performed, is there a way for Bob to recover the original state?

General definition of a mixed-unitary channel

This notion of defining a channel as a probabilistic mixture of unitary operations can
be defined in general as follows.

Definition 30.3 (mixed-unitary channel). A channel is mixed-unitary if it can be
expressed by Kraus operators of the form

Ak = √pk Uk, (459)

for k ∈ {0, 1, . . . ,m − 1}, where (p0, p1, . . . , pm−1) is a valid probability vector and
U0, U1, . . . , Um−1 ∈ Cd×d are unitary.

Such a channel maps ρ ∈ Cd×d to

p0 U0 ρU
∗
0 + p1 U1 ρU

∗
1 + · · · + pm−1 Um−1 ρU

∗
m−1, (460)

which can be interpreted operationally as choosing a random k and then applying Uk.
Note that, since the Kraus representation of a channel is not unique, the mere

existence of a Kraus representation that is not of the above mixed-unitary form does
not imply that the channel is not mixed-unitary; there may be another Kraus repre-
sentation that is of the mixed-unitary form. For example, consider the two different
Kraus representations of the decoherence channel in section 30.2.2.

We will eventually see an example of channel which takes qubits to qubits that is
not mixed-unitary (that has no representation that is of the mixed-unitary form).

There is an obvious generalization of mixed-unitary to mixed-isometry, which I do
not elaborate on here.

245

30.2.3 Phase damping qubit channel

This channel is parameterized by p ∈ [0, 1
2], and corresponds to the probabilistic

mixture of unitaries  I with prob. 1− p
Z with prob. p.

(461)

Kraus operators for this channel are A0 =
√

1− p I and A1 = √pZ.
The effect of the channnel is the mapping[

ρ00 ρ01

ρ10 ρ11

]
7→
[

ρ00 (1− 2p)ρ01

(1− 2p)ρ10 ρ11

]
. (462)

For the setting p = 0, the channel does not change the state at all, and for the setting
p = 1

2 , the channel is the decoherence channel of section 30.2.2. For the intermediate
values of p, where 0 < p < 1

2 , the channel “partially decoheres” the state. On the
Bloch sphere, it moves the state part of the way towards the vertical axis between
|0⟩⟨0| and |1⟩⟨1|, as illustrated in figure 205. The channel shrinks the Bloch sphere

Figure 205: Effect of phase damping channel on pure state |ψ⟩⟨ψ| on the Bloch sphere.

to an ellipsoid connecting |0⟩⟨0| and |1⟩⟨1|.

30.2.4 Depolarizing qubit channel

This channel is frequently used as a standard qubit noise model (relevant for quantum
error-correcting codes, the subject of sections 35 and 36). It is parameterized by

246

p ∈ [0, 3
4], and corresponds to the probabilistic mixture of unitaries

I with prob. 1− p
X with prob. p/3
Y with prob. p/3
Z with prob. p/3.

(463)

Kraus operators for this channel are

A0 =
√

1− p I, A1 =
√
p/3X, A2 =

√
p/3Y, A3 =

√
p/3Z. (464)

It can be calculated that the effect of the depolarizing channel is the mapping

ρ 7→ 4p
3

 1
2 0
0 1

2

+
(
1− 4p

3
)
ρ. (465)

When p > 0, this corresponds to moving the state towards the state 1
2I (at the centre

of the Bloch sphere), as illustrated in figure 206. The channel shrinks the Bloch

Figure 206: Effect of depolarizing channel on pure state |ψ⟩⟨ψ| on the Bloch sphere.

sphere symetrically towards the centre.

Exercise 30.2. Prove that the depolarizing channel, as described by Eq. (463), re-
sults in the mapping in Eq. (465).

30.2.5 Amplitude damping qubit channel

This channel is not a mixed-unitary channel; it cannot be expressed as a probabilistic
mixture of unitaries. It is parameterized by p ∈ [0, 1], and can be described by Kraus
operators

A0 =
[
1 0
0
√

1− p

]
and A1 =

[
0 √

p

0 0

]
. (466)

247

It is straightforward to calculate that the effect of the channnel is the mappingρ00 ρ01

ρ10 ρ11

 7→
ρ00 + pρ11

√
1− p ρ01

√
1− p ρ10 (1− p)ρ11

 . (467)

When p > 0, this shrinks all entries of the density matrix except ρ00. It moves the
state towards |0⟩⟨0|, as illustrated in figure 207. The channel shrinks the Bloch sphere

Figure 207: Effect of amplitude damping channel on pure state |ψ⟩⟨ψ| on the Bloch sphere.

to a vertically flattened ellipsoid, positioned so that |0⟩⟨0| remains fixed.
Exercise 30.3. Prove that the amplitude damping channel is not mixed-unitary.

30.2.6 Adding a mixed-state ancilla register

We have seen in section 29.4 that the operation of adding an ancilla register in pure
state |ϕ⟩ to a c-dimensional state (the mapping ρ 7→ ρ ⊗ |ϕ⟩⟨ϕ|) corresponds to the
isometry Ic ⊗ |ϕ⟩. Suppose that we want to add an ancilla in a mixed state σ? This
is the mapping ρ 7→ ρ⊗ σ. How do we express this in terms of Kraus operators?
Exercise 30.4. For a fixed d-dimensional mixed state σ, show how to express the
mapping ρ 7→ ρ⊗ σ as a quantum channel in the Kraus form.

30.2.7 The partial trace is a channel

We conclude by noting that the partial trace, defined in Definition 29.1, is a channel.
If there are two registers, of dimensions c and d, then the operation of tracing out the
second register (denoted as Tr2) is expressible by the Kraus operators

Ic ⊗ ⟨0| , Ic ⊗ ⟨1| , . . . , Ic ⊗ ⟨d− 1| . (468)

Operationally, this corresponds to removing the second register, which is kind of
complementary to the operation of adding a second register.

248

31 Channels and linear maps on subsystems
Let A0, A1, . . . , Am−1 be c× d Kraus operators, which define a channel χ that maps
each d× d density matrix ρ to the c× c density matrix

χ(ρ) =
m−1∑
k=0

AkρA
∗
k. (469)

Now suppose that there is an additional register in play and the channel doesn’t act
on that additional register. This scenario is reminiscent to the example in section 6.6
of Part I, where we considered a 1-qubit unitary acting on the second qubit of a
two-qubit system.

Suppose that our first register is r-dimensional (that supports states described as
r × r density matrices) and our second register is d-dimensional, and we apply the
channel described in Eq. (469) to the second system—and perform no action on the
first system. We can define this as a channel acting on the combined system as that
with rc× rd Kraus operators

Ir ⊗ A0, Ir ⊗ A1, . . . , Ir ⊗ Am−1. (470)

The input is an rd× rd density matrix and the output is an rc× rc density matrix.
Let’s denote this channel on the joint system as Ir ⊗ χ.

In the special case where input to the channel Ir⊗χ is a product state of the form
ρ⊗ σ ∈ Cr×r ⊗ Cd×d, the channel acts as

(Ir ⊗ χ)(ρ⊗ σ) = ρ⊗ χ(σ). (471)

Moreover, in the special case where the input to channel Ir ⊗ χ is a separable state
(discussed in section 29.2) of the form

n∑
j=1

pj
(
ρj ⊗ σj

)
, (472)

the channel acts as

(Ir ⊗ χ)
(

n∑
j=1

pj
(
ρj ⊗ σj

))
=

n∑
j=1

pj
(
ρj ⊗ χ(σj)

)
. (473)

249

31.1 Channels vs. linear maps
A map f : Cd×d → Cc×c is linear if, for all λ1, λ2 ∈ C, and for all A1, A2 ∈ Cd×d,

f(λA1 + λ2A2) = λ1f(A1) + λ2f(A2). (474)

Note that all channels are linear maps: if χ : Cd×d → Cc×c is a channel then χ is
linear.

Exercise 31.1 (easy). Prove that all channels are linear maps.

However, not all linear maps are channels. There are many trivial counterexam-
ples, which are linear maps that do not map all valid density matrices to valid density
matrices, such the zero function, or the function that multiplies all entries of the input
density matrix by 2 (so the output matrix would not have trace 1).

There are also more subtle counterexamples, which are mappings that map every
valid input density matrix to a valid output density matrix and nevertheless are not
channels.

Consider the transpose mapping: ρ 7→ ρT , where ρT is the transpose of matrix ρ.
This is linear and has the property that it maps all valid density matrices to valid
density matrices (of the same dimension). Is the transpose a valid channel? In fact,
it is not, and this will be proved in subsection 31.3.

31.2 Linear maps applied to subsystems
Let f : Cd×d → Cc×c be any linear map (that takes a d2 × d2 matrix as input and
produces a d1 × d1 matrix as output). Suppose that an additional r-dimensional
register is introduced and, informally speaking, f “does nothing” to that additional
register. Let’s not worry about what (if anything) that informal statement means.
Instead, let’s formally define the linear map Ir ⊗ f that maps rd × rd matrices to
rc× rc matrices as follows. For all A ∈ Cr×r and B ∈ Cd×d,

(Ir ⊗ f)
(
A⊗B

)
= A⊗ f(B). (475)

And this extends by linearity to a mapping from all rd× rd matrices because every
rd× rd matrix M can be expressed as

M =
r∑
i=1

r∑
j=1

Eij ⊗ Aij =


A11 A12 · · · A1c

A21 A22 · · · A2c
...
Ac1 Ac2 · · · Acc

 , (476)

250

where each Aij is a d× d matrix (not necessarily a density matrix), and Eij = |i⟩⟨j|,
which is the r × r matrix whose i′j′-th entry is1 if i′ = i and j′ = j

0 otherwise.
(477)

It follows from Eq. (475), the linearity of Ir ⊗ χ, and Eq. (476) that

(Ir ⊗ f)(M) =
r∑
i=1

r∑
j=1

Eij ⊗ f(Aij) =


f(A11) f(A12) · · · f(A1r)
f(A21) f(A22) · · · f(A2r)

...
f(Ar1) f(Ar2) · · · f(Arr)

 . (478)

In particular, in the special case where the linear mapping is a quantum channel χ,
we have

(Ir ⊗ χ)(M) =


χ(A11) χ(A12) · · · χ(A1r)
χ(A21) χ(A22) · · · χ(A2r)

...
χ(Ar1) χ(Ar2) · · · χ(Arr)

 . (479)

This leads to an alternative definition of (Ir⊗χ): the input matrix M is expressed as
a block matrix of the form in Eq. (476) and then χ is applied to each block, resulting
in the block matrix in Eq. (479). Our original definition of Ir ⊗ χ is in terms of the
Kraus operators of the original channel, where the Kraus operators for the resulting
channel on the combined system are of the form in Eq. (470). The two definitions of
(Ir ⊗ χ) are equivalent.

31.3 The partial transpose as an entanglement test
Recall from section 31.1 that the transpose fT : Cd×d → Cd×d, defined as fT (ρ) = ρT

is a linear map that maps valid density matrices to valid density matrices. The partial
transpose on a two-register system is the mapping Ir⊗ fT , that applies the transpose
to the second register.

Suppose that we have two qubit registers and we apply the transpose to the second

251

register. Applying I2 ⊗ fT to the Bell state 1√
2 |00⟩+ 1√

2 |11⟩, results in

(I2 ⊗ fT)




1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2


 =


1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2

 . (480)

What’s remarkable about the resulting matrix is that it is not a valid density matrix
(because it is not positive; it has a negative eigenvalue).

Exercise 31.2. Show that the eigenvalues of the matrix on the right side of Eq. (480)
are 1

2 (with multiplicity 3) and −1
2 (with multiplicity 1).

The fact that applying I2⊗ fT to the density matrix of the state 1√
2 |00⟩+ 1√

2 |11⟩
does not yield a valid density matrix has these two interesting consequences.

Theorem 31.1. The transpose fT is not a quantum channel.

Proof. If fT were a valid quantum channel then I2⊗fT would also be a valid quantum
channel, so applying I2 ⊗ fT to the density matrix of the Bell state 1√

2 |00⟩+ 1√
2 |11⟩

would result in a valid density matrix, which is not the case (by Eq. (480)). ■

Theorem 31.2. The Bell state 1√
2 |00⟩+ 1√

2 |11⟩ is not separable.

Proof. It the Bell state were separable then its density matrix could be expressed as
r∑

k=1
pk
(
ρk ⊗ σk

)
, (481)

where (p1, . . . , pr) is a probability vector, and ρ1, . . . , ρr, σ1, . . . , σr are 2× 2 density
matrices. Then applying I2 ⊗ fT to this state would yield

r∑
k=1

pk
(
ρk ⊗ σTk

)
, (482)

which is a valid density matrix, contradicting Eq. (480). ■

Positive partial transpose test

For a general two-register quantum state ρ, if (Ir⊗fT)(ρ) is not a valid density matrix
then ρ cannot be a separable state, so ρ must be entangled.

What about the converse?

252

Theorem 31.3. In the special case where ρ is a density matrix for two qubit registers,
(I2 ⊗ fT)(ρ) is a valid density matrix if and only if ρ is separable.

We do not prove Theorem 31.3 here.
In the general case, where the registers can have higher dimensions than 2, if

(Ir ⊗ fT)(ρ) is a valid density matrix then it can go either way: ρ could be separable
or ρ could be entangled.

253

32 State transitions in the Stinespring form
In the previous section, I showed you how to express quantum measurements and
quantum channels in terms of Kraus operators. In this section, I’m going to show
you another form for expressing state transitions, called the Stinespring form.

32.1 Measurements in the Stinespring form
Imagine that the input state is a d-dimensional register. First, we append an m-
dimensional ancilla register in some computational basis state, say |0⟩. The combined
system is md-dimensional. Next, we apply some md × md unitary operation U to
the combined system. Finally, we measure one register in the computational basis,
yielding a classical outcome k and a residual quantum state in the other register.

Figure 208: Quantum circuit for a measurement in the Stinespring form.

It’s natural for the dimensions of the registers coming out of U to be the same as
those of the registers going in (ℓ = m and c = d). But we allow for the dimensions
of the outgoing registers to be different, as long as the total dimension is the same
(md = ℓc). To get a feeling for this, consider the case where all the dimensions are
powers of 2. In that case, we can assume that each register is a bunch of qubits.

Figure 209: Quantum circuit on qubits for a measurement in the Stinespring form.

In this example, the input state is 5 qubits, whereas the residual outgoing state is 4
qubits. Also, the ancilla is 2 qubits, whereas the number of qubits that are measured

254

is 3. As long as the total number of qubits going into U and coming out of U is
preserved, this makes perfect sense.

Also, note that some of the dimensions can be 1. A 1-dimensional register is
essentially the same as no register. The only possible 1×1 density matrix is I1 = [1]
and I1⊗ ρ = ρ. For example, for a measurement in an orthonormal basis specified by
U , a very strict translation into the form of figure 209 is obtained by setting m = c = 1
and ℓ = d (where U = I in the case of the computational basis).

Figure 210: Measurement with respect to an orthonormal basis specified by U .

But figure 210 is pedantic, and we can freely omit the wires of dimension 1 (and omit
any I gates). With this relaxation, we can denote a measurement with respect to an
orthonormal basis in the Stinespring form as follows.

Figure 211: Measurement with respect to the computational basis and a basis specified by U .

Remember the “exotic measurements” in section 9.2 of Part I ? It should be clear
that those measurements are subsumed by these Stinespring measurements.

Figure 212: Exotic measurement in the Stinespring form.

32.2 Channels in the Stinespring form
As we noted in section 30.2, one way of thinking about a channel is as a measure-
ment where we don’t look at the classical part of the outcome. So we could define
Stinespring channels that way. We’ll do that, but we’ll simplify things by noting
that, if we’re not going to see the classical outcome then, instead of performing the
measurement, we can trace out that register, like this.

255

Figure 213: Quantum circuit for a channel in the Stinespring form.

Notice the circuit notation that I’m using here for tracing out a register: the imagery
is supposed evoke that the register is tossed away.

Here are some of our most basic channels in the Stinespring form (loosely in the
form of figure 213).

Figure 214: Unitary channel, add ancilla |0⟩⟨0| channel, and partial trace Tr1 channel.

All these channels are rather trivial examples. In the next subsections, we review
some examples that are a little more interesting.

32.2.1 Decoherence of a qubit

The qubit decoherence channel was defined in the Kraus form in section 30.2.2. One
way of thinking about this channel is that it produces the residual state when a qubit
is measured in the computational basis (but where we don’t see the classical part of
the outcome). Here’s a Stinespring circuit for the decoherence channel.

Figure 215: Decoherence of a qubit channel.

How does this work? Consider the case of a pure state α0 |0⟩ + α1 |1⟩. The CNOT
gate causes the state of the two qubits to become α0 |00⟩+ α1 |11⟩, and then tracing
out the first qubit yields the mixed state[

|α0|2 0
0 |α1|2

]
= |α0|2 |0⟩⟨0|+ |α1|2 |1⟩⟨1| , (483)

256

which is consistent with the definition of this channel. So at least this works for the
special case of pure states.

Exercise 32.1 (easy). Show that the circuit in figure 215 implements the decoherence
channel, as defined in section 30.2.2.

32.2.2 Reset channel

Here’s a very simple channel that I’ll call the reset channel. The input is a qubit and
the output is a qubit in state |0⟩ (regardless of what the input state is). Here’s a very
simple Stinespring circuit for it.

Figure 216: Circuit for the reset channel (with two different notations for the SWAP gate).

It’s obvious that this circuit works: it traces out the input qubit and produces a qubit
in state |0⟩ as output.

Exercise 32.2. Express the reset circuit in the Kraus form (in terms of Kraus oper-
ators). (Hint: two Kraus operators suffice.)

Later in this section, we will see recipes for converting between the Stinespring form
and the Kraus form, but there is a simple solution to the above which you might try
to discover directly.

32.2.3 Depolarizing channel

The depolarizing channel was defined in the Kraus form in section 30.2.4. It is used
as a natural model of noise, and we’ll be seeing more of this channel when we get to
the subject of quantum error-correcting codes in sections 35 and 36.

The channel is parameterized by q ∈ [0, 1], and it maps an input qubit in state
ρ ∈ C2×2 to an output qubit in state

(1− q)ρ+ q

[1
2 0
0 1

2

]
. (484)

(This is slightly different scaling than for the parameter p in section 30.2.4, but is
equivalent, by the conversion q = 4

3p.)

257

An interpretation of this is that, with probability 1− q, the state is left alone and
with probability q the state is changed to the maximally mixed state

[1
2 0
0 1

2

]
.

Can we represent this channel in Stinespring form? Here’s one Stinespring circuit
for this channel, where R =

[√
1−q −√

q
√
q

√
1−q

]
.

Figure 217: The depolarizing channel in the Stinespring form.

At first glance, this circuit may look complicated. But we can understand it by first
looking at the two middle qubits. The H and CNOT gate are manufacturing a Bell
state 1√

2 |00⟩ + 1√
2 |11⟩. Note that each qubit of the Bell state is in state

[1
2 0
0 1

2

]
.

Then the rest of the circuit appliesSWAP with prob. q
I with prob. 1− q.

(485)

This can be seen by noting that the circuit is equivalent to the circuit in figure 218,
where we are using the deferred measurement lemma (Lemma 8.1, from Part I) to

Figure 218: An equivalent circuit for the depolarizing channel.

measure the control qubit of the controlled-SWAP gate. This Stinespring form uses
three ancilla qubits. Can this channel be implemented with fewer ancilla qubits?

A very easy way to reduce the ancilla to two qubits is to skip the Bell state and
just initialize one ancilla qubit to the mixed state 1

2 |0⟩⟨0|+
1
2 |1⟩⟨1|. Technically, this

isn’t in the Stinespring form of figure 213, since that requires all ancilla qubits to be
initialized to a pure state. But a construction allowing an ancilla to be initialized to
a mixed state might nevertheless be useful in some contexts.

258

However, it turns out that there is a different Stinespring circuit for the depolariz-
ing channel that uses only two ancilla qubits initialized to state |00⟩. The construction
is elegant and I leave it as an exercise.

Exercise 32.3. Give a Stinespring form for the depolarizing channel that uses only
two ancilla qubits in initial state |00⟩.

32.3 Equivalence of Kraus and Stinespring channels
Recall from Definition 30.1 that A0, A1, . . . , Aℓ−1 is a sequence of Kraus operators if

ℓ−1∑
k=0

A∗
kAk = I. (486)

Associated with any sequence of Kraus operators, we have two transformations: a
Kraus measurement and a Kraus channel. We’re now going to prove two theorems.

Theorem 32.1 (Kraus to Stinespring). Any transformation in the Kraus form can
be simulated in the Stinespring form.

Theorem 32.2 (Stinespring to Kraus). Any transformation in the Stinespring form
can be simulated in the Kraus form.

32.3.1 Kraus to Stinespring

In this section we prove Theorem 32.1. For Kraus operators A0, A1, . . . , Aℓ−1 ∈ Cc×d,
consider the block matrix 

A0

A1
...

Aℓ−1

 , (487)

which is an ℓc× d matrix. The columns of this matrix are orthonormal because

[
A∗

0 A∗
1 · · · A∗

ℓ−1

]

A0

A1
...

Aℓ−1

 =
ℓ−1∑
k=0

A∗
kAk = I. (488)

259

One consequence of this is that d ≤ ℓc. Otherwise, the number of orthonormal
vectors would have to exceed the dimension of the space in which they exist, which
is impossible.

So we have ℓ Kraus operators that are c × d matrices and d ≤ ℓc. To make the
dimensions work out nicely, I’d like to assume that d divides ℓc. For this to hold, we
might have to increase ℓ. It’s straightforward to show that this can be done, where
the new value of ℓ is less than double the original value of ℓ. If ℓ is increased we can
add more Kraus operators that are zero matrices. Note that the larger set of matrices
are still Kraus operators. So we can assume that d divides ℓc and set m = ℓc

d
. Then

we have ℓc = md.
Now, consider to the block matrix in Eq. (487) of Kraus operators again. Since

its columns are orthonormal, we can extend this set of ℓc-dimensional column vectors
to be an orthonormal basis of size ℓc. If we add these column vectors to the block
matrix, we end up with a square unitary matrix. Call this ℓc× ℓc matrix U , which is
of the form

U =


A0

A1
...

Aℓ−1

∣∣∣∣∣∣∣∣∣∣∣W
 . (489)

Now consider this circuit.

Figure 219: Stinespring circuit (omitting the final measurement/trace-out stage).

The input to the circuit consists of two registers: an m-dimensional ancilla and our
d-dimensional input state. The circuit applies U to this. We can calculate the density

260

matrix of the output state as

U
(
|0⟩⟨0| ⊗ ρ

)
U∗ =


A0

A1
...

Aℓ−1

∣∣∣∣∣∣∣∣∣∣∣W


ρ 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0




A∗

0 A∗
1 · · · A∗

ℓ−1

W ∗
 (490)

=


A0ρ

A1ρ
...

Aℓ−1ρ

∣∣∣∣∣∣∣∣∣∣∣ 0


A∗

0 A∗
1 · · · A∗

ℓ−1

W ∗
 (491)

=


A0ρA

∗
0 A0ρA

∗
1 · · · AρA∗

ℓ−1
A1ρA

∗
0 A1ρA

∗
1 · · · AρA∗

ℓ−1
...

Aℓ−1ρA
∗
0 Aℓ−1ρA

∗
1 · · · Aℓ−1ρA

∗
ℓ−1

 . (492)

For the Stinespring channel, the final step is to trace out the first register. This
partial trace is the sum of the c× c blocks along the diagonal, which is

ℓ−1∑
k=0

AkρA
∗
k. (493)

For the Stinesrping measurement, the final step is to measure the first register in the
computational basis. This measurement is defined in the Kraus form in section 30.1.1,
and it is straightforward to deduce that the probability that the outcome of this
measurement is k is Tr(AkρA∗

k).

32.3.2 Stinepring to Kraus

Here I give a brief overview of the proof of Theorem 32.2. The Stinespring form
consists of three stages. The first two are: adding an ancilla in state |0⟩; and then
applying a unitary operation U . The third stage is the partial trace for the Stinespring
channel, and the measurement of the first register for the Stinespring measurement.
Note that, in section 30, we have Kraus forms for each of these individual operations.
We can compose these Kraus forms to obtain a Kraus channel from a Stinespring
channel. We can compose them to obtain a Kraus measurement from a Stinespring
measurement.

261

32.4 Unifying measurements and channels
I have been describing state transitions as if there’s a clear dichotomy between mea-
surements and channels. You either measure and get a classical outcome and a
residual state or you apply a channel and get just a quantum state as outcome. In
fact, there’s a general notion that unifies these.

Let f : {0, 1, . . . , ℓ− 1} → T be some function. Suppose that we apply the Kraus
measurement and then apply f to the classical outcome. So the classical outcome
is f(k), rather than k.

Figure 220: Generalized quantum transformation.

If f is a constant function, then seeing f(k) provides us with no information about k.
So that corresponds to the case of a channel. The other extreme case is where f is
a bijection, for which knowing f(k) provides full information about k. And there are
in-between cases where f is not constant nor a bijection. In those cases, we receive
partial information about k. The classical outcome f(k) might narrow down the
possible values of k, but without uniquely determining k.

262

33 Distance measures between states
This section is about distance measures between quantum states. We’ll see various
ways of quantifying how different two quantum states are, including the fidelity and
the trace distance. I’ll also show you the Holevo-Helstrom Theorem, which relates
trace distance to the operational problem of distinguishing between a pair of states
by a measurement.

Recall that we consider two quantum states to be indistinguishable if, for any
measurement procedure, the probability distribution of outcomes is identical between
the two states. For example, |0⟩ and −|0⟩ are indistinguishable. In section 28.2, we
saw examples of different probabilistic mixtures that resulted in the same density
matrix. In all such cases, the two states are indistinguishable; we don’t even consider
them to be different states.

Definition 33.1 (distinguishable states). We say two states are distinguishable if
they’re not indistinguishable. In other words, if for some measurement procedure,
the outcome probabilities are different for the two states.

For example, the |0⟩ and the |+⟩ state are distinguishable. Note that our definition
of distinguishable does not require us to be able to perfectly tell the two states apart.
Another example is 1

2 |0⟩⟨0|+
1
2 |1⟩⟨1| and |+⟩⟨+|.

Definition 33.2 (perfectly distinguishable states). Define two states to be perfectly
distinguishable if there is a measurement procedure that perfectly tells them apart.

For example, |+⟩ and |−⟩ are perfectly distinguishable.
We have three qualitative categories: indistinguishable, distinguishable, and per-

fectly distinguishable. Can we quantify how different two states are?

33.1 Operational distance measure
An operational way of quantifying the difference between two states is based on the
guess-the-state game that we’ve seen several times.

For any two states, which in general can be mixed states, imagine the game where
Alice flips a fair coin to decide which of the two states to set a quantum system to,
and then she sends the quantum system to Bob. Bob knows what the two possible
states are, but Alice does not tell him which one she chose. Bob’s goal is to apply
a measurement procedure measurement to the state that he received and to use the

263

classical outcome to guess which state it was. We can write the success probability
of Bob’s optimal measurement procedure as (1 + δ)/2, where δ ∈ [0, 1].

The trivial strategy for Bob is to just guess a random bit (ignoring the system
that he receives from Alice). That strategy succeeds with probability 1

2 . We can think
of δ as how much better one can do than that baseline.

Another way of viewing δ is as the success probability minus the failure probability
(which holds because δ = 1+δ

2 −
1−δ

2). It’s sometimes useful to think of δ in that way.
For a given pair of quantum states, what’s the best δ attainable? If the two states

are indistinguishable then δ = 0 is the best possible. At the other extreme, if the two
states are perfectly distinguishable then the success probability can be 1, so δ = 1.

An in-between case is when the two states are |0⟩ and |+⟩. These are not perfectly
distinguishable, but the distinguishing probability can be as high as

cos2(π8) =
1 + cos(π4)

2 =
1 + 1√

2
2 , (494)

so δ = 1√
2 ≈ 0.707. Another in-between case is 1

2 |0⟩⟨0|+
1
2 |1⟩⟨1| vs. |+⟩⟨+|, for which

the best possible distinguishing probability is 3
4 =

(
1 + 1

2

)
/2, so in that case δ = 1

2 .
This is one natural way of quantifying the distance between two states, in terms

of the highest distinguishing probability possible. A natural question is: given two
density matrices ρ0 and ρ1, what is the highest distinguishing probability possible?
In section 33.5, we’ll see a systematic way of addressing such questions.

33.2 Geometric distance measures
Now, let’s look at the distance between two quantum states form a different perspec-
tive: a geometric perspective.

33.2.1 Euclidean distance

If we have two d-dimensional pure states, |ψ0⟩ and |ψ1⟩ then it seems natural to take
the Euclidean distance between their state vectors

∣∣∣|ψ0⟩ − |ψ1⟩
∣∣∣
2
.

Figure 221: Euclidean distance between pure states |ψ0⟩ and |ψ1⟩.

264

If their Euclidean distance is small then it’s intuitively natural to think of the states
as “close”. But, if their Euclidean distance is large, should we think of the states as
“far apart”? Not necessarily, because of global phases. Note that −|ψ⟩ is the unit
vector farthest away from |ψ⟩ (the Euclidean distance being 2), even though these
are the same state.

Also, it is not so clear how this notion of Euclidean distance can be extended to
mixed-states.

33.2.2 Fidelity

Another notion of distance is called the fidelity, which for pure states is the absolute
value of the inner product between the state vectors

∣∣∣⟨ψ0|ψ1⟩
∣∣∣.

Figure 222: Fidelity between pure states |ψ0⟩ and |ψ1⟩.

This distance measure is calibrated in reverse in the sense that large fidelity means
“close” and small fidelity means “far”. Clearly, fidelity 1 means indistinguishable
and fidelity 0 means perfectly distinguishable (since orthogonal states are perfectly
distinguishable). Notice how the absolute value takes care of any distinctions between
vectors due to global phases.

For the in-between values of fidelity, if the fidelity is close to 1 means that the
states are “close”.

What about the fidelity between mixed states? It turns out that there is a def-
inition of fidelity for mixed states. If ρ0 and ρ1 are the density matrices of the two
mixed states, then the fidelity is given by the formula

F (ρ0, ρ1) = Tr
(√√

ρ0 ρ1
√
ρ0

)
. (495)

I’m not going to explain this formula, but I want you to see it. You cannot simplify
this formula by cyclically permuting one of the √ρ0 factors to the other side because
of the square root within the trace. One reasonable property that this has is that, it
agrees with the definition

∣∣∣⟨ψ0|ψ1⟩
∣∣∣ for the very special case of pure states. This is

easy to verify, which I’ll leave as an exercise.

265

Exercise 33.1. Prove that, if ρ0 = |ψ0⟩⟨ψ0| and ρ1 = |ψ1⟩⟨ψ1| then it holds that
F (ρ0, ρ1) =

∣∣∣⟨ψ0|ψ1⟩
∣∣∣.

After looking at that expression for fidelity involving all those square roots of
matrices, let’s think about what it means to take the square root of a matrix. This
is part of a more general functional calculus on square matrices.

33.3 Functional calculus for linear operators
Suppose that M is a normal matrix and f : C → C. Then we can define f applied
to the matrix M as follows. Since M is normal, we can diagonalize M in some
orthonormal basis (the columns of some unitary U) as

M = U


λ1 0 · · · 0
0 λ2 · · · 0
...
0 0 · · · λd

U∗. (496)

Define f(M) as the matrix where f is applied to each eigenvalue, namely,

f(M) = U


f(λ1) 0 · · · 0

0 f(λ2) · · · 0
...
0 0 · · · f(λd)

U∗. (497)

Square root of a positive matrix

Every x ∈ C has at least one square root, and if x ̸= 0 then x has two square roots.
However, if x ∈ R+ = {x ∈ R : x ≥ 0} then x has a unique square root in R+.
Whenever M ≥ 0, there is a natural definition of

√
M since then the eigenvalues

of M are in R+ and have unique square roots in R+.
� A word of caution: in general, for positive matrices L and M , it does not hold

that
√
LM =

√
L
√
M . This is because L and M may not be simultaneously

diagonalizable. They are each diagonalizable, but not necessarily with respect to
the same orthonormal basis.

266

Von Neumann entropy of a positive matrix

Whenever M ≥ 0, it makes sense to define M logM (which is related to the von
Neumann Entropy of a quantum state, defined as Tr

(
M logM

)
), that will come up

in a later part of the course.

Absolute value of any matrix

We can also define the absolute value of a normal matrix M using the functional
calculus, as the absolute values of all the eigenvalues

|M | = U


|λ1| 0 · · · 0
0 |λ2| · · · 0
...
0 0 · · · |λd|

U∗. (498)

Notice that

|M | =
√
M∗M, (499)

and this interesting because for any (not necessarily normal) matrix M , it holds that
M∗M ≥ 0. Therefore, we have a definition of the absolute value of a matrix that
extends to any matrix (not necessarily diagonalizable).

33.4 Trace norm and trace distance
Now, I’d like to show you a very interesting distance measure between quantum states,
called the trace distance. First, I’ll show you the definition of the trace norm of a
matrix, which is the trace of the absolute value of the matrix.

Definition 33.3 (trace norm). For any M ∈ Cd×d, the trace norm of M is defined
as

∥M∥1 = Tr
(
|M |

)
= Tr

(√
M∗M

)
. (500)

The notation is as a norm with subscript 1 (sometimes this alternative notation is
used, with the subscript “tr”).

It’s not too hard to show that, if M is normal then the trace norm of M is the
1-norm of the vector of eigenvalues of M . In other words, if the eigenvalues of M are
λ1, λ2, . . . , λd then

∥M∥1 = |λ1|+ |λ2|+ · · ·+ |λd|. (501)

267

Now we are ready to define the trace distance between two states. It’s the trace
norm of the difference between their density matrices.

Definition 33.4 (trace distance). For any two d-dimensional states, whose density
matrices are ρ0 and ρ1, the trace distance between them is

∥ρ0 − ρ1∥1. (502)

Of all the different matrix norms on which we could base a distance measure,
what’s so special about the trace norm? Why is this a meaningful measure of distance
between states? The answer is given by the amazing Holevo-Helstrom Theorem.

33.5 The Holevo-Helstrom Theorem
Remember the δ that arose in our discussion of state distinguishability? We defined δ
to be the advantage over random guessing in the guess-the-state game. In fact, that
δ is exactly the trace norm multiplied by 1

2 . So the trace norm coincides with how
well the states can be distinguished in the guess-the-state game!

Theorem 33.1 (Holevo-Helstrom Theorem). Let ρ0 and ρ1 be the density matrices
of two d-dimensional states. If one of these two states is prepared by the flip of a fair
coin and then the best distinguishing procedure succeeds with probability

1 + 1
2∥ρ0 − ρ1∥1

2 . (503)

(If the trace distance had been defined as 1
2∥ρ0 − ρ1∥1 instead of ∥ρ0 − ρ1∥1 then

the factor of 1
2 would not apear in Eq. (503). But we’re stuck with the standard

definition.)
To prove the Holevo-Helstrom Theorem, we need to show:
• There is a measurement whose success probability is 1

2 + 1
4∥ρ0 − ρ1∥1.

• No measurement can perform better than 1
2 + 1

4∥ρ0 − ρ1∥1.

33.5.1 Attainability of success probability 1
2 + 1

4∥ρ0 − ρ1∥1

In this section, we prove the attainability part of Theorem 33.1. Namely, that there
exists a measurement that attains success probability 1

2 + 1
4∥ρ0 − ρ1∥1, where ρ0 and

ρ1 are the density matrices of the states that we wish to distinguish between.

268

Note that, since ρ0 and ρ1 are Hermitian, ρ0 − ρ1 is also Hermitian. But notice
that, because of the minus sign, ρ0 − ρ1 need not be positive. In general, ρ0 − ρ1 has
some negative eigenvalues.

Consider the two projectors, Π0 and Π1, defined as follows. Let Π0 be the projector
onto the space of all eigenvectors of ρ0 − ρ1 whose eigenvalues are ≥ 0. Let Π1 be
the projector onto the space of all eigenvectors of ρ0 − ρ1 whose eigenvalues are < 0.
Then Π0 and Π1 are orthogonal projectors and Π0 + Π1 = I. Therefore Π0 and Π1

are the elements of a POVM measurement.
We’ll show applying this measurement, and then guessing“ρ0” when the measurement outcome is Π0

“ρ1” when the measurement outcome is Π1
(504)

succeeds with probability 1
2 + 1

4∥ρ0 − ρ1∥1.
First note that (

Π0 − Π1
)(
ρ0 − ρ1

)
=
∣∣∣ρ0 − ρ1

∣∣∣. (505)

To see why this is so, think of Π0 − Π1 and ρ0 − ρ1 in diagonal form (they are
simultaneously diagonalizable). Π0−Π1 has a +1 eigenvalue in all the positions where
the corresponding eigenvalue of ρ0−ρ1 is non-negative. Π0−Π1 has a −1 eigenvalue in
all the positions where the corresponding eigenvalue of ρ0−ρ1 is negative. Therefore,
Π0 −Π1 flips the sign of all the negative eigenvalues of ρ0 − ρ1, resulting in

∣∣∣ρ0 − ρ1

∣∣∣.
Note that Eq. (505) implies that

Tr
(
(Π0 − Π1)(ρ0 − ρ1)

)
= ∥ρ0 − ρ1∥1. (506)

We can also expand

Tr
(
(Π0 − Π1)(ρ0 − ρ1)

)
= Tr(Π0ρ0)− Tr Π0ρ1)− Tr(Π1ρ0) + Tr(Π1ρ1) (507)

=
(
Tr(Π0ρ0) + Tr(Π1ρ1)

)
−
(
Tr(Π0ρ1) + Tr(Π1ρ0)

)
, (508)

where 1
2

(
Tr(Π0ρ0)+Tr(Π1ρ1)

)
is the success probability,33 and 1

2

(
Tr(Π0ρ1)+Tr(Π1ρ0)

)
is the failure probability.1 So the success probability minus the failure probability is
equal to 1

2 times the trace distance.
Note that our proof of this part is constructive. It actually gives us a recipe

to determine the optimal measurement for distinguishing between two mixed states:
33Averaged over the random choice of the state.

269

consider the matrix that is one density matrix subtracted from the other density
matrix; take the projector to the positive eigenspace of this matrix and the projector
to the negative eigenspace of this matrix; that’s the POVM measurement that solves
the distinguishing problem with success probability 1

2 + 1
4∥ρ0 − ρ1∥1.

33.5.2 Optimality of success probability 1
2 + 1

4∥ρ0 − ρ1∥1

So far, we’ve proved that a particular measurement attains the proposed success
probability. But how do we know that there isn’t an even better measurement? In
this section, we prove the optimality part of Theorem 33.1. Namely, that there does
not exist a measurement whose success probability exceeds 1

2 + 1
4∥ρ0 − ρ1∥1.

Let E0 and E1 be the POVM elements of any 2-outcome POVM measurement for
distinguishing between ρ0 and ρ1. We’ll prove an upper bound on it’s performance.

First, notice that E0 and E1 are simultaneously diagonalizable.34 Why? Because
E1 = I−E0. So if E0 is diagonal is some coordinate system then so is E1. Therefore,
we can write

E0 = U


p0 0 · · · 0
0 p1 · · · 0
...
0 0 · · · pd−1

U∗ and E1 = U


q0 0 · · · 0
0 q1 · · · 0
...
0 0 · · · qd−1

U∗. (509)

The eigenvalues of E0 and E1 are between 0 and 1 and corresponding eigenvalues sum
to 1. It follows that the largest eigenvalue of E0 − E1 is at most 1.

Definition 33.5 (infinity norm). For a normal matrix M , the infinity norm35 ∥M∥∞

is defined as the absolute value of the largest eigenvalue of M .

In this language, we have that ∥E0 − E1∥∞ ≤ 1.
We will make use of the following lemma, which is an instance of Hölder’s inequal-

ity for matrices.36

Lemma 33.1. For any Hermitian L and M , Tr(LM) ≤ ∥L∥∞∥M∥1.
34Please note that this only holds because it’s a 2-outcome POVM measurement. For POVM

measurements with 3 or more outcomes, the matrices might not be simultaneously diagonalizable.
35This is equivalent to the spectral norm, which is defined for all matrices.
36A proof of Lemma 33.1 can be found in: B. Baumgartner, “An inequality for the trace of matrix

products, using absolute values”, arXiv: 1106.6189 (2011).

270

Now, we can bound the success probability minus the failure probability (averaged
over inputs) as

1
2Tr(E0ρ0) + 1

2Tr(E1ρ1)− 1
2Tr(E0ρ1)− 1

2Tr(E1ρ0) = 1
2 Tr((E0 − E1)(ρ0 − ρ1)) (510)

≤ 1
2∥E0 − E1∥∞∥ρ0 − ρ1∥1 (511)

≤ 1
2∥ρ0 − ρ1∥1. (512)

It follows that the success probability is at most

1 + 1
2∥ρ0 − ρ1∥1

2 = 1
2 + 1

4∥ρ0 − ρ1∥1. (513)

This proves optimality and we have now completed the proof of the Holevo-
Helstrom Theorem.

33.6 Ulhmann’s Theorem
Now, let’s recall the previous strange-looking definition of fidelity between general
mixed states that I showed you earlier—but which I didn’t explain. Using our lan-
guage of the trace norm, we can rewrite the expression for fidelity as

F (ρ0, ρ1) =
∥∥∥√ρ0

√
ρ1

∥∥∥
1
. (514)

For any two density matrices, we can take purifications of them and then take the
inner product of these purifications. The result will depend on which purification we
choose. The following theorem relates the fidelity between mixed states with inner
products of their purifications.

Theorem 33.2 (Ulhmann’s Theorem). For any two mixed states ρ0 and ρ1, the
fidelity between them is the maximum ⟨ϕ0|ϕ1⟩ taken over all purifications |ϕ0⟩ and
|ϕ1⟩.

For further details, please see [Nielsen and Chuang, Quantum Computation and Quan-
tum Information, pp. 410–411].

33.7 Fidelity vs. trace distance
We’ve discussed fidelity and trace distance, mostly the latter. Known relationships
between them are

1− F (ρ0, ρ1) ≤ ∥ρ0 − ρ1∥1 ≤
√

1− F (ρ0, ρ1)2. (515)

271

In particular, suppose that we have two mixed states with density matrices ρ0 and
ρ1, and we want to show that their trace distance is small. One way to do this is to
construct purifications of them whose inner products are close to 1. By Ulhmann’s
Theorem and the second inequality above, for any purifications |ϕ0⟩ and |ϕ1⟩ we have

∥ρ0 − ρ1∥1 ≤
√

1− ⟨ϕ0|ϕ1⟩2. (516)

272

34 Schmidt decomposition
In this section, I explain the Schmidt decomposition, which is a useful canonical form
for pure bipartite states.

34.1 States that are equivalent up to local unitaries
Suppose that Alice and Bob each have a qubit, and their joint state is

1
2 |00⟩+ 1

2 |01⟩+ 1
2 |10⟩+ 1

2 |11⟩ . (517)

They can convert this state to

1
2 |00⟩ − 1

2 |01⟩ − 1
2 |10⟩+ 1

2 |11⟩ (518)

without any interaction or communication by each performing a Z gate locally to
their qubit. There are many other states that they can create by performing local
unitaries to their respective qubits. Question: can they convert the above state to

1
2 |00⟩+ 1

2 |01⟩+ 1
2 |10⟩ − 1

2 |11⟩ (519)

in this manner? The answer is no, because their starting state, Eq. (517), is the
product state |+⟩ |+⟩ and every state that this can be converted to by local unitaries
is also a product state; whereas the latter state is 1√

2 |0⟩ |+⟩+
1√
2 |1⟩ |−⟩, which is not

a product state (it is equivalent to 1√
2 |00⟩+ 1√

2 |11⟩, by local unitaries).
Here is a less obvious example. I claim that

1
2 |00⟩+ 1

2 |01⟩+ 1√
2 |10⟩ (520)

is equivalent, by applying local unitaries, to

α0 |00⟩+ α1 |11⟩ (521)

for amplitudes α0, α1.
Can you figure out what the local unitaries and α0, α1 are? This is equivalent to
finding an orthonormal basis |µ0⟩ , |µ1⟩ for the first qubit and an orthonormal basis
|ϕ0⟩ , |ϕ1⟩ for the second qubit and α0, α1 ∈ C such that

1
2 |00⟩+ 1

2 |01⟩+ 1√
2 |10⟩ = α0 |µ0⟩ |ϕ0⟩+ α1 |µ1⟩ |ϕ1⟩ . (522)

273

Note that, although it is easy to see that

1
2 |00⟩+ 1

2 |01⟩+ 1√
2 |10⟩ = 1√

2 |0⟩ |+⟩+ 1√
2 |1⟩ |0⟩ , (523)

this is not a useful form because |+⟩ and |0⟩ are not orthogonal. This (admittedly
naive) approach assumed that the basis used for the first qubit is |0⟩ , |1⟩.

It turns out that Eq. (522) is satisfied by setting:

α0 = cos(π8) α1 = sin(π8) (524)

|µ0⟩ = |+⟩ |µ1⟩ = |−⟩ (525)

|ϕ0⟩ = cos(π8)|0⟩+ sin(π8)|1⟩ |ϕ1⟩ = − sin(π8)|0⟩+ cos(π8)|1⟩ . (526)

This solution to Eq. (522) can be verified by calculation (making use of the fact that
cos2(π8)− sin2(π8) = 2 cos(π8) sin(π8) = 1√

2). But how was this solution found?
The Schmidt decomposition and it’s proof provides us with a systematic approach

for addressing questions like these.

34.2 A tensor sum decomposition lemma
Here we state and prove Lemma 34.1, which is useful for the Schmidt decomposition.

The lemma may seem intuitively obvious, but we give a formal proof. The proof
makes use of matrices of the form I ⊗ ⟨ϕ|, which are complementary to the matrices
of the form I ⊗ |ϕ⟩ that we investigated in section 29.4.

Lemma 34.1 (tensor sum decomposition). Let |ϕ0⟩ , |ϕ1⟩ , . . . , |ϕd−1⟩ ∈ Cd be an
orthonormal basis and |ψ⟩ ∈ Cc ⊗ Cd. Then there exist |ν0⟩ , |ν1⟩ , . . . , |νd−1⟩ ∈ Cc

such that

|ψ⟩ =
d−1∑
k=0
|νk⟩ ⊗ |ϕk⟩ . (527)

The vectors |ν0⟩ , |ν1⟩ , . . . , |νd−1⟩ need not be orthogonal. And they are not nor-
malized; however, ∥ |ν0⟩ ∥2 + ∥ |ν1⟩ ∥2 + · · ·+ ∥ |νd−1⟩ ∥2 = 1 holds.

Proof of Lemma 34.1. For each k ∈ {0, 1, . . . , d− 1}, set

|νk⟩ =
(
Ic ⊗ ⟨ϕk|

)
|ψ⟩ . (528)

274

Then

|ψ⟩ =
(
Ic ⊗

d−1∑
k=0
|ϕk⟩⟨ϕk|

)
|ψ⟩ since

d−1∑
k=0
|ϕk⟩⟨ϕk| = Id (529)

=
d−1∑
k=0

(
Ic ⊗ |ϕk⟩

)(
Ic ⊗ ⟨ϕk|

)
|ψ⟩ by Lemma 6.1 (530)

=
d−1∑
k=0

(
Ic ⊗ |ϕk⟩

)
|νk⟩ by Eq. (528) (531)

=
d−1∑
k=0
|νk⟩ ⊗ |ϕk⟩ . by Lemma 29.1 (532)

■

34.3 Statement and proof of the Schmidt decomposition
Theorem 34.1 (Schmidt decomposition). Let |ψ⟩ ∈ Cd ⊗ Cd be any pure state.
Then there exists an orthonormal basis |µ0⟩ , . . . , |µd−1⟩ (for the first register), and
an orthonormal basis |ϕ0⟩ , . . . , |ϕd−1⟩ (for the second register), and α0, . . . , αd−1 ≥ 0
such that

|ψ⟩ =
d−1∑
k=0

αk |µk⟩ ⊗ |ϕk⟩ (533)

and |ϕ0⟩ , . . . , |ϕd−1⟩ are eigenvectors of ρ = Tr1
(
|ψ⟩ ⟨ψ|

)
.

Proof. Let ρ = Tr1
(
|ψ⟩⟨ψ|

)
and let |ϕ0⟩ , . . . , |ϕd−1⟩ be an orthonormal basis of eigen-

vectors of ρ. Therefore, there exist p0, . . . , pd−1 ≥ 0 with p0 + · · · + pd−1 = 1 such
that

ρ =
d−1∑
k=0

pk |ϕk⟩⟨ϕk| . (534)

By Lemma 34.1 (about tensor sum decompositions), there exist |ν0⟩ , . . . , |νd−1⟩ ∈ Cd

such that

|ψ⟩ =
d−1∑
k=0
|νk⟩ ⊗ |ϕk⟩ . (535)

275

Since |ϕ0⟩ , . . . , |ϕd−1⟩ were specially chosen as eigenvectors of ρ = Tr1
(
|ψ⟩⟨ψ|

)
, some-

thing remarkable happens: the vectors |ν0⟩ , . . . , |νd−1⟩ are orthogonal. To see why,
we begin by expanding |ψ⟩⟨ψ| as

|ψ⟩⟨ψ| =
d−1∑
k=0
|νk⟩ ⊗ |ϕk⟩

d−1∑
ℓ=0
⟨νℓ| ⊗ ⟨ϕℓ|

 =
d−1∑
k=0

d−1∑
ℓ=0
|νk⟩⟨νℓ| ⊗ |ϕk⟩⟨ϕℓ| . (536)

Tracing out the first register results in

Tr1
(
|ψ⟩⟨ψ|

)
=

d−1∑
k=0

d−1∑
ℓ=0

Tr1
(
|νk⟩⟨νℓ| ⊗ |ϕk⟩⟨ϕℓ|

)
=

d−1∑
k=0

d−1∑
ℓ=0
⟨νℓ|νk⟩ |ϕk⟩⟨ϕℓ| (537)

(where the last equation is from Tr1(A⊗B) = Tr(A)B, from Eq. (416)). Combining
this with Eq. (534), we have

d−1∑
k=0

d−1∑
ℓ=0
⟨νℓ|νk⟩ |ϕk⟩⟨ϕℓ| =

d−1∑
k=0

pk |ϕk⟩⟨ϕk| , (538)

which implies that

⟨νℓ|νk⟩ =
pk if ℓ = k

0 if ℓ ̸= k.
(539)

It follows that |ν0⟩ , . . . , |νd−1⟩ are orthogonal (some of these vectors may be zero).
It is now simple to convert |ν0⟩ , . . . , |νd−1⟩ to orthonormal vectors |µ0⟩ , . . . , |µd−1⟩

such that |νk⟩ = √pk |µk⟩, for all k ∈ {0, . . . , d− 1}. For each k, if |νk⟩ ≠ 0 then set

|µk⟩ = |νk⟩
∥|νk⟩∥

= |νk⟩√
pk
. (540)

For the values of k for which |νk⟩ = 0, set those |µk⟩ to any orthonormal basis for
the orthogonal complement of span{|ν0⟩ , . . . , |νd−1⟩}, and set those pk = 0. The
resulting |µ0⟩ , . . . , |µd−1⟩ is an orthonormal basis for Cd and |νk⟩ = √pk |µk⟩, for all
k ∈ {0, . . . , d− 1}.

Setting αk = √pk, for each k, we have our Schmidt decomposition

|ψ⟩ =
d−1∑
k=0

αk |µk⟩ ⊗ |ϕk⟩ . (541)

■

276

The amplitudes α0, . . . , αd−1 are called the Schmidt coefficients of the state, and
their standard ordering is α0 ≥ α1 ≥ · · · ≥ αd−1 ≥ 0. It is common to omit zero
Schmidt coefficients from the sequence. The number of non-zero Schmidt coefficients
is called the Schmidt rank of the state.

The Schmidt decomposition can be generalized to states |ψ⟩ ∈ Cd1 ⊗ Cd2 , where
the dimensions of the two registers are not the same. The resulting decomposition
will be in terms of dmin = min(d1, d2) orthonormal states for each register and dmin

Schmidt coefficients. This is a simple adaptation of the above proof.
Incidentally, it is possible to deduce the Schmidt decomposition from the Singular

Value Decomposition Theorem, though we don’t show this here.

� A word of caution: there is no Schmidt decomposition for general tripartite
states. There exist states |ψ⟩ ∈ Cd ⊗ Cd ⊗ Cd that cannot be expressed as

|ψ⟩ =
d−1∑
k=0

αk |ηk⟩ ⊗ |µk⟩ ⊗ |ϕk⟩ . (542)

for orthonormal bases |η0⟩ , . . . , |ηd−1⟩, |µ0⟩ , . . . , |µd−1⟩, |ϕ0⟩ , . . . , |ϕd−1⟩ and coef-
ficients α0, . . . , αd−1. For example, 1√

3 |100⟩ + 1√
3 |010⟩ + 1√

3 |001⟩ is a tripartite
state with no tripartite Schmidt decomposition.

34.4 Applications of the Schmidt decomposition
One immediate application of the Schmidt decomposition is to be able to determine
whether or or not, for two pure bipartite state |ψ1⟩ , |ψ2⟩ ∈ Cd⊗Cd, one state can be
transformed into the other state by local unitary operations. They can be transformed
by local unitaries if and only if they have the same Schmidt coefficients, counting
multiplicity, and in any order. Note in particular that applying local unitaries does
not change the Schmidt coefficients, since

(
U ⊗ V

)
|ψ⟩ =

d−1∑
k=0

αk
(
U |µk⟩

)
⊗
(
V |ϕk⟩

)
(543)

=
d−1∑
k=0

αk |µ′
k⟩ ⊗ |ϕ′

k⟩ , (544)

where |ϕ′
k⟩ = U |ϕk⟩ and |µ′

k⟩ = V |µk⟩.
Another application is the Schrödinger-Hughston-Jozsa-Wootters Theorem (a.k.a.

SHJW Theorem), which can be described as follows. Let ρ ∈ Cd×d be the density

277

matrix of some mixed state and let |ψ1⟩ , |ψ2⟩ ∈ Cd ⊗ Cd be any two bipartite states
that are both purifications of ρ in the sense that Tr1

(
|ψ1⟩⟨ψ1|

)
= Tr1

(
|ψ2⟩⟨ψ2|

)
= ρ.

Suppose that Alice is in possession of the first d-dimensional register and Bob is in
possession of the second d-dimensional register of the state |ψ1⟩. The SHJW Theorem
states that Alice alone can change the state from |ψ1⟩ to |ψ2⟩. In other words, there
exists a unitary U ∈ Cd×d such that(

U ⊗ I
)
|ψ1⟩ = |ψ2⟩ . (545)

278

35 Simple quantum error-correcting codes
In this section, we begin the subject of quantum error-correcting codes, which can
protect quantum states from noise. We’ll first briefly review some results about
error-correcting codes for classical information. Then we’ll consider quantum error-
correcting codes and I’ll explain Shor’s nine-qubit quantum error-correcting code.

Let’s start by discussing what noise is. Broadly speaking, noise is when informa-
tion gets disturbed. Imagine that Alice wants to send some bits to Bob, but their
communication channel is flawed.

Figure 223: Alice sending Bob a bit over a noisy communication channel.

Suppose that, for each bit b ∈ {0, 1} that Alice sends via the channel, what Bob
receives is  b with prob. 1− ϵ

¬b with prob. ϵ,
(546)

for some parameter ϵ ∈ [0, 1
2]. So each bit gets flipped with probability ϵ. This

mapping from states of bits to states of bits is called a binary symmetric channel,
and we refer to it as BSC (or as BSCϵ, to specify the parameter ϵ).

This channel can be viewed as a classical analogue of the depolarizing channel.
Recall that the depolarizing channel takes a qubit as input and produces as output
a probabilistic mixture of that state and the maximally mixed state. The binary
symmetric channel outputs a probabilistic mixture of the input bit and a classical
maximally mixed state (which is a uniformly distributed random bit). If we identify
bit 0 with the probability vector

[
1
0

]
and bit 1 with

[
0
1

]
then the binary symmetric

channel BSCϵ is a linear mapping such that

BSCϵ
[

1
0

]
= (1− 2ϵ)

[
1
0

]
+ 2ϵ

[1
2
1
2

]
(547)

BSCϵ
[

0
1

]
= (1− 2ϵ)

[
0
1

]
+ 2ϵ

[1
2
1
2

]
. (548)

279

Now suppose that Alice wants to communicate a bit b ∈ {0, 1} to Bob and their
communication channel is a binary symmetric channel BSCϵ. Can Alice and Bob
reduce the noise level to a smaller ϵ? The obvious way is for Alice and Bob to get
a better communication hardware, with a smaller parameter ϵ. But Alice and Bob
have an alternative to investing in better hardware: they can use an error-correcting
code.

35.1 Classical 3-bit repetition code
Perhaps the simplest error-correcting code is the 3-bit repetition code, which works
as follows. To transmit bit b ∈ {0, 1}, Alice encodes b into three copies of b. Then
Alice sends each of these three bits through the channel. Then Bob takes the majority
value of the three bits that he receives (which might not all be the same, because
some bits might get flipped by the channel).

How well does this perform? The system succeeds if no more than one bit is
flipped (because that doesn’t change the majority) and it fails if two or more bits
are flipped. Assume that the channel behaves independently for each bit that passes
through it.

Then the failure probability can be calculated as follows. There are three ways
that two bits can be flipped, each occurring with probability ϵ2(1 − ϵ). And there
is one way that all three bits can flip, occurring with probability ϵ3. So the failure
probability is

3ϵ2(1− ϵ) + ϵ3 = 3ϵ2 − 2ϵ3. (549)

Here’s a plot of the failure probability resulting from this scheme as a function of the
original failure probability of the channel.

Figure 224: Failure probability of the 3-bit repetition code as a function of ϵ.

280

If ϵ = 1
2 then there is no improvement: the success probability remains at 1

2 . But this
should not be surprising, because, if ϵ = 1

2 then the channel sends no information: it
just outputs a random bit uncorrelated with the bit that Alice is sending. But when
ϵ is smaller there is an advantage. For example, when ϵ = 1

10 the failure probability
from using the code is around 1

35 . And the smaller ϵ is the more pronounced the error
reduction is. If ϵ = 1

1000 then the failure probability from using the codes is around
1

300000 (a three-hundred-fold decrease).
What price are we paying for this improvement? The main cost is that that three

bits have to be sent instead of one.

Definition 35.1 (rate of a code). The rate of a code is the inverse of the expansion
in message length due to the encoding.

The rate of this code is 1
3 . Each bit of the encoding conveys 1

3 of a bit of the data to
be transmitted.

If the data is a long string of bits then there will be errors, but fewer errors using
the code. With no code, the expected fraction of errors is ϵ. With the code, the
expected fraction of errors is 3ϵ2− 2ϵ3. Suppose that Alice wants to send a Gigabyte
to Bob (that’s around 8.5 billion bits) and their communication channel has noise
parameter ϵ = 1

100 . Without the code, the fraction of errors will be around 85 million.
With the code, the fraction of errors will be about 24 thousand. That’s significantly
fewer errors. It is achieved at the cost of sending three Gigabytes instead of one.

But suppose the we don’t want any errors. Can this be achieved? One approach
is to use a larger repetition code than 3-bits. That reduces the error probability
for each bit. But this also reduces the rate—so, in the above example, many more
Gigabytes would have to be sent. But there are much better error-correcting codes
than repetition codes.

35.2 The existence of good classical codes in brief
An error-correcting code need not separately encode each bit. Rather, each block of
n bits (a message) can be encoded into a block of m bits (a codeword). The rate
of such a code is n

m
. Note that a small rate means a large message expansion (an

inefficiency); whereas, a rate close to 1 means a small message expansion.
A fundamental result about the existence of good classical error-correcting codes

can be informally stated as:

281

For a binary symmetric channel with any error parameter ϵ < 1
2 , the

success probability for encodings of long strings can be made arbitrarily
close to 1, while maintaining a constant rate.

So, in fact, Alice doesn’t have to send many Gigabytes in order to get every single
bit through to Bob correctly.

I’m going to state the result about good error-correcting codes more precisely.
Please note that I’m not going to give the details of the construction or the analysis.
The theory of error-correcting codes is a large field of study, that could easily take a
course of its own course to explain.

In order to state the result, we need some basic definitions for block codes. Such
a code consists of an encoding function E : {0, 1}n → {0, 1}m and a decoding function
D : {0, 1}m → {0, 1}n. The rate of such a code is n

m
.

Assuming that the communication channel is a binary symmetric channel with
error parameter ϵ, the error probability of a code of the above form is defined as the
maximum, for all a1a2 . . . an ∈ {0, 1}n, of

Pr
[
D(BSCϵ(E(a1a2 . . . an)))

]
̸= a1a2 . . . an. (550)

Just to be clear: success means all the bits are successfully received at the other end;
that there are no errors.

Definition 35.2 (Shannon entropy). The Shannon entropy of a probability vector
(p1, p2, . . . , pd) is defined as

H(p1, p2, . . . , pd) = −
d∑

k=1
pk log pk (551)

(the logarithm is with respect to base 2 and we make the convention that 0 log(0) = 0).

Define R : [0, 1
2]→ [0, 1] as R(ϵ) = 1−H(ϵ, 1− ϵ). Here is a plot of this function.

Figure 225: The rate function R(ϵ).

282

I’m now going to state the result about good multi-bit error-correcting codes. Let
the noise level be any ϵ < 1/2. Think of that as a property of the communication
channel that you’re stuck with using.

Then you can select any rate r, as long as r < R(ϵ). And you can select an
arbitrarily small δ > 0, which is your desired error probability bound. Then there
exists an error-correcting code E : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n with rate
n
m
> r and whose failure probability is less than δ.
There are additional considerations, that I’d like to mention, even though I won’t

go in the details:
• One is the block-length n. The smaller δ is, the larger n has to be.

• Another is the computational cost of computing E and D. The bottom line is
that there are codes for which this can be done efficiently.

OK, so that was a very brief overview of error-correcting codes for classical infor-
mation. The question is what happens with quantum error-correcting codes.

35.3 Shor’s 9-qubit quantum error-correcting code
We started with a simple classical error-correcting code, the 3-bit repetition code.
So we might be tempted to start with a quantum repetition code, where a qubit is
encoded as three copies of itself.

Figure 226: A näıve first attempt at a 3-qubit quantum repetition code.

Of course, this fails for multiple reasons, starting with the fact that a general quantum
state cannot be copied (the no-cloning theorem).

It’s easy to copy classical information, and all error-correcting codes for classical
information are based on some sort of redundancy. But the no-cloning theorem kind
of suggests that redundancy for quantum information might not be possible. That
was the thinking shortly after Shor’s algorithms for factoring and discrete log came
out. But the underlying intuition that no-cloning implies no-redundancy was wrong.

I’m going to show you the first error-correcting code, that was discovered by Peter
Shor in the mid-1990s. It’s a 9-qubit code that is constructed by combining two 3-
qubit codes that protect against very limited error types.

283

35.3.1 3-qubit code that protects against one X error

Let’s start with a simple 3-qubit code that protects against a very restricted set of
errors. Suppose the only error possible is a Pauli X, a bit flip. Then these encoding
and decoding circuits protect against up to one X-error.

Figure 227: 3-qubit code that protects against one X error.

The encoding circuit takes a qubit as input and produces three qubits as output.
Then the encoded data is affected by an error e, where e can be any one of these four
unitary operations:

I ⊗ I ⊗ I
(no error)

X ⊗ I ⊗ I
(flip 1st qubit)

I ⊗X ⊗ I
(flip 2nd qubit)

I ⊗ I ⊗X
(flip 3rd qubit)

(552)

Then the three qubits are input to the decoding circuit.
It turns out that, in all four cases of e, the data is correctly recovered. The final

state of the first qubit is the same as its initial state. It’s a straightforward exercise to
verify these, but I recommend that you work through some of these cases to convince
yourself.

If you work out the final states, you will see that the second and third qubits end
up in a state that depends on what the error operation e is: |00⟩ (for e = I ⊗ I ⊗ I),
|11⟩ (for e = X ⊗ I ⊗ I), |10⟩ (for e = I ⊗X ⊗ I), and |01⟩ (for e = I ⊗ I ⊗X). We’ll
refer to these two qubits as the syndrome of the error, denoted as |se⟩. So, not only
does the encoding/decoding protect the data against the errors, but the decoding
process also reveals what the error e that was corrected was.

What about other errors? Specifically, what happens if there is a Z-error on one
of the three encoded qubits? A Z-error is not corrected; instead it’s passed through.
By this, I mean that if the data is in state α0 |0⟩ + α1 |1⟩ then applying a Z-error
to one of the three encoded qubits causes the output of the decoding circuit to be
α0 |0⟩ − α1 |1⟩, which is the same as applying Z directly to the original data. So this
encoding/decoding does not protect against a Z-error; it passes Z errors through.

284

35.3.2 3-qubit code that protects against one Z error

Now, here’s another 3-qubit code which protects against up to one Z-error.

Figure 228: 3-qubit code that protects against one Z error.

The encoding/decoding is like the code in figure 227 for protecting against X-errors,
but with a layer of Hadamard gates added to the end of the encoding and the be-
ginning of the decoding. This is essentially a re-purposing of our code for X-errors
into a code for Z-errors. Think of a Z-error and the H gates. Since HZH = X

and HH = I, any Z-errors effectively become X-errors and then are handled as the
previous encoding/decoding in figure 227.

35.3.3 9-qubit code that protects against one Pauli error

By combining the 3-qubit codes from figures 227 and 228, we can obtain a 9-qubit
code that protects against any Pauli error (I, X, Y , or Z) in any one of the nine
qubit positions. The encoding/decoding circuits are the following.

Figure 229: Shor’s 9-qubit code.

A nice way of understanding how this code works is in terms of it’s inner part (the
last two layers of gates in the encoding part and first three layers of gates in the
decoding part) and an outer part (the other gates). The inner part consists of three

285

blocks, where each block is a copy of our code for X-errors from figure 227. And the
outer part is our code for Z-errors from figure 228.

What happens if there’s an X-error? It’s corrected by the inner part. What
happens if there’s a Z-error? A Z-error is passed through by the inner part and then
corrected by the outer part. What happens if there’s a Y -error? Since Y = iXZ

(and the phase i makes no difference in this context), this can be viewed as a Z-error
and an X-error. The inner part corrects the X-error and the outer part corrects the
Z-error.

So if the error e is any Pauli error in one qubit position then it is corrected by
this code; the data is recovered in the final state of the first qubit. There are 28
(= 3×9 + 1) different one-qubit Pauli errors e (including I⊗9) that this code protects
against. The final state of eight qubits after the first qubit is the error syndrome |se⟩,
and contains information about which error was corrected.37

In fact, this code corrects against an arbitrary error in any one qubit position and
it is also effective for communicating through a channel with depolarizing noise.

35.4 Quantum error models
Let’s step back and consider some of the error models that the Shor code protects
against. There are several error models, but let’s focus on two that are the most
closely related to our discussion.

Worst-case unitary noise

By worst-case unitary noise noise, we mean that there is a set of possible unitary
errors, and the error can be any one of them. For example, the Shor code is resilient
against an arbitrary one-qubit Pauli error on a 9-qubit encoding.

Figure 230: Arbitrary unitary error on one single qubit.

In fact, if a code is resilient against any 1-qubit Pauli error then it is resilient against
any 1-qubit unitary operation U . To see why this is so, note that any 2× 2 unitary
U can be expressed as

U = η0I + ηxX + ηyY + ηzZ, (553)
37A curiosity is that some of the 28 possible one-qubit Pauli errors have the error syndrome.

286

for some η0, ηx, ηy, ηz ∈ C. Then it’s a straightforeward exercise to deduce from
figure 229 that, if the error is set to e = I⊗j−1 ⊗ U ⊗ I⊗8−j (that is, applying U to
the j-th qubit), then the output will state is(

α0 |0⟩+ α1 |1⟩
)
⊗
(
η0 |s0⟩+ ηx |sx,j⟩+ ηy |sy,j⟩+ ηz |sz,j⟩

)
, (554)

where |s0⟩, |sx,j⟩, |sy,j⟩, |sz,j⟩ are the respective error syndromes of I, X, Y , Z in
position j.

More generally, there exist other codes, with m-qubit encodings which have the
property that, for some threshold k, the error can be an arbitrary unitray operation
acting on any subset of the qubits of size k.

Depolarizing noise

Our discussion of classical error-correcting codes was based on the binary symmet-
ric channel, which flips any bit passing through it with probability ϵ. A quantum
analogue of the binary symmetric channel is the depolarizing channel, which can be
defined as the mixed unitary channel of the form

I with prob. 1− ϵ (no error)
X with prob. ϵ/3 (bit flip)
Y with prob. ϵ/3 (bit+phase flip)
Z with prob. ϵ/3 (phase flip)

(555)

for a parameter ϵ ≤ 3
4 . This is like the binary symmetric channel, but allowing for the

fact that a qubit can be flipped in more than one way (bit-flip, phase-flip, or both).

Exercise 35.1. Show that the definition of the depolarizing channel in Eq. (555) is
equivalent to our earlier definition of the depolarizing channel, as mapping each state
ρ to a convex combination of that state and the maximally mixed state, namely

pρ+ (1− p)
(

1
2 |0⟩⟨0|+

1
2 |1⟩⟨1|

)
(for some p). (556)

In the depolarizing noise model, we assume that every qubit of the encoded state is
independently affected by a depolarizing channel. So all of the qubits incur an error;
however, there is a bound ϵ on the severity of that error.

Figure 231: Depolarizing error on every qubit.

287

How does the Shor code perform in this model? For the depolarizing channel with
parameter ϵ, let’s think of ϵ as the effective error probability, since the qubit passes
through the channel is undisturbed with probability 1 − ϵ. If a qubit is encoded by
the Shor code and each of the nine qubits of the encoding incurs a depolarizing error
with parameter ϵ then we can analyze the effective error probability resulting from
the encoding/decoding process. It turns out that this effective error probability is
upper bounded cϵ2, for some constant38 c. So, if ϵ is small enough to begin with, then
the reduction due to squaring ϵ is more than the effect of multiplying by c, so the
effective error is decreased. The cost is that Alice has to send nine qubits to convey
just one qubit. So the rate of this code is 1

9 .
Are there better codes than this? And are there good multi-qubit quantum error-

correcting codes? This will be discussed in section 36.

35.5 Redundancy vs. cloning
The Shor code encodes one qubit in state α0 |0⟩ + α1 |1⟩ into nine qubits, in state
α0 |0⟩L + α1 |1⟩L where

|0⟩L =
(

1√
2 |000⟩+ 1√

2 |111⟩
)⊗3

(557)

|1⟩L =
(

1√
2 |000⟩ − 1√

2 |111⟩
)⊗3

. (558)

Sometimes, |0⟩L and |1⟩L are referred to as the logical zero and logical one of the code.
The encoded state has the property that, if any error is inflicted on any one of

its qubits then the data can still be recovered. To be clear, note that the recovery
procedure is not provided with any information about which qubit has been affected
by an error.

Which of the nine qubits contains the data? The answer is that no individual qubit
contains any information about the qubit. The information is somehow “spread out”
among the nine qubits.

A natural question is whether there is a more efficient code that requires fewer
than nine qubits and protects against any one-qubit error. This question will be
answered in section 36.

I’d like to briefly mention a different type of error, called an erasure error. For this
type of error, the positions of the affected qubits are known. One way of viewing this

38I don’t know the exact constant, but it is less than 36.

288

is that some of the qubits are “lost,” but we know the positions of the lost qubits—and
the remaining qubits are undisturbed. For example, suppose that a qubit is encoded
via the Shor code into nine qubits and then qubit 2 and qubit 6 go missing.

Figure 232: Erasure error on 2 qubits.

It turns out that the Shor code can handle any two erasure errors (this is under the
assumption that it’s known on which qubits the erasure errors occurred; qubits 2 and
6 in the above example). From any seven of the nine encoded qubits, the data can
be recovered.

Finally, here’s a theorem that’s very easy to prove but it helps clarify the distinc-
tion between redundancy and copying.

Theorem 35.1 (non-existence of a 4-qubit code protecting against two erasure er-
rors). There does not exist a 4-qubit code that protects against two erasure errors.

Proof. Suppose that we had such a code. Then, take the first two qubits and think
of them as an encoding with two missing qubits. Same with the last two qubits.

Figure 233: 4-qubit code protecting against two erasure errors violates the no-cloning theorem.

If the code was resilient against two erasure errors then we could recover the data
from each of these, thereby producing two copies of the data. This would contradict
the no-cloning theorem. ■

289

36 Calderbank-Shor-Steane codes
In this section, we will begin with a quick overview of classical linear error-correcting
codes, and then I’ll explain how to construct good quantum error-correcting codes
from certain classical linear codes using a method due to Calderbank, Shor and Steane.
These are commonly called CSS codes.

In section 35.2, I stated results about multi-bit classical error-correcting codes,
without saying anything about how these codes work. We’re going to begin by looking
at some of the structure of classical linear codes.

36.1 Classical linear codes
Here we consider certain block codes that encode n-bit data as m-bit codewords.

Definition 36.1 (linear code). An error-correcting code is linear if the the mapping
from data to codewords is a linear mappping from {0, 1}n to {0, 1}m, with respect to
the field Z2. In particular, the set of codewords is a linear space.

The 3-bit repetition code from section 35.1 is a linear code. In particular, the set of
its codewords is {000, 111}, which is a 1-dimensional subspace of {0, 1}3.

Another example of a linear code is the code given by the table in figure 234.

data codeword
000 0000000
001 0001111
010 0110011
011 0111100
100 1010101
101 1011010
110 1100110
111 1101001

Figure 234: A 7-bit classical error-correcting code.

This code linearly maps 3-bit strings of data into 7-bit codewords. The codewords
are a 3-dimensional subspace of {0, 1}7. In fact, the three strings 1010101, 0110011,
0001111 (codewords for 001, 010, 100) are a basis for the 3-dimensional subspace. In
section 36.3, I’ll show you how codes that have this linear structure (and additional
properties) can be converted into quantum error-correcting codes in a systematic

290

way. And the 7-bit code in figure 234 will serve as a running example to illustrate
the construction.

Although an error-correcting code is a mapping from {0, 1}n to {0, 1}m, its error-
correcting properties can be deduced from properties of it set of codewords, and we
frequently refer to a code by its set of codewords.

Definition 36.2 (Hamming distance). For any two binary m-bit strings, their Ham-
ming distance is defined as the number of bit positions in which they are different.
That’s how many bits you need to flip to convert between the two strings.

Definition 36.3 (distance of a code). The distance of a code is the minimum Ham-
ming distance between any two codewords. For linear codes, this is equivalent to the
minimum distance from any non-zero codeword to the zero codeword.

What’s the minimum distance of the 7-bit code in figure 234? Since it’s a linear code,
it suffices to check the minimum Hamming weight of all the non-zero codewords,
which is 4. So the minimum distance is 4.

The minimum distance of a classical code is closely related to its error-correcting
properties.

Theorem 36.1. If the minimum distance of a code is d then ⌊d−1
2 ⌋ is the number of

errors that can be corrected. In other words, as long as the number of bits flipped is
strictly less than d

2 , they can be corrected.

Proof. First think of the subset of the m-bit strings that are the codewords, and as-
sociate with each codeword a neighbourhood that consists of all m-bit strings whose
distance from that codeword is strictly less than d

2 . Figure 235 is a schematic illus-
tration of the codewords (in blue) and their associated neighborhoods (in grey).

Figure 235: Neighborhoods with associated with associated with codewords.

291

Note that none of the neighborhoods intersect (because if they did then there would
be an m-bit string whose distance from two different codewords is strictly less than d

2 ,
violating the fact that the minimum distance is d). If fewer than d

2 bits of any code-
word are flipped then the perturbed codeword stays within the same neighborhood
(e.g., the red point in figure 235). Therefore, there is a unique codeword whose
distance is less than d

2 from the perturbed codeword. So there is an unambiguous
decoding. ■

As an example, suppose that, for the code in figure 234, one bit of a codeword is
flipped, resulting in the string 1001010. Can you find the unique codeword whose
distance is 1 from this string?

36.1.1 Dual of a linear code

You may recall the dot product between binary strings a, b ∈ {0, 1}m that we previ-
ously saw in the context of Simon’s algorithm, which is

a · b = a1b1 + a2b2 + · · ·+ ambm mod 2. (559)

Remember that this this is not an inner product because the dot product of a non-
zero vector with itself can be zero. But it has some nice properties and we can very
loosely think of two strings as being “orthogonal” if their dot product is zero.

Definition 36.4 (dual code). For any linear code whose codewords are C ⊆ {0, 1}m,
define the dual code as

C⊥ =
{
a ∈ {0, 1}m

∣∣∣ for all b ∈ C, a · b = 0
}
. (560)

The set C⊥ can be loosely thought as all codewords that are orthogonal to C.
The codewords of the 7-bit code in figure 234 are

C =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001
}
, (561)

and the dual of that code is

C⊥ =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001,
1111111, 0101010, 1001100, 0011001,
1110000, 0100101, 1000011, 0010110

}
. (562)

292

Every vector in C has dot product zero with every vector in C⊥.
Note that C⊥ is a superset of C (it contains all of C, plus additional strings). This

can happen because the dot product is not an inner product. What’s the minimum
distance of C⊥ in this example? The minimum distance of C⊥ is 3. Note that this
means that C⊥ can correct against a 1-bit error.

36.1.2 Generator matrix and parity check matrix

For every linear code with n-bit data and m-bit codewords, we associate two matrices.
One matrix is the n×m generator matrix, G, which expresses the encoding process

as a linear operator. Namely, for all a ∈ {0, 1}n,

E(a) = aG. (563)

The convention in coding theory is that binary strings are row vectors and the matrix
multiplication is on the right side.

For our running example of a 7-bit code, the generator matrix is

G =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 (564)

and to encode a three-bit string a ∈ {0, 1}3, we right multiply by the generator matrix

E(a) =
[
a0 a1 a2

] 
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 =
[
b0 b1 b2 b3 b4 b5 b6

]
. (565)

It’s not hard to see that the rows of G are a basis for the set of codewords.
Another interesting matrix associated with a linear code is called the m× (m−n)

parity check matrix, H, which can be used to check whether a given string is a
codeword or not. For any string b ∈ {0, 1}m, b ∈ C if and only if bH = 0m−n, the
zero vector. The columns of H are a basis for C⊥, the dual of C.

293

For our 7-bit code example, a parity check matrix is

H =



1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


(566)

Notice that the space generated by the rows of G is orthogonal to the space generated
by the columns of H. This is expressed succinctly by the fact that GH = 0n×(m−n),
the n× (m− n) zero matrix.

36.1.3 Error-correcting via parity-check matrix

Let C ⊂ {0, 1}m be a linear code with with distance d and let H be a parity check
matrix of C. Here’s how to correct errors using H.

For any codeword b ∈ {0, 1}m, let b′ be the perturbed codeword after an error has
been applied. It’s useful to think of an m-bit error vector, e, that has a 1 in each
position where a bit is flipped, and a 0 in the other positions. Then we can write
b′ = b+ e, where the vectors are added bitwise (mod 2). If fewer than d

2 bits of b are
flipped then the Hamming weight of e is less than d

2 .
Now, consider what happens if we multiply b′ by the parity check matrix H

b′H = (b+ e)H (567)
= bH + eH (568)
= eH (569)

(where we are using the fact that bH = 0 because b is a codeword).
We call eH the syndrome of the error e. For linear codes, the syndrome depends

only on the error, and not on the codeword on which the error occurred. This property
will be especially valuable when we construct quantum error-correcting codes based
on classical linear codes.

Referring back to our running example 7-bit code, here’s a table of the syndromes
of all the error under consideration. That is, where at most one bit is flipped.

294

e eH

0000000 0000
1000000 1001
0100000 1010
0010000 1011
0001000 1100
0000100 1101
0000010 1110
0000001 1111

Figure 236: Syndromes associated with errors.

In general, all errors e that are of Hamming weight less than d
2 have unique syndromes.

Let’s go through am example of an error-correction procedure using the syndrome
table in figure 236. Suppose that we receive the string 1001010 from the channel
(and we’re not told what the error is). Multiplying by the parity check matrix, we
obtain

[
1 0 0 1 0 1 0

]
H =

[
1 0 1 1

]
, so the syndrome of the error is 1011. Looking at

the syndrome table, we can see that this syndrome corresponds to the error 0010000
(i.e., the third bit is flipped). So we can flip the third bit again to correct the error,
obtaining the original codeword b = 1011010. To get the data a ∈ {0, 1}3 from the
codeword b, we can use the fact that

[
a0 a1 a2

]
G = b (where G is a generator matrix

for the code) and solve the system of linear equations to get a.
As an aside, for large m and where d grows as a function of m, the syndrome

table can be of size exponential in m. So it is not efficient to explicitly construct the
entire table of errors and syndromes. Good error-correcting codes with large block
sizes are designed with special additional structural properties which enable the error
as a function of the syndrome to be computed efficiently.

All this information about classical linear codes is useful for understanding the
methodology of CSS codes.

36.2 H⊗H⊗ · · · ⊗H revisited
Before discussing the CSS code construction, I’d like to show you some more nice
properties of the m-fold tensor product of Hadamard gates. We’ve already seen in
the notes [Part 2: Quantum algorithms, section 6.3.1] that

H⊗m |0m⟩ = 1√
2m

∑
b∈{0,1}m

|b⟩ , (570)

295

and, more generally, for any w ∈ {0, 1}m,

H⊗m |w⟩ = 1√
2m

∑
b∈{0,1}m

(−1)b·w |b⟩ , (571)

where b · w denotes the dot-product b0w0 + b1w1 + · · ·+ bm−1wm−1.
Now, here’s a generalization of the above two equations related to states that are

uniform superpositions over the elements of a linear subspace C ⊆ {0, 1}m. Applying
H⊗m to such a state results in an equally weighted superposition of the elements
of C⊥. Namely,

H⊗m
(

1√
|C|

∑
a∈C
|a⟩
)

= 1√
|C⊥|

∑
b∈C⊥

|b⟩ . (572)

Also, for a uniform superposition over the elements of a linear subspace C ⊆ {0, 1}m
offset by some w ∈ {0, 1}m, there is a similar expression with phases,

H⊗m
(

1√
|C|

∑
a∈C
|a+ w⟩

)
= 1√

|C⊥|

∑
b∈C⊥

(−1)b·w |b⟩ . (573)

Notice that Eq. (572) generalizes Eq. (570), since {0m} is the zero-dimensional linear
subspace of {0, 1}m and {0m}⊥ = {0, 1}m. Similarly, Eq. (573) generalizes Eq. (571).

Exercise 36.1. Prove Eqns. (572) and (573).

Hint: if G is the n×m generator matrix of C then

1√
|C|

∑
a∈C
|a⟩ = 1√

2n

∑
b∈{0,1}n

|bG⟩ . (574)

36.3 CSS codes
A CSS code is based on two classical linear codes, C0, C1 ⊆ {0, 1}m, that are related
by these properties:

• C0 ⊊ C1

• C⊥
0 ⊆ C1.

Two relevant parameters are k = dim(C1)− dim(C0) and d, the distance of code C1.
From this, we will construct a quantum error-correcting code that encodes k qubits
as m qubits, and protects against any errors in fewer than d

2 qubits.

296

From our running example, we can take

C0 =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001
}
, (575)

C1 =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001,
1111111, 0101010, 1001100, 0011001,
1110000, 0100101, 1000011, 0010110

}
. (576)

Clearly C0 ⊊ C1 and C⊥
0 = C1. For this example, k = dim(C1)−dim(C0) = 4−3 = 1,

and d = 3 (the distance of code C1).
In general, let G0 and G1 be generator matrices for C0 and C1, respectively.

Suppose that G0 is an n×m matrix and G1 is an (n+k)×m matrix. We can express

G1 =
[
G0

W

]
, (577)

where W is a k×m matrix representing the additional rows to add to G0 in order to
extend the span from C0 to C1.

In our running example, we can take

G0 =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 W =
[

1 1 1 1 1 1 1
]

(578)

G1 =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 1 1 1 1

 . (579)

36.3.1 CSS encoding

For linear codes C0 ⊂ C1 ⊆ {0, 1}m such that C⊥
0 ⊆ C1, let k = dim(C1)− dim(C0).

The related CSS code encodes a k-qubit state as an m-qubit state as follows.
For all v ∈ {0, 1}k, define the logical basis state |v⟩L as the m-qubit state

|v⟩L = 1√
|C0|

∑
a∈C0

|a+ vW ⟩ . (580)

297

Then an arbitrary k-qubit (pure) state∑
v∈{0,1}k

αv |v⟩ (581)

is encoded as the m-qubit state
∑

v∈{0,1}k

αv |v⟩L =
∑

v∈{0,1}k

αv

(
1√
|C0|

∑
a∈C0

|a+ vW ⟩
)
. (582)

Returning to our running example, we have logical qubits

|0⟩L = |0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩
|0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩ (583)

|1⟩L = |1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩
|1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩ . (584)

The state |0⟩L is a uniform superposition of the elements of C0. The state |1⟩L is a
uniform superposition of the elements of C0+1111111. Any 1-qubit state α0 |0⟩+α1 |1⟩
is encoded as the 7-qubit state α0 |0⟩L + α1 |1⟩L. This is called the Steane code and
we’ll show that it protects against any 1-qubit error.

36.3.2 CSS error-correcting

Let C0 ⊂ C1 ⊆ {0, 1}m be linear such that C⊥
0 ⊆ C1 and let k = dim(C1)− dim(C0).

We will show how to perform error-correction for the related CSS code, correcting
any Pauli error acting on fewer than d

2 qubits, where d is the distance of code C1.
We begin by showing how to correct X-errors acting on fewer than d

2 qubits. The
encoding of a k-qubit state is of the form of Eq. (582). This state is a superposition
of basis states from the larger code C1, whose minimum distance is d.

We can write the X-error operator as Ee = Xe0 ⊗ Xe1 ⊗ · · · ⊗ Xem−1 , where
e ∈ {0, 1}m has Hamming weight less than d

2 . For encoded data |ψ⟩, the state Ee |ψ⟩
is the encoding subjected to the error.

Based on the parity check matrix H1 of C1, we can create a circuit than produces
the error syndrome |Se⟩ in an ancillary register.

298

Figure 237: Computing the X-error syndrome.

Since the syndrome depends only on the error vector e and not any computational
basis state from C1, the output of the circuit is the product state

(
Ee |ψ⟩

)
⊗ |Se⟩.

In our running example, this syndrome is computed using the parity check matrix

H1 =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


(585)

and, based the entries of H1, a circuit for producing the X-error syndrome is this.

Figure 238: Explicit circuit computing the X-error syndrome for the Steane code.

It’s easy to confirm that, for any computational basis state in the code word, this
computes the syndrome |Se⟩ associated with error e. Once the error syndrome Se has
been computed, the error e can be deduced and undone. So this procedure corrects
X-errors, as long as there are fewer than d

2 of them.
What about Z-errors? To correct against Z-errors, we apply an H operation to

each qubit of the encoded data. This converts the encoding to the Hadamard basis,
where Z-errors are X-errors.

299

What does the encoding look like in the Hadamard basis? Using the results from
section 36.2, this is

H⊗m

 ∑
v∈{0,1}k

αv |v⟩L

 =
∑

v∈{0,1}k

αvH
⊗m

 1√
|C0|

∑
a∈C0

|a+ vW ⟩

 (586)

=
∑

v∈{0,1}k

αv

 1√
|C⊥

0 |

∑
b∈C⊥

0

(−1)b·(vW) |b⟩

. (587)

Since C⊥
0 ⊆ C1, this state is also a superposition of computational basis states from

C1. Therefore, we can apply the procedure in figure 237 again in the Hadamard basis.

Figure 239: Computing the Z-error syndrome.

From the syndrome, the Z-errors (which are X-errors in the Hadamard basis) can be
undone. Then H⊗m is applied again to return to the computational basis.

So far, we can correct X-errors and Z-errors. Since Y = iXZ, each Y -error is like
an X-error and a Z-error, and each of those is corrected by the two aforementioned
procedures.

36.3.3 CSS code summary

The Steane 7-qubit CSS code and the Shor 9-qubit code both protect against a 1-qubit
error; however, note that the Steane code has better rate.

In general, the performance of a CSS code depends on the performance of the
classical linear codes C0 ⊂ C1 ⊆ {0, 1}m (with C⊥

0 ⊆ C1) on which it is based.
Since good classical codes of the above form exist, there exist qualitatively good
quantum error-correctng codes. It turns out that there exists a threshold ϵ0 = 0.055...
such that, for the depolarizing channel with error parameter ϵ < ϵ0, there exist CSS
codes of constant rate and arbitrarily small failure probability. This is qualitatively
equivalent to what’s achievable with classical error-correcting codes, although the
specific constants are smaller.

300

This gives an idea of what quantum error-correcting codes can accomplish. But
this is just the beginning. There are many other quantum error-correcting codes,
some of which are better in certain respects than CSS codes. Also, the depolarizing
channel is a kind of standard noise model, but it’s not the only one. Quantum error-
correcting codes that perform well against this model tend to perform well against
variations of this error model. And there is some fine-tuning possible if one knows
the exact error model.

301

37 Very brief remarks about fault-tolerance
The error-correcting codes that I’ve described assume that the noise is restricted to
the communication channel. They assume that the encoding and decoding processes
are not subject to any noise. What about noise during the execution of a quantum
circuit?

Suppose that we want to execute a quantum circuit, but there is noise during the
computation. One simple way of modeling this is to assume that there is a depolarizing
channel at each qubit applied at each time step.

Figure 240: Noisy gates modeled by a depolorizing channel at each qubit at each time step.

How can we cope with this kind of noise? If the error parameter of the depolarizing
channel ϵ is very small then this is OK. Suppose that the size of the computation is
less than 1

10ϵ . Then, with good probability, none of the qubits incurs a flip (by which
I mean a bit-flip, phase-flip, or both), so the computation succeeds.

But, if ϵ is a constant (dictated by the precision of our hardware), then size of the
largest circuit possible will also be bounded by a constant. If we want to execute a
larger circuit then we need a smaller ϵ, which means better precision in our quantum
gates. For very large circuits we would need very high precision components.

But we can do much better than this, due to the celebrated Threshold Theorem.

Theorem 37.1 (Threshold Theorem, rough statement). There exists a constant ϵ0 >

0 such that if the precision per gate per time step is below ϵ0 then we can perform
arbitrarily large computations without having to further increase the precision.

The rough idea is to convert the circuit that we want to perform into a another circuit
that is fault-tolerant. The fault-tolerant circuit uses error-correcting codes in place
of each qubit, and performs additional operations that correct errors at regular time
intervals, so they don’t accumulate. The known fault-tolerant constructions can be
quite elaborate, and use several clever ideas. But what’s nice is that the fault-tolerant

302

circuits are not that much larger asymptotically than the original circuits. In some
formulations, the size increase is by a logarithmic factor; and in some formulations,
by a constant factor.39

This result is quite impressive, if you consider that there is noise during any
encoding and decoding operation within the fault-tolerant circuit.

39The fault tolerant circuit will not be exactly of the form of a larger version of the kind of circuit
that appears in Fig. 240. For the details to work out, fresh ancilla qubits must be injected into
the circuit at intermediate times and also qubits must also be measured at intermediate times to
perform the corrections.

303

38 Nonlocality
In this section, I will explain a phenomenon called nonlocality, which is a strange kind
of behavior that quantum systems can exhibit. One way of explaining this behavior
is in terms of games played by a team of cooperating players. They players must
individually answer certain questions, and they must do this without communicating
with each other. The lack of communication appears to restrict what the players can
achieve. However, with quantum information, strange behaviors can occur, that defy
what one might intuitively think is possible.

38.1 Entanglement and signalling
First of all, let’s note that entangled states cannot be used to communicate instan-
taneously. What I mean by this is the following. Suppose that Alice has a quantum
system in her lab and Bob has a quantum system in his lab, and the two labs are
in physically separate locations. Alice and Bob’s systems might be in an entangled
state—for example one of the Bell states.

Figure 241: Is there anything Alice can do to her qubit that is detectable in Bob’s qubit?

Then there is no quantum operation that Alice can perform on her system alone,
whose effect is detectable by Bob. If Alice wants to communicate with Bob, she has
to send something to him

To see why this is so, consider the density matrix of Bob’s system (that is, the
density matrix that results when Alice’s system is traced out). If Alice performs a
unitary operation or measurement on her system then this has no effect on the density
matrix of Bob’s system. So any kind of measurement that Bob performs on his system
will have exactly the same outcome whether or not Alice performs the operation.

And this is not specific to two systems. If there are three or more parties then the
same thing holds. Operations on one system have no detectable effect on the other
systems.

304

38.2 GHZ game
Now let’s consider a three-player game, commonly referred to as the GHZ game
(named after it’s inventors, Greenberger, Horne, and Zeillinger).

Let’s call the three players Alice, Bob, and Carol.

Figure 242: Alice, Bob, and Carol playing the GHZ game.

This game works as follows. Each player receives a 1-bit input. Call the respective
input bits r, s, and t. And each player is required to produce a 1-bit output. Call
the respective input bits a, b, and c.

The rules of this game are the following.
1. It is promised that the input bits, r, s, and t have an even number of 1s among

them. In other words, r⊕ s⊕ t = 0. So there are actually three cases of inputs:
000, 011, 101, 110.

2. There is no communication allowed between Alice, Bob, and Carol once the
game starts and their input bits are received. So, for example, although Alice
will know what her input r is, she does not know what s and t are.

3. This rule defines the winning conditions of the output bits. The three players
win the game if and if a⊕ b⊕ c = r ∨ s ∨ t.

The winning condition a⊕ b⊕ c = r ∨ s∨ t is just a condensed way of describing this
table.

rst a⊕b⊕c
000 0
011 1
101 1
110 1

Figure 243: For each input rst, the required value of a⊕b⊕c to win.

For the first case, the XOR of the outputs should be 0 for the players to win. For the
other three cases, the XOR of the outputs should be 1 for the players to win.

305

To get a feeling for this game, here is an example of a strategy that Alice, Bob
and Carol could use:

Example of a strategy
Alice receives r as input and produces r as output.

Bob receives s as input and produces ¬s as output.

Carol receives t as input and produces 1 as output.
So how well does this strategy perform? Here I’ve added the output bits arising

from this strategy to the table.

rst a⊕b⊕c abc

000 0 011
011 1 001
101 1 111
110 1 101

Figure 244: Output bits produced by the example strategy (in red).

You can see that the first output bit a is r, the second output bit b is ¬s, and the
third output bit c is always 1. Consider the first case of inputs 000. There the XOR
of the output bits should be 0. And it is 0. So they win in that case. For the second
case, the XOR of the output bits should be 1, and it is. So they win in that case too.
They also win in the third case. So far, so good. But what happens in the fourth
case? In that case, the XOR should be 1. But the output bits have XOR 0. So they
lose in that case.

So this is an example of a strategy that wins in three out of the four cases. Is
there a better strategy, that wins in all four cases?

38.2.1 Is there a perfect strategy for GHZ?

Call a strategy that wins in every case a perfect strategy. Let’s see if we can find a
perfect strategy for this game.

Alice’s output bit is a function of her input bit. Let a0 denote her output bit if
her input bit is 0. And let a1 denote her output bit if her input bit is 1. Similarly,
define b0, b1 as Bob’s output bits in the two cases, and c0, c1 as Carol’s output bits
in the two cases. So we have six bits specifying a strategy.

306

We can express the winning conditions in terms of the four equations

a0 ⊕ b0 ⊕ c0 = 0 (588)
a0 ⊕ b1 ⊕ c1 = 1 (589)
a1 ⊕ b0 ⊕ c1 = 1 (590)
a1 ⊕ b1 ⊕ c0 = 1. (591)

The first equation says that, when all three inputs are 0, the XOR of the output bits
should be 0. The second equation says that, when the input bits are 011, the XOR of
the output bits should be 1. And so on.

So, to find a perfect strategy, we just have to solve this system of equations. Is
there a solution?

In fact, there is no solution to this system of equations. These are linear equations
in mod 2 arithmetic. Suppose we add the four equations. On the left side we get 0,
because each variable appears exactly twice. On the right side, we get the XOR of
three 1s, which is 1. So, summing the equations yields 0 = 1, a contradiction.

It’s possible to satisfy any three of the four equations, but not all four. Therefore,
there does not exist a perfect deterministic strategy.

I say deterministic, because this analysis doesn’t consider the case of probabilistic
strategies. Could there exist a probabilistic perfect strategy?

There cannot exist a probabilistic perfect strategy either. This is because a prob-
abilistic strategy is essentially a probability distribution over all the deterministic
strategies, and the success probability is a weighted average of all the success proba-
bilities of the deterministic strategies (weighted by the probabilities).

If the questions r, s, and t were selected randomly (with probability 1
4 for each

possible input) then the success probability for every deterministic strategy would be
at most 3

4 . So the weighted average for any probability distribution on deterministic
strategies cannot be higher than that.

Now imagine that you actually carried out this game with Alice, Bob, and Carol.
You generate a random triple of questions and check whether their answers win or
not. If you just play this once then they might win by luck. In fact, they can win
with probability 3

4 . But suppose you play this several rounds in succession and they
win every single round?

What if you play four rounds, once for each of the four input possibilities? Will
the players necessarily fail in at least one of those rounds? No, not necessarily. Note
that the players might use a different deterministic strategy at each round. Their

307

strategy can satisfy any three of the four equations, and they can arrange to have a
different equation violated for each round.

In fact, the player can ensure that they win each round with probability 3
4 . So

they would win any four rounds with probability (3
4)4, which is slightly more than

30%.
On the other hand, it’s highly unlikely that the players would be lucky enough to

win, say, 500 rounds. That success probability is (3
4)500, which less than 1 in a trillion

trillion trillion trillion trillion.
So if you did play the game for a large number of rounds—with randomly selected

questions at each round—and the players won every single time, what would you
make of that?

38.2.2 Cheating by communicating

What makes the game non-trivial is that the players cannot communicate with each
other. If they could communicate then there would be an easy perfect strategy. For
example, suppose that Bob sent his input bit s to Alice. Then Alice knows r and s.
She can also deduce t because of the condition that the parity of all three bits is
promised to be 0. So Alice knows which of the four cases they’re in. A winning
strategy is for Alice to output the required parity to win, and Bob and Carol to
output 0.

rst a⊕b⊕c abc

000 0 000
011 1 100
101 1 100
110 1 100

Figure 245: Output bits of the cheating-by-communicating strategy (in red).

This wins in all four cases. And there are ways of scrambling up the outputs that
obscures this pattern—so that Bob and Carol don’t always output 0, and yet the
three players always win.

38.2.3 Enforcing no communication

So how can we ensure that they do not communicate? Maybe they each have a very
well-concealed transmitter.

308

Figure 246: Alice, Bob, and Carol physically far apart.

You could ensure that there’s a significant physical distance between the players (here
I’m depicting them on separate planets), and also time their inputs and outputs
tightly so that they cannot communicate fast enough for messages to reach each
other before their deadlines for producing their outputs. For this, we assume that
they cannot send signals faster than the speed of light. In physics-terminology we are
making the input/output events space-like separated.

Then, assuming that the theory of relativity is correct, we can be sure they are
not communicating their inputs to each other. But what if this is done and they still
keep on winning, for every round?

If they players had quantum systems that were entangled, could that possibly
help? Recall (as explained in section 38.1) that entanglement does not enable com-
munication. There’s no way that Bob can perform an operation on his system that
can be detected by Alice. So is there any possible way that Alice, Bob, and Carol
could keep on winning this game? If you’re not already familiar with scenarios like
this then I recommend that pause and think this over. The answer will come at the
next page.

309

38.2.4 The “mystery” explained

The answer is yes, there is a way that they can always win, and I will show you how.
They do use entanglement. Let them share the 3-qubit state

1
2 |000⟩ − 1

2 |011⟩ − 1
2 |101⟩ − 1

2 |110⟩ (592)

Alice possesses the first qubit, Bob possesses the second qubit and Carol possesses
the third qubit.

Figure 247: Alice, Bob, and Carol each possess a qubit of a tripartite entangled state.

First, I’ll describe the strategy of the players.
Entangled strategy

Alice: if r = 1 then apply H; measure and output the result.

Bob: if s = 1 then apply H; measure and output the result.

Carol: if t = 1 then apply H; measure and output the result.
Now let’s see how this strategy performs. There are four cases of inputs.

Let’s begin by considering the first case, where rst = 000. In that case, neither
player applies a Hadamard transform. Therefore, they measure the state in Eq. (592)
with respect to the computational basis. The result is

000 with prob. 1
4

011 with prob. 1
4

101 with prob. 1
4

110 with prob. 1
4 .

(593)

For all four possibilities, the XOR of the three output bits is 0, which is what it’s
supposed to be for the 000 case.

Now let’s consider the case where rst = 011. In that case, Bob and Carol apply
Hadamard operations. It’s straightforward to check that(

I ⊗H ⊗H
)(

1
2 |000⟩ − 1

2 |011⟩ − 1
2 |101⟩ − 1

2 |110⟩
)

= 1
2 |001⟩+ 1

2 |010⟩ − 1
2 |100⟩+ 1

2 |111⟩ (594)

310

and when this state is measured in the computational basis the result is

001 with prob. 1
4

010 with prob. 1
4

100 with prob. 1
4

111 with prob. 1
4 .

(595)

So the XOR of the three output bits is 1, as required for that case.
The cases where rst = 101 and 110 are similar to the previous case, due to the

symmetry of the state and the strategies. That’s how Alice, Bob, and Carol can win
with probability 1.

If they play several rounds of the game then they need to possess several copies
of the entangled state in Eq. (592), and they consume one copy during each round.

38.2.5 Is the entangled strategy communicating?

So how is this entangled strategy working? Is it somehow communicating? If you look
at the outcome distributions for the different cases, you can see that each individual
output bit is an unbiased random bit. So the result of Alice’s measurement contains
absolutely no information about Bob and Carol’s inputs. And similarly for the other
players. In fact it can be shown that any perfect strategy using entanglement must
have the property that each output bit by itself is a random unbiased bit.

Even if we consider pairs of output bits, they are uncorrelated random bits. It’s
only the tripartite correlations among all three output bits that contain information
about the inputs.

38.2.6 GHZ conclusions

Let’s summarize this GHZ game. It’s a game played by a team of three cooperating
players who cannot communicate with each other once the game starts. They each
receive a bit as their input and are required to produce a bit as their output. There is
a well-defined winning condition for the output bits that depends on what the input
bits are.

The following conditions hold:
• Any classical team can succeed with probability at most 3

4 .

• Allowing the players to communicate would enable them to boost their success
probability to 1.

311

• Entanglement cannot be used to communicate.

• Nevertheless, entanglement is another way that the players can boost their
success probability to 1. But not by using entanglement to communicate.

• Instead, entanglement enables the measurement outcomes to be correlated in
ways that are impossible with classical information.

You might wonder why I showed you a three-player game. Are there two-player
games for which the same phenomena occurs? I showed you a three-player game
because it’s the simplest game that that I’m aware of that illustrates the point.

38.3 Magic square game
Here’s an example of a two-player game with a property similar to that of the GHZ
game: that there is no perfect classical strategy, whereas there is a perfect strategy
using entanglement. It’s commonly called the Magic Square Game and I will give
just a broad overview (without explaining how the entangled strategy works).

A good way of understanding how the Magic Square Game is defined is to first
consider the following puzzle. Imagine a 3-by-3 array whose entries are bits.

b1 b2 b3

b4 b5 b6

b7 b8 b9

Figure 248: Are there bits with even parity for each row and odd parity for each column?

Can you find values for the bits such that:
(a) the number of 1s in every row is even; and

(b) the number of 1s in every column is odd?
Please pause to think about how to do this.

312

You may have come to the realization that it is impossible to do this. Why?
Consider the number of 1s among all the nine bits. The row condition implies that
there are an odd number of 1s in total. The column condition implies that there are
an even number of 1s in in total. This is a contradiction.

Now, keep this in mind, while I describe a two-player game. As with the three-
player GHZ game, the players are collaborating and cannot communicate with each
other once the game starts. Alice and Bob each receive a trit as input and are each
required to return three bits. Think of Alice’s input as specifying a row of the array,
and think of Bob’s input as specifying a column of the array.

Figure 249: Framework for playing the Magic Square Game.

The winning conditions are:
1. Alice’s 3-bit output has even parity (think of these as the bits of one of the rows

of the array).

2. Bob’s 3-bit output has odd parity (think of these as the bits of one of the
columns of the array).

3. Alice and Bob’s outputs are consistent in the sense that, where Alice’s row
intersects Bob’s column, the bits are the same. (For example, if Alice is queried
the second row and Bob is queried the third column then Alice’s third bit must
be the same as Bob’s second bit.)

What can we say about this game?
It turns out that there is no perfect classical strategy for this game. Of the nine

possible question pairs, Alice and Bob’s strategy must fail for at least one of them.
The maximum success probability attainable is 8

9 . The proof of this is based on the
fact that there is no way to set the bits of the 3-by-3 array that satisfy the parity
conditions.

But there is a perfect entangled strategy that uses two Bell states as entanglement.
It’s a very interesting strategy, but I won’t go into the details of it here.

313

38.4 Are nonlocal games useful?
So far, you might think that these games are weird curiosities, that have no conceivable
application. But these games can be useful for enforcing certain kinds of behavior
in cryptographic protocols. A simple example of this involves devices for generating
random bits.

Suppose that you purchased such a device that purportedly generates a stream of
random bits.

Figure 250: A supposed random number generator. Can you trust it?

How can you know that this is a good device? You could open the box and see if
the internal mechanism looks legitimate. But, even if superficially it looks like some
process that you think is generating randomness, it’s possible that it’s a fake random
generator, and that the manufacturer is trying to trick you.

What the manufacturer could do is produce a long sequence of random bits in the
factory and store those random bits in two memory devices, and hide one of those
memory devices somewhere in the box and keep the other memory. And what the
device could actually be doing is just outputting the bits stored in the memory device.

Note that the output would look like random bits to you. But the manufacturer
would have a copy of those bits. They would know exactly what the next output
bit is going to be. If you use such a fake random generator in a cryptographic
context, for example to generate a random secret key, that that could be trouble.
The manufacturer would know the key.

Unfortunately, in the context of classical information, there is no remedy for this,
even in principle. If you don’t trust the manufacturer of your devices, then there’s no
way that you can be sure that it’s really generating random bits, that are unknown
to the manufacturer.

But, with quantum devices it’s possible to certify the randomness of untrusted
devices. The “device” would actually consists of two components, that contain en-
tangled quantum systems.

314

Figure 251: Generating random strings using untrusted devices.

You physically separate the two components and input a short random seed into each
component. From this, each component outputs a long string of bits. You check if
the inputs and outputs satisfy a certain function, called a test. If they pass the test,
and if the input/output events are space-like separated, then you know for sure that
the outputs are really random bits (within some precision ϵ, for some small ϵ > 0).

I’m not claiming that such a system is practical to implement for wide usage.
But it shows that, in principle, it’s possible to actually certify randomness using
quantum information. Something that’s impossible, even in principle, with classical
information.

Nonlocal games also have profound implications in the foundations of physics,
which will be the topic of the next section.

315

39 Bell/CHSH inequality
This section is about the Bell inequality in physics, and its violation. The version that
we’ll consider was discovered shortly after John Bell’s ground-breaking paper, and is
called the CHSH inequality, after its authors, Clauser, Horne, Shimoney, and Holt.

39.1 Fresh randomness vs. stale randomness
I’d like to begin by making a distinction between “fresh” randomness and “stale”
randomness. By stale randomness, I mean something like this. Suppose that I flipped
a coin yesterday and I know what the outcome was, but I’m not telling you what it
was. Then, from your perspective, the outcome is a probability distribution. From
your perspective, outcome is “heads” with probability 1

2 and “tails” with probability 1
2 .

But the outcome is already determined. Your probabilities just reflect a lack of
information on your part.

Contrast this situation with the case where the coin is spinning in the air right at
this very moment. In that case, neither of us know the outcome. The outcome has
not been determined yet. Let’s call that fresh randomness.

But is a coin flip really a random process? Isn’t the outcome determined by the
present conditions? If we knew the exact shape of the coin, it’s exact motion, and the
positions of all the air molecules and we had an extremely powerful computer then
maybe we could determine the value of the coin flip while it’s spinning in the air.

Moreover, we should not conflate forecasting (being able to predict a future event)
with determinism (a future event being determined by present conditions).

Consider the weather. Predicting, say, the outside temperature where I live one
year for now is for all practical purposes impossible due to the chaotic nature of
weather (the so-called butterfly effect). In terms of forecasting, this temperature is
at best a probability distribution (a different distribution in the summer than in the
winter). Nevertheless, it seems that the precise future weather is determined by the
precise present conditions, even if we cannot how exactly what these are.

Whether the intuitive notion of fresh randomness actually exists or is just an
illusion is an interesting question. I don’t claim to know the answer. All of this
discussion is a lead-in to the question:

If a qubit in state 1√
2 |0⟩ + 1√

2 |1⟩ is measured in the computational basis,
will the outcome be fresh randomness or stale randomness?

316

In the quantum information framework that has been the subject of these notes, the
outcome is regarded as fresh randomness, that’s spontaneously generated during the
measurement process. It doesn’t really make sense in our model for Alice to produce
a qubit in state 1√

2 |0⟩+
1√
2 |1⟩ and at the same time to know in advance the outcome

of a future measurement (in the computational basis) of that state. Or does it?

39.2 Predetermined measurement outcomes of a qubit?
Let’s explore the possibility that the outcomes for measuring a qubit in a state like

1√
2 |0⟩ + 1√

2 |1⟩ are predetermined. Think of a qubit as a physical entity, a particle
(technically, a spin-1

2 particle) that was created at the big bang. Imagine that, at the
time of creation, a predetermined outcome for each possible measurement outcome
was embedded into the particle. So lurking within a qubit is some sort of table of
predetermined outcomes. Let’s visualize it as a literal table of outcome values.

Figure 252: Are predetermined values of all measurement outcomes contained in a qubit?

Imagine that every entry of the table was created randomly so as to conform with the
outcome probabilities of quantum measurements. For example, for a measurement in
the computational basis, the outcome is an unbiased random bit. So, in that entry
of the table, a random bit was inserted (in the figure, it was set to 1). On the other
hand, for a measurement in the |+⟩/|−⟩ basis, the outcome should always be the
first state |+⟩. So that entry of the table was set the bit 0. And so on. For every
other potential measurement, there is an entry in the table containing a bit that is
sampled with the appropriate probability distribution for that measurement of the
state. That’s an infinitely large table. Maybe there’s a compressed way of containing
this information, but let’s not concern ourselves with that issue. My point is that
it’s conceivable that the particle contains this table of predetermined measurement
outcomes stored within it.

317

In physics, these are called hidden variables. The idea is that these hidden vari-
ables represent additional physical properties of systems that are yet to be discovered.
When they are discovered, quantum mechanics will be tamed of its randomness. The
randomness that arises in quantum theory as it currently exists could merely be a
consequence of the fact that we don’t know what these hidden variables are. In this
way of thinking, a measurement merely extracts a predetermined value from the table
of outcomes.

Let’s continue developing this model. What happens if we apply a unitary opera-
tion to a qubit? This would rearrange the table of outcomes in some systematic way.
For example, suppose that we apply a Hadamard transform to the qubit. That would
swap the first two bits of the table. This is because, after applying a Hadamard to
this |+⟩ state, the state becomes |0⟩, so now a measurement in the computational
basis produces 0 for sure. And measuring in the |+⟩/|−⟩ basis is what produces a
random bit. Without going into the details, the effect of any unitary operation can be
captured by moving around the entries of the table of outcomes. Unitary operations
merely rearrange the stale randomness of the table of outcomes.

And, in this picture, every spin-1
2 particle has it’s own separate table. If multiple

particles are in the |+⟩ state then each one contains an independent random bit for
the first entry in its table. This is consistent with what happens when we measure
several qubits that are each in the |+⟩ state.

Figure 253: Multiple qubits, each containing a “table” of hidden variables.

What’s interesting about this local hidden variables picture is that, so far, everything
is consistent with quantum behavior.

We might imagine that this model can be extended to capture all of quantum
information theory. For example, when a 2-qubit unitary gate entangles two particles,
what might actually be happening is a rearrangement of both tables of outcomes,
so that the entries are appropriately correlated for all possible measurements. If
the unitary operation creates the state 1√

2 |00⟩ + 1√
2 |11⟩ then the table entries for

measuring each qubit in the computational basis should be: 0 for both particles with
probability 1

2 ; and 1 for both particles with probability 1
2 .

Let’s continue exploring how a local hidden variable model would work.

318

39.3 CHSH inequality
Imagine a system consisting of two qubits (or two particles), and that there are two
measurements, that we’ll refer to as M0 and M1. We’re supposing that each particle
contains a full tables of outcomes, but here we’ll only care about the parts of the
tables that are associated with the measurements M0 and M1.

Figure 254: Two particles, with their hidden variables for two measurements, M0 and M1.

Call the two predetermined values for the first particle a0 and a1. And call the two
predetermined values for the second particle b0 and b1.

Note that we making an assumption that the hidden variables are local hidden
variables in the sense that each particle’s predetermined outcomes depend only on
the measurement performed on that particle, and not the measurements performed
on the other particles. What’s the justification for this?

The justification is that the particles might be far apart from each other and the
timing of the measurements might be such that the two measurement events are space-
like separated. This means that there isn’t sufficient time for a signal to go from the
second particle to the first particle with the information about which measurement
is performed. For space-like separated measurement events, the first particle has no
way of “knowing” what measurement is being performed on the second particle, even
in principle. Therefore, for space-like separated measurements, it’s impossible for
one particle’s outcome to depend on what measurement is performed on the other
particle.

I will now describe a property that the bits a0, a1, b0, b1 must satisfy. It is
convenient to describe this property in terms of bits that are expressed as +1 and −1

319

instead of 0 and 1. So we define such a conversion, into “uppercase” bits as

A0 = (−1)a0 (596)
A1 = (−1)a1 (597)
B0 = (−1)b0 (598)
B1 = (−1)b1 . (599)

I claim that inequality (600) holds, which is called the CHSH inequality.40

Theorem 39.1 (CHSH inequality). For any A0, A1, B0, B1 ∈ {+1,−1}, it holds that

A0B0 + A0B1 + A1B0 − A1B1 ≤ 2. (600)

Note that each of the four terms on the left side can be +1 or −1. So we might
imagine that the left side can be as large as 4. But the upper bound is 2.

Proof of Theorem 39.1. Let’s see how to prove the CHSH inequality. We can write
the left side of Eq. (600) as

A0(B0 +B1) + A1(B0 −B1). (601)

Now consider the expressions in the parentheses, B0 +B1 and B0−B1. Either B0 and
B1 have the same sign or they have different signs. If B0 and B1 have the same sign
then B0 +B1 can be as large as 2, but then B0 −B1 = 0. So in that case, the upper
bound is 2. If B0 and B1 have the different signs then B0 − B1 can be as large as 2,
but then B0 + B1 = 0. So in that case, the upper bound is also 2. This completes
the proof. ■

Why should we care about this CHSH inequality? The reason why is that the
inequality can be experimentally tested, and if an experiment shows that it’s violated
then the possibility of a local hidden variable model is refuted.

First of all, let’s consider how one could in principle design an experiment to
verify that systems satisfy the CHSH inequality. There’s some subtlety with this.
The problem is that, for any single measurement of the two particles, only one of
the four AsBt-terms in the inequality can be measured. Here again are the particles

40The original inequality along these lines is due to John Bell in 1964. All subsequent variations
of it are loosely called Bell inequalities. This particularly nice version is due to Clauser, Horne,
Shimony, and Holt and is also called the CHSH inequality.

320

with their outcome tables, where I’ve taken the liberty of writing the outcomes with
uppercase bits (in the ±1 language).

Figure 255: Two particles, with their hidden variables for M0 and M1 specified as ± bits.

You can choose to perform any single measurement on the first system and get either
A0 or A1 and then the state is disturbed, so you cannot measure again to get the
original value of the other bit. Similarly, you can choose any single measurement on
the second system and get B0 or B1 (but not both). So you can acquire only one of
the four terms A0B0, A0B1, A1B0, A1B1 (whose value is +1 or −1). To verify the
inequality, you would need to see all four terms.

However, the Bell inequality can be verified using statistical methods, by making
several independent runs, using a separate pair of particles for each run. In each run,
st ∈ {00, 01, 10, 11} is chosen randomly and the ± bit (−1)stAsBt is calculated. The
factor (−1)st means multiply by −1 in the st = 11 case.

If st ∈ {00, 01, 10, 11} is sampled randomly according to the uniform distribution
then the expected value of (−1)stAsBt is

Es,t

[
(−1)stAsBt

]
= 1

4A0B0 + 1
4A0B1 + 1

4A1B0 − 1
4A1B1. (602)

Does this expression look familiar? It’s the left side of the CHSH inequality divided
by 4. So we can deduce from the CHSH inequality that

Es,t

[
(−1)stAsBt

]
≤ 1

2 . (603)

The experiment to statistically verify the CHSH inequality is to make many sep-
arate runs, each on a separate pair of particles, of the procedure where you pick
a random st ∈ {00, 01, 10, 11} and then measure Ms and Mt to create a sample
(−1)stAsBt ∈ {+1,−1}. If local variables exist then the average over many runs
should converge to 1

2 or less.
Note that, in order to eliminate the possibility of a hidden variable model that is

not local, the experiment should be implemented so that each pair of measurement

321

events is space-like separated. If they are not space-like separated then the experiment
does not eliminate the possibility that nature is behaving in a conspiratorial way, with
signaling between pairs of particles, that permits the outcomes for each particle to
depend on both measurements.

The fact that the CHSH inequality can be experimentally verified is remarkable
because . . .

39.4 Violating the CHSH inequality
. . . quantum systems can violate the CHSH inequality!

To see how, suppose that the two physically separated qubits are entangled in the
Bell state 1√

2 |00⟩ − 1√
2 |11⟩.

Figure 256: Two physically separated particles in the Bell state 1√
2 |00⟩ − 1√

2 |11⟩.

Consider what happens if a rotation is performed on each qubit, by angle θs for the
first qubit and θt for the second qubit.

Exercise 39.1 (straightforward). Check that, if R(θs) ⊗ R(θt) is applied to state
1√
2 |00⟩ − 1√

2 |11⟩ then the result is

cos(θs + θt)
(

1√
2 |00⟩ − 1√

2 |11⟩
)

+ sin(θs + θt)
(

1√
2 |01⟩+ 1√

2 |10⟩
)
. (604)

If the state in Eq. (604) is measured in the computational basis then the outcome
bits (as, bt ∈ {0, 1}) satisfy

Pr[as ⊕ bt = 0] = cos2(θs + θt) (605)
Pr[as ⊕ bt = 1] = sin2(θs + θt). (606)

It follows that, for the ± bits As = (−1)as and Bt = (−1)bt ,

E[AsBt] = cos2(θs + θt)− sin2(θs + θt)

=
1 + cos

(
2(θs + θt)

)
2 −

1− cos
(
2(θs + θt)

)
2

= cos
(
2(θs + θt)

)
. (607)

Now define the measurements M0 and M1 as follows.

322

• M0: rotate by θ0 = − π
16 and then measure in the computational basis.

• M1: rotate by θ1 = +3π
16 and then measure in the computational basis.

Let’s look at the various angles θs + θt that arise for st ∈ {00, 01, 10, 11}.

Figure 257: Angles θs + θt that arise for Ms ⊗Mt, for the cases st ∈ {00, 01, 10, 11}.

When M0 is performed on both sides, θ0 + θ0 = −π
8 . When M0 is performed on one

side and M1 on the other side, θ0 + θ1 = θ1 + θ0 = +π
8 . And when M1 is performed

on both sides, θ1 + θ1 = 3π
8 .

Applying Eq. (607), this means that, for measurements Ms and Mt, the ± out-
comes As and Bt have the property that

E[AsBt] =
cos(±π

4) if st ∈ {00, 01, 10}
cos(3π

4) if st = 11
(608)

=


1√
2 if st ∈ {00, 01, 10}

− 1√
2 if st = 11.

(609)

It follows that

E[(−1)stAsBt] = 1
2

√
2, (610)

which clearly violates the CHSH inequality—explicitly the upper bound in Eq. (603).
So if we performed the aforementioned experiment of repeatedly picking a random

st ∈ {00, 01, 10, 11} and applying the measurements Ms and Mt to a pair of qubits in
state 1√

2 |00⟩− 1√
2 |11⟩ to sample (−1)stAsBt then the average would exceed the bound

of 1
2 , that was derived under the assumption of local hidden variables. Therefore, in

the quantum information framework, local hidden variables cannot exist.

323

Summary and experimental implementations

Let’s summarize the Bell inequality and its violation. Assuming that the measurement
outcomes of quantum systems are predetermined by local hidden variables leads to
the Bell inequality. But actual quantum quantum systems violate this inequality, by a
factor of

√
2. Therefore, quantum systems cannot be based on local hidden variables.

And this behavior of quantum systems has been experimentally verified. The
rough idea is to generate two particles in a Bell state and send them out in opposite
directions to reach detectors, which are set to measure the particles in various ways.

Figure 258: Form of test of the CHSH inequality violation.

In order for such an experiment to be loophole-free, the measurement events must
be space-like separated; the precision in the state preparation and the measurements
must exceed certain thresholds, and the random choices of st ∈ {00, 01, 10, 11} must
actually be random. This is non-trivial, but such experiments that are widely regarded
as loophole-free have been performed, refuting the existence of local hidden variables.

39.5 Bell/CHSH inequality as a nonlocal game
Now let’s look at the Bell/CHSH inequality and its violation in a different way, as
a nonlocal game, similar to the ones that we saw in sections 38.2 (the GHZ game)
and 38.3 (the Magic Square game).

Define the CHSH game as follows. Alice and Bob receive input bits, s and t, and
they must produce output bits, a and b.

Figure 259: Alice and Bob playing the CHSH game.

The rules of the game are as follows. First, a question pair st ∈ {00, 01, 10, 11} is
randomly selected according to the uniform distribution. As usual for nonlocal games,

324

there is no communication allowed between the players once the game starts. And
the players win if and only if a⊕b = s∧ t, which is just a condensed way of specifying
the following table.

st a⊕b
00 0
01 0
10 0
11 1

Figure 260: For each input st, the required value of a⊕b to win.

What’s interesting about the CHSH game is that:
• The maximum winning probability for any classical strategy is 3

4 .

• There exists an entangled strategy that wins with probability

cos2
(
π
8

)
= 1

2

(
1 + 1√

2

)
= 0.853... (611)

This is essentially the CHSH inequality and its violation, but where the outputs are
{0, 1}-bits instead of {+1,−1}-bits. The upper bound on the winning probability
corresponds to the CHSH inequality (in Eq. (603)), and the quantum strategy that
attains success probability cos2

(
π
8

)
corresponds to the CHSH inequality violation (in

section 39.4). However, I will provide a separate analysis of this game.
We can analyze classical strategies for the CHSH game in a manner similar to the

way we analyzed the GHZ game in section 38.2.1. First note that any deterministic
strategy can be described by four bits, a0, a1 (Alice’s output bits for the two input
possibilities), b0, b1 (Bob’s output bits for the two input possibilities). And the
winning condition can be expressed as the four equations

a0 ⊕ b0 = 0 (612)
a0 ⊕ b1 = 0 (613)
a1 ⊕ b0 = 0 (614)
a1 ⊕ b1 = 1. (615)

It’s easy to show that at most three of these four equations can be satisfied, so the
maximum success probability of any deterministic strategy is 3

4 . Since any classical

325

probabilistic strategy is essentially a probability distribution on the set of all deter-
ministic strategies, its winning probability cannot be higher than 3

4 .
The entangled strategy for the CHSH game whose probability of winning is cos2(π8)

is very similar to the CHSH inequality violation in section 39.4. Alice and Bob use
the entangled state 1√

2 |00⟩ − 1√
2 |11⟩ and they each perform the following on their

qubit.

1: if input bit is 0 then
2: apply R(− π

16) to qubit
3: else if input bit is 1 then
4: apply R(+3π

16) to qubit
5: end if
6: measure qubit and output result

Figure 261: Alice and Bob’s local behavior based on their input bit.

From Eqns. (604)(605)(606), we can deduce that, for input bits s and t, Alice and
Bob’s output bits a and b satisfy

Pr[a⊕ b = s ∧ t] =
cos2

(
±π

8

)
if st ∈ {00, 01, 10}

sin2
(

3π
8

)
if st = 11

(616)

= cos2
(
π
8

)
. (617)

Bell inequalities and nonlocal games can be thought of as different ways of ex-
pressing the same ideas about nonlocality. One perspective is to consider (and refute)
the existence of local hidden variables. Another perspective is to consider communi-
cation protocols between separated parties, and what they can accomplish with and
without the resource of entanglement.

326

	I A primer for beginners
	Preface
	What is a qubit?
	A simple digital model of information
	A simple analog model of information
	A simple probabilistic digital model of information
	A simple quantum model of information

	Notation and terminology
	Notation for qubits (and higher dimensional analogues)
	Normalization convention for quantum state vectors
	A closer look at unitary operations
	A closer look at measurements

	Introduction to state distinguishing problems
	Distinguishing between TEXT and TEXT
	Other state distinguishing problems

	Can a qubit store more information than a bit?
	On communicating a trit using a qubit
	Worst-case success probability of bit strategies
	Worst-case success probability of qubit strategies

	Systems with multiple bits and multiple qubits
	Definitions of TEXT-bit systems and TEXT-qubit systems
	Subsystems of TEXT-bit systems
	Subsystems of TEXT-qubit systems
	Product states
	Aside: global phases
	Local unitary operations
	Controlled-TEXT gates
	Controlled-NOT gate (a.k.a. CNOT)

	Superdense coding
	Prelude to superdense coding
	How superdense coding works

	Projective and local measurements
	Projective measurements
	Local measurements
	Local actions do not non-locally affect measurements
	Weirdness of the Bell basis encoding
	Measuring the control qubit of a controlled-TEXT gate

	Isometries and exotic measurements
	Isometries
	Exotic measurements
	Trine state distinguishing
	Zero-error state distinguishing between TEXT and TEXT

	Teleportation
	Prelude to teleportation
	Teleportation scenario
	How teleportation works

	Can quantum states be copied?
	A classical bit copier
	A qubit copier?

	Can quantum states be stored redundantly?
	TEXT-copying (via secret sharing)
	More general forms of quantum redundancy

	II Quantum algorithms
	Classical and quantum algorithms as circuits
	Classical logic gates
	Computing the majority of a string of bits
	Classical algorithms as logic circuits
	Multiplication problem and factoring problem
	Quantum algorithms as quantum circuits

	Simulations between quantum and classical
	The Toffoli gate
	Quantum circuits simulating classical circuits
	Classical circuits simulating quantum circuits

	Computational complexity classes in brief
	The black-box model
	Classical black-box queries
	Quantum black-box queries

	Simple quantum algorithms in black-box model
	Deutsch's problem
	One-out-of-four search
	Constant vs. balanced
	Probabilistic vs. quantum query complexity

	Simon's problem
	Definition of Simon's Problem
	Classical query cost of Simon's problem
	Proof of classical lower bound for Simon's problem

	Quantum algorithm for Simon's problem
	Understanding TEXT
	Viewing TEXT as a discrete vector space
	Simon's algorithm

	Significance of Simon's problem

	The Fourier transform
	Definition of the Fourier transform modulo TEXT
	A very simple application of the Fourier transform
	Computing the Fourier transform modulo TEXT
	Expressing TEXT in terms of TEXT
	Unravelling the recurrence

	Computing the Fourier transform for arbitrary modulus

	Definition of the discrete log problem
	Definitions of TEXT and TEXT
	Generators of TEXT and the exponential/log functions
	Discrete exponential problem
	Repeated squaring trick

	Discrete log problem

	Shor's algorithm for the discrete log problem
	Shor's function with a property similar to Simon's
	The Simon mod TEXT problem
	Query algorithm for Simon mod TEXT
	Returning to the discrete log problem
	Loose ends
	How to extract TEXT
	How not to compute an TEXT-query
	How to compute an TEXT-query
	How to compute the Fourier transform TEXT

	Phase estimation algorithm
	A simple introductory example
	Multiplicity controlled-TEXT gates
	Aside: multiplicity-control gates vs. AND-control gates

	Definition of the phase estimation problem
	Solving the exact case
	Solving the general case
	The case of superpositions of eigenvectors

	The order-finding problem
	Greatest common divisors and Euclid's algorithm
	The order-finding problem and its relation to factoring

	Shor's algorithm for order-finding
	Order-finding in the phase estimation framework
	Multiplicity-controlled-TEXT gate
	Precision needed to determine TEXT
	Can we construct TEXT?

	Order-finding using a random eigenvector TEXT
	When TEXT is known
	When TEXT is not known
	A snag: reduced fractions
	Conclusion of order-finding with a random eigenvector

	Order-finding using a superposition of eigenvectors
	Order-finding without requiring an eigenvector
	A technicality about the multiplicity-controlled-TEXT gate

	Shor's factoring algorithm
	Grover's search algorithm
	Two reflections is a rotation
	Overall structure of Grover's algorithm
	The case of a unique satisfying input
	The case of any number of satisfying inputs

	Optimality of Grover's search algorithm

	III Quantum information theory
	Quantum states as density matrices
	Probabilistic mixtures of states
	Density matrices
	Information processing in terms of density matrices
	Normal matrices, positive matrices, and the trace
	Characterizing density matrices
	Bloch sphere for qubits

	Density matrices on multi-register systems
	Product states
	Separable states
	Entangled states
	The identity TEXT
	Quantum states of subsystems and the partial trace
	Aside: marginal distributions
	Quantum analogue of marginal distributions
	Definition of the partial trace

	Purifications

	State transitions in the Kraus form
	Measurements via Kraus operators
	Projective measurements
	A Kraus measurement for the trine states
	POVM measurements

	Quantum channels via Kraus operators
	Unitary operations and isometries
	Decoherence of a qubit
	Phase damping qubit channel
	Depolarizing qubit channel
	Amplitude damping qubit channel
	Adding a mixed-state ancilla register
	The partial trace is a channel

	Channels and linear maps on subsystems
	Channels vs. linear maps
	Linear maps applied to subsystems
	The partial transpose as an entanglement test

	State transitions in the Stinespring form
	Measurements in the Stinespring form
	Channels in the Stinespring form
	Decoherence of a qubit
	Reset channel
	Depolarizing channel

	Equivalence of Kraus and Stinespring channels
	Kraus to Stinespring
	Stinepring to Kraus

	Unifying measurements and channels

	Distance measures between states
	Operational distance measure
	Geometric distance measures
	Euclidean distance
	Fidelity

	Functional calculus for linear operators
	Trace norm and trace distance
	The Holevo-Helstrom Theorem
	Attainability of success probability TEXT
	Optimality of success probability TEXT

	Ulhmann's Theorem
	Fidelity vs. trace distance

	Schmidt decomposition
	States that are equivalent up to local unitaries
	A tensor sum decomposition lemma
	Statement and proof of the Schmidt decomposition
	Applications of the Schmidt decomposition

	Simple quantum error-correcting codes
	Classical 3-bit repetition code
	The existence of good classical codes in brief
	Shor's 9-qubit quantum error-correcting code
	3-qubit code that protects against one TEXT error
	3-qubit code that protects against one TEXT error
	9-qubit code that protects against one Pauli error

	Quantum error models
	Redundancy vs. cloning

	Calderbank-Shor-Steane codes
	Classical linear codes
	Dual of a linear code
	Generator matrix and parity check matrix
	Error-correcting via parity-check matrix

	TEXT revisited
	CSS codes
	CSS encoding
	CSS error-correcting
	CSS code summary

	Very brief remarks about fault-tolerance
	Nonlocality
	Entanglement and signalling
	GHZ game
	Is there a perfect strategy for GHZ?
	Cheating by communicating
	Enforcing no communication
	The ``mystery" explained
	Is the entangled strategy communicating?
	GHZ conclusions

	Magic square game
	Are nonlocal games useful?

	Bell/CHSH inequality
	Fresh randomness vs. stale randomness
	Predetermined measurement outcomes of a qubit?
	CHSH inequality
	Violating the CHSH inequality
	Bell/CHSH inequality as a nonlocal game

