W \;’\;AV_IEESR'TIIC;E) QIC 710/ CS 768 /PH 767 / CO 681 /AM 871 / PM 871 Fall 2020
&

Introduction to
Quantum Information Processing

Richard Cleve

Institute for Quantum Computing
and
Cheriton School of Computer Science

Lecture 8

The discrete log problem

Topics included: the definition of the discrete log
problem and an efficient quantum algorithm for it

Preliminaries: Loy and Z;‘,

For any prime p, we define two sets: Z,, = {0,1,2,...,p—1}and Z, = {1,2,...,p — 1}

It's natural to perform mod p arithmetic on these sets:
* 1y is a field with respect to addition and multiplication modulo p

* 1y is a group with respect to multiplication modulo p

the set of exponents is
4}/{0, 1,2,..p—2}="7

A generator of Z;, is g € Z;, such that Z;, = { g°, g*, g°, ..., gP~* p-1

and gxgy — gx+y mod p—1
Examples: forp = 7, we have Z7 = {1,2,3,4,5, 6}

« 2 is not a generator of Z5 because {29, 21,22,23,24,2°} ={1,2,4,1,2,4} = {1, 2,4}

« 3 is a generator of Z5 because {3°,31,32,33,34,3°} ={1,3,2,6,4, 5}

Also, for arbitrary m (not necessarily prime), Z,,, = {0,1,2,...,m — 1}

Richard Cleve 2020

Discrete log & exp problem

Relative to a prime modulus p, for a generator g € Z,,, we define two functions/problems:

Discrete exponential function Discrete exp problem
expg * Ly-1 = Ly is defined as |==p input: p (n-bit prime), g (generator of Zy,), r € Z,_,
expy(r) = g" (modulo p) output: s = g~

Classical gate cost is 0(n?logn)

Discrete logarithm function Discrete log problem (DLP)
logy : Zy = Ly is definedas = input: p (n-bit prime), g (generator of Z;), s € Z;,
log,(s) =rsuchthat g" =s output: r € Z,,_; such that g" = s

No efficient classical algorithm for DLP is known (and
it's presumed hardness is the basis of cryptosystems)

Shor’s quantum algorithm solves this at cost 0(n?logn)

Discrete log and Simon

DLP input: p (prime), g (generator of Z,), s € Z, output: » = log,(s)

Shor’s clever idea: define f:Z,_1X Z,,_y - Z, as f(ay,a;) = g**s~*2 mod p

When is f(a;,a,) = f(by, by)?

Theorem: f(ay,a;) = f(by, by) ifand only if (ay, a;) — (by, by) = k(r,1) for some k € Z,,_,

Simon’s property is like the modulo 2 case of this in n dimensions:
f(a) = f(b) ifand only if a®b € {0™, r} \
/ k(Tl, ...,T'n) fork € ZZ

(al, ver an) — (bll ver) bn) mod 2

Proof of the theorem

DLP input: p (prime), g (generator of Zy), S € Z, output: r = log,(s)

Shor’s clever idea: define f:Z,_1X Z,,_y - Z, as f(ay,a;) = g**s~*2 mod p

When is f(a;,a,) = f(by, by)?

Theorem: f(a,,a;) = f(by, b,) ifand only if (a;,a,) — (b1, by) = k(r,1) for some k € Z,,_,

Proof: (r, 1)

Since s = g", we have s*2 = g"% and f(aq,a,) = gHs %2 = gh1g™"% = g1
Therefore, f(aq,a,) = f(by, b,) iffa; —ra, = by —rb, (modp — 1)
iff (ay,az) - (1,—7) = (by,by) - (1,-7) 1,-r)
iff ((al, a,) — (by,b,)) - (1,—1) = 0 <—"“orthogonal” to (1, —7)
iff (aq,a,) — (bq, b,) is a multiple of (r, 1)

(r1)-1,-r)=0

Simon mod m for f: (Z,,)¢ - T

Definition: a function f: (Z,,)¢ — T is m-to-1 if, for all a € (Z,,,)%,
the set of points in (Z,,,)¢ that f maps to f(a) has size m

colliding sets: subsets of (Z,,)? of size m on which f is constant

Simon mod m property

f:(Z,)% - T is m-to-1 and there exists r € (Z,,)¢

for which every colliding set is of the form:
{a,a+71,a+2r,..,a+ (m—1)r}for some a € (Z,,)*

{fa+kr:keZ,}
{kr : k € Z,,}

L

Equivalent to: f(a) = f(b) iff a — b is a multiple of r

- hematic for (Z,,)?
Simon’s problem schematic for (Zp,)

f is the special case wherem =2 andd =n

Shor’s function in DLP
f is special case where m=p —1landd = 2

Simon’s problem mod m

Simon mod m property

f:(Z,)% - T is m-to-1 and there exists r € (Z,,)¢

for which every colliding set is of the form:
{a,a+7,a+2r,..,a+ (m—1)r}for some a € (Z,,)*

{fa+kr:keZ,}
{kr : k € Z,,}

L

schematic for (Z,,)?

Querles: |a.) 1) ~ each register is
. ’ - m-dimensional

|aq) lag) (not just qubits)

) b+ f(a)) } |T|-dimensional

give T an additive group

, structure (e.g. Z7))
Goal: to determine r

Simon mod m algorithm (overview)

Recall that Simon’s algorithm is based on:

|0) D

. random b € {0,1}"
| : hthath-r =0
0) S such tha r =

|0) D

. ™

: Y

|0) D

H has a natural m-dimensional analogue:

r 1 1 1 1
) 1) w? e @M1
Fm = \/—m 1 (1)2 w4 wz(m_l)
[1 oM 1 p2m-1 . ,m-1)?

where w = e2™/™ (Fourier transform)

Richard Cleve 2020

For Simon mod m, we’ll try this:

10) £

10) —dF
|0)

We'll see that the output is similar

random b € (Z,,,)¢
suchthatb-r =0

md-1 elements of (Z,,)?
are “orthogonal’tor /| - N-

Exercise: prove that F,, is unitary

Richard Cleve 2020

-1

1

1
1

w
(}
. w
m/m ’(,l)m _ 1
° wm—l
L)
wm—z
1 1
W w?
w? w?
a)m—l wz(m—l)

Fourier transform

Primitive mt" root of unity: v = ¢?7/™

1

wm—l

wz(m—l)

a)(nl._l)z _

+ 0w + w?
I

_|_3

I

+ o™ +
* — 1

Fm_m

+ + o™t =0
+ + w*m D =0

Exercise:
+ + @3m-1 =

prove these

1 1 1
a)_l (1)_2 a)—m—l
w2 w4 w—2(m-1)

Fourier transform

1 1 1
1 w w?
E, = \/im 1 a).z w*

Forall a € Z,,

1
Fala) = > w®|b)

bEZLy,

1
Fala) = > @™ |b)

bEL,

Richard Cleve 2020

1 1 1 1
wm—l) 1 (1)_2 w—m—l
wz(m—l) FT;EL = |1 (1)_4 w—z(m—l)
a)(m—l)z | 1 - Mm1D ,H-2m-1 a)—(m—1)2

Forall (a,,a,) € Z,;,X Zyy

dot product
(al, az) ° (bl, bz) = aq bl + a, b2 mOdm

Fn®Fnlas, az) =) @by, by)

beZ2,

Fn®Fylay, az) = Z w~%P|by, b,)

bEeZZ,

10

Simon mod m algorithm

| N =1
Let f: (Z,,)® — T satisfy the 0) = — D=
Simon mod m condition 0) —fE 1+ —e D=
(for simplicity, set d = 2) 0) : D : :
(1 o &6 o6
Ton
(ot KEE 0) |ualo)

9 Z lay,az)|f (aq, az))

(alﬁaZ)EZ‘lz’n

i

@) uniform superposition over a random colliding set:

> 1@y, @)+,)

KEZq,

colliding sets of f

= |lay,az) + |(aq, az)+(ry, 12)) + |(aqg, az)+2(rq, 12)) + - + |(ag, az)+(m — 1) (1, 12))

11

® Applying F;,QF;,

Ey ®F,, applied to the superposition of a random colliding set is:

Fnzw&(Z |<a1,a2>+k<r1,rz>>> =) Fa®Fil(as, a)+k(,m)

KEZq, KEZq,

-). (2 =@ by, b2>>

k€Zm \bEZZ,

- Z (Z WP P by, b2)>

k€Zm \bEZZ,

) w‘“"’(Z w"‘“"”) by, by)
beZZ, k€Zm

0 if (by,by) - (ry,12) #0
1/m If (bll bZ) ’ (rllTZ) =0

Measuring this state: Pr[(b,, b,)] = {

(ry,12)

m elements of Z,,XZ,,
are “orthogonal” to (r1,1)

Therefore, the measured result is a random (b4, b,) such that (by,b,) - (ry,75) =0

12

Summary of Simon mod m algorithm

We've shown that if f: (Z,,)® — T has the Simon mod m property then

10) F,

10) —dF
10)

F*
7D random b € (Z,,)¢
suchthatb-r =0

a-1

m2~1 elements of (Z,,)¢
that are “orthogonal” to r

From repeated runs of this, there are various ways of determining r

13

Discrete log < Simon mod m

Discrete log problem Back-box problem
input: n-bit prime p and g, s € Z, input: black-box for f:Z5_; — Z,
output: r € Z,,_; such that g" = s such that f(a,,a,) = g*s “mod p

. r _—
We can implement the query algorithm output: r € Z,_; such that g" = s

with qubits and 1- and 2-qubit gates
Quantum query algorithm

(n qubits) 100-0) =|F,,_, Fi_y %E b4 (in binary) (Zp-1) [0) =F,_4 FS_l—D= by
(nqubits) [00--0) =F,,_, f F_y QE b, (in binary) (Zp-1) [0) =—E,_4 F5—1—D= b,
(n qubits) [00---0) = (Z,) 10) D_

0(n’logn) elementary gates

That's the basic idea behind Shor’s algorithm for the discrete log problem

How do we implement the f-query and F,,_;?

14

How not to simulate an f-query

If £:{0,1}" — {0,1}"2 is efficiently computable by a classical circuit, how do we
efficiently simulate an f-query |a)|b) — |a)|b®f (a)) for quantum algorithms?

Quantum circuits can simulate classical circuits: |a)|00...0)|b) — |a)|g(a))|bDf (a))
(where the intermediate register is from the Toffoli gates)

Example: |[a,) —9¢—o la;)
laz) —% I |laz) input [a)
las) * las)
|0) D X :I |- (a1 A ay))
|0) D X |- (a; A az)) « .
0) O-[X [~(az A as)) garbage” |g(a))
|0) s> i |(—|(a1 A az)) A (—I(a1 A a3))>
|b) S—X|— |b ® MAJ(ay, ay, az)) output [b®f (a))

Is this OK for an f-query? | No, because Za“’b |a)| b f (a))|g(a)) + (Z g b |a)|beaf(a))> lg(a))

a,b a,b
15

How to simulate an f-query

compute f copy un-compute f

la;) —o—o *—* lai)

laz) —o ? ¢ * |az)

las) i ®) G ¢ laz)

|0) Y X—e — X Y 10)

|0) D X o o— X D 10)

10) D— X XH® |0)

|0) ¥ i } Y |0)

10) > XTX <> 0)

|b) D 1b®f (a))

This is a good f-query because z Ag,p |a)| DS (a))[00...0) = (Z Og,b Ia)lb@f(a))> 100...0)

a,b a,b

More details of DLP algorithm

Calculating r

We obtain a random (b4, b,) such that
(by,b,) - (r,1)) =0modp —1

How do we calculate r from (b4, b,)?

We can solve forr = —b,/b; modp — 1,
if b, has an inverse in Z,,_;

This is the case ifandonly if b and p — 1
are relatively prime (gcd(b;,p — 1) = 1)

The process can be repeated until such a
b, arises, which occurs with good enough
frequency (further details omitted)

Implementing the Fourier transform
Efficiently implementing F,,_; is tricky

Instead, Shor implemented F,n
for the power of 2 nearesttop — 1

With careful error-analysis it can
be shown that this is good enough
in terms of error probability

Next lecture we’ll see how to efficiently implement F,n

17

