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Supplementary to Lecture 11

Richard Cleve

In Lecture 11, there is a step where it is claimed that the mapping

|x, b〉 "→ |x, axb mod m〉 (1)

can be computed with O(n2 log n) elementary gates. The justification is that there is a
classical algorithm for efficently computing axb mod m. But there is a loose end.

Based on Lecture 5 (slides 10, 12) and Lecture 8 (slides 15, 16), what we can efficiently
compute is the mapping

|x, b, c〉 "→ |x, b, (axb mod m)⊕ c〉 (2)

But the mappings in Eqns. (1) and (2) are not the same.

There are two remedies.

Bypassing

Instead of computing mapping (1) with target state |x〉|00 . . . 01〉, we can compute mapping (2)
with target state |x〉|00 . . . 01〉|00 . . . 00〉. Note that, for the phase estimation circuit, the first
and third resisters are in exactly the same state in both cases (and the second register is in a
fixed state so it can be ignored).

This makes the order-finding algorithm work, but then the actual circuit is slightly different
from the one in the lecture notes.

Actually compute the multiplicity-controlled-U

This can be done and enables us to use the circuit in the lecture notes. But it needs an
additional idea:

Suppose that f : {0, 1}n → {0, 1}n is a bijection and there is an efficient classical
algorithm for computing f and there there is also an efficient classical algorithm
for computing f−1. Then there is an efficient quantum circuit that computes the
mapping |x〉 "→ |f(z)〉. The method actually uses an ancilla, so it really computes
|x〉|00 . . . 0〉 "→ |f(z)〉|00 . . . 0〉 (but that’s OK).

This result (which is not proven here) can be applied to efficiently compute the mapping (1).
The idea is to set f(x, b) = (x, axb mod m) (which is a bijection) and note that f−1(x, b) =
(x, a−xb mod m). Both f and f−1 can be computed efficiently by classical algorithms. So this
fits the above framework.
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