Spaces of *n*-tuples and their subspaces

The linear subspaces of a vector space have a regular structure. There purpose of this note is to show some irregularities that can arise with the analogues of linear subspaces of \mathbb{Z}_m^n when m is composite. We begin by reviewing the regularity in two cases of vector spaces and then exhibit the irregularities in the case of \mathbb{Z}_m^n .

1 The space of *n*-tuples over \mathbb{R}

Consider the space of all 3-tuples over \mathbb{R} , which is denoted as \mathbb{R}^3 . A linear subspace of this is a subset that closed under taking linear combinations. In other words, a subspace is a subset $S \subseteq \mathbb{R}^3$ such that, for any $v_1, \ldots, v_k \in S$ and any scalars $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$, the linear combination $\lambda_1 v_1 + \cdots + \lambda_k v_k$ is also contained in S.

Since \mathbb{R}^3 is a *vector space* over the field \mathbb{R} , *all* of its linear subspaces are of one of these forms:

- 0-dimensional, if $S = \{0\}$.
- 1-dimensional, if $S = \operatorname{span}(v) = \{\lambda v : \text{ for all } \lambda \in \mathbb{R}\}$, for some non-zero $v \in \mathbb{R}^3$.
- 2-dimensional, if $S = \text{span}(v_1, v_2) = \{\lambda_1 v_1 + \lambda_2 v_2 : \text{for all } \lambda_1, \lambda_2 \in \mathbb{R}\}$, for some linearly independent $v_1, v_2 \in \mathbb{R}^3$.
- 3-dimensional, if $S = \mathbb{R}^3$.

2 The space of *n*-tuples over \mathbb{Z}_p , when *p* is prime

When the modulus is prime, \mathbb{Z}_p is a field, and the space of *n*-tuples is also a vector space. The linear subspaces have a similar regular form. For example, for the space of all 3-tuples over \mathbb{Z}_p (denoted as \mathbb{Z}_n^3), all of its linear subspaces are of one of these forms:

- 0-dimensional, if $S = \{0\}$.
- 1-dimensional, if $S = \text{span}(v) = \{\lambda v : \text{for all } \lambda \in \mathbb{Z}_p\}$, for a non-zero $v \in \mathbb{Z}_p^3$.
- 2-dimensional, if $S = \text{span}(v_1, v_2) = \{\lambda_1 v_1 + \lambda_2 v_2 : \text{for all } \lambda_1, \lambda_2 \in \mathbb{Z}_p\}$, for linearly independent $v_1, v_2 \in \mathbb{Z}_p^3$.
- 3-dimensional, if $S = \mathbb{Z}_p^3$.

Moreover, every linear subspace of dimension d has exactly p^d elements in it.

3 The space of *n*-tuples over \mathbb{Z}_m , when *m* is composite

When the modulus m is composite, \mathbb{Z}_m is not a field and the space of n-tuples is technically not a vector space. We can still consider linear subspaces (subsets that are closed under linear combinations over \mathbb{Z}_m); however, these subspaces no longer have the regular form that arises in vector spaces.

As an illustrative example, consider the case of \mathbb{Z}_6^2 (2-tuples over \mathbb{Z}_6). Each of the following subsets is certainly a subspace

$$\operatorname{span}\{(1,0)\} = \{(0,0), (1,0), (2,0), (3,0), (4,0), (5,0)\} \tag{1}$$

$$span\{(0,1)\} = \{(0,0), (0,1), (0,2), (0,3), (0,4), (0,5)\}$$
(2)

$$span\{(1,1)\} = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\}$$
(3)

$$\operatorname{span}\{(2,0)\} = \{(0,0), (2,0), (4,0)\} \tag{4}$$

$$span\{(3,0)\} = \{(0,0), (3,0)\}$$
(5)

but notice that the sets are not all the same size! So if we think of them as 1-dimensional subspaces then the property that all 1-dimensional spaces have the same size does not hold.

Furthermore, notice that the set

$$\operatorname{span}\{(2,0), (0,3)\} = \{(0,0), (2,0), (4,0), (0,3), (2,3), (4,3)\} \tag{6}$$

is the same as the set

$$span\{(2,3)\} = \{(0,0), (2,3), (4,0), (0,3), (2,0), (4,3)\}.$$
(7)

So the same linear subspace can be expressed either as the span of two independent vectors or the span of just one single vector. Therefore, the notion of *dimension* is not clearly defined.