Assignment 3

Due: 11:59pm, October 9, 2025

1. A query problem for a black-box function acting on qutrits [15 points].

Suppose that $f: \mathbb{Z}_3 \to \mathbb{Z}_3$ takes on the value 1 for exactly one element of \mathbb{Z}_3 , and 0 for the other two elements (and never takes the value 2). There are three possibilities:

x	$f_0(x)$
0	1
1	0
2	0

x	$f_1(x)$
0	0
1	1
2	0

x	$f_2(x)$
0	0
1	0
2	1

Suppose you're given a black-box unitary that, for all $a, b \in \mathbb{Z}$, performs the mapping

$$|a\rangle|b\rangle \to |a\rangle|b + f(a) \bmod 3\rangle,$$
 (1)

where $f: \mathbb{Z}_3 \to \mathbb{Z}_3$ is one of the above three functions, and your goal is to determine whether f is f_0 , f_1 , or f_2 . Give a quantum algorithm that solves this problem with a single f-query.

(Hint: consider using the Fourier transform F_3 and its inverse F_3^* as part of your solution.) Also, remember that the inner product of $v, w \in \mathbb{C}^3$ is $\overline{v_1}w_1 + \overline{v_2}w_2 + \overline{v_3}w_3$.)

2. Control-target inversion for mod m registers [15 points]. Consider a scenario where the registers are m-dimensional ($m \ge 2$). Let the computational basis states be $|0\rangle, |1\rangle, \ldots, |m-1\rangle$. Define the two-register addition (mod m) gate as the unitary operation that acts on the computational basis states as

$$|a\rangle$$
 $|a\rangle$ $|b\rangle$ $|b+a \mod m\rangle$

(where $a, b \in \mathbb{Z}_m$). In the above circuit diagram, each wire represents an m-dimensional system (a qubit in the special case where m = 2).

(a) [9 points] Prove that, for every $m \geq 2$, the following circuit equivalence holds:

$$\begin{array}{cccc}
 & F_m & F_m \\
 & F_m & F_m
\end{array}$$

where F_m is the $m \times m$ Fourier transform.

(b) [6 points] Consider the following circuit diagram where the F_m and F_m^* are arranged in a slightly different way:

Give a simple expression for what the circuit does to computational basis states $|a\rangle|b\rangle$ (for $a,b\in\mathbb{Z}_m$). There is a very simple expression.

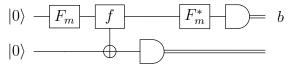
3. A d=1 case of the Simon mod m problem [15 points].

Let $f: \mathbb{Z}_m \to \mathbb{Z}_m$ have the property that there exists an r that is a divisor of m, such that f(a) = f(b) if and only if a - b is a multiple of r.

(a) [5 points] Prove that, for any $a \in \mathbb{Z}_m$, the set of preimages of f(a) is precisely

$${a, a+r, a+2r, \dots, a+(\frac{m}{r}-1)r}.$$
 (2)

(b) [10 points] Consider this quantum circuit (acting on two m-dimensional registers):



Show that the outcome of the top measurement is a uniformly-distributed random element of the set $\{b \in \mathbb{Z}_m : \text{such that } r \cdot b = 0\}$ (with mod m arithmetic in \mathbb{Z}_m).

The analysis here is similar to that in Section 22.1 of the posted Lecture Notes (Sept. 29 or later). This is a d=1 case; whereas the lecture notes analyze a d=2 case. You can use the notes as a guide; however, some of the details are different, and your analysis should be fully self-contained. You may assume Eq. (205) in Exercise 21.1 without proof.

4. A simple variant of the phase estimation problem [15 points].

Suppose that you're given a two-qubit gate that is a controlled-U gate, for some unknown one-qubit unitary U. You are given this gate as a black box and you are also given a qubit whose state is *promised* to be an eigenvector of U, with eigenvalue either $\lambda_1 = e^{2\pi i/3}$ or $\lambda_2 = e^{4\pi i/3}$ (you don't know which case it is). Your goal is to determine whether the eigenvalue is λ_1 or λ_2 .

Show how this can be accomplished exactly (with success probability 1) with two queries to the controlled-U gate. Of course, you may also use other gates of your choosing (that are independent of U and the state of the qubit, which you do not know).

5. (This is an optional question for bonus credit) Factorizing certain two-variable polynomials [8 points; 4 each].

Let m be an integer such that $m \geq 2$. Let $a, b \in \mathbb{Z}_m$ and define $f : \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m$ as

$$f(x,y) = (x-a)(y-b) \bmod m,$$
(3)

for all $x, y \in \mathbb{Z}_m$.

Suppose that you are given access to a black-box that, on input (x, y), produces f(x, y) as output, but you do not know what the constants a and b are. Your goal is to determine a and b exactly (meaning with success probability 1).

Give a quantum algorithm that solves this problem with one f-query. The f-query is a unitary operation that maps basis states $|x,y\rangle|z\rangle$ to $|x,y\rangle|z+f(x,y)$ mod $m\rangle$, for all $x,y,z\in\mathbb{Z}_m$. Explain why your algorithm works.

Note: There is a solution that can be clearly explained in under one page. If you submit a solution to this question then it should be clearly explained and not exceed two pages.