
Richard Cleve
Institute for Quantum Computing

and
Cheriton School of Computer Science

Richard Cleve 2020

QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 / PM 871 Fall 2020

Introduction to
Quantum Information Processing

1

Richard Cleve 2020

Lecture 8

The discrete log problem

Topics included: the definition of the discrete log
problem and an efficient quantum algorithm for it

Preliminaries: ℤ! and ℤ!∗

2

Richard Cleve 2020

Examples: for 𝑝 = 7, we have ℤ!∗ = 1, 2, 3, 4, 5, 6
• 2 is not a generator of ℤ!∗ because 20, 21, 22, 23, 24, 25 = 1, 2, 4, 1, 2, 4 = 1, 2, 4
• 3 is a generator of ℤ!∗ because 30, 31, 32, 33, 34, 35 = 1, 3, 2, 6, 4, 5

For any prime 𝑝, we define two sets: ℤ# = {0, 1, 2, … , 𝑝 − 1} and ℤ#∗ = {1, 2, … , 𝑝 − 1}

It’s natural to perform mod 𝑝 arithmetic on these sets:
• ℤ# is a field with respect to addition and multiplication modulo 𝑝
• ℤ#∗ is a group with respect to multiplication modulo 𝑝

A generator of ℤ#∗ is 𝑔 ∈ ℤ#∗ such that ℤ#∗ = 𝑔$, 𝑔%, 𝑔&, … , 𝑔#'&
the set of exponents is
0, 1, 2, … , 𝑝 − 2 = ℤ#'%

and 𝑔(𝑔) = 𝑔(*)+,- #'%

Also, for arbitrary 𝑚 (not necessarily prime), ℤ! = {0, 1, 2, … ,𝑚 − 1}

Discrete log & exp problem

3

Richard Cleve 2020

Discrete exp problem
input: 𝑝 (𝑛-bit prime), 𝑔 (generator of ℤ#∗), 𝑟 ∈ ℤ#'%
output: 𝑠 = 𝑔 𝑟

No efficient classical algorithm for DLP is known (and
it’s presumed hardness is the basis of cryptosystems)

Discrete log problem (DLP)
input: 𝑝 (𝑛-bit prime), 𝑔 (generator of ℤ#∗), 𝑠 ∈ ℤ(∗

output: 𝑟 ∈ ℤ#'% such that 𝑔. = 𝑠

Discrete logarithm function
log/ ∶ ℤ#∗ → ℤ#'% is defined as
log/ 𝑠 = 𝑟 such that 𝑔. = 𝑠

Discrete exponential function
exp/ ∶ ℤ#'% → ℤ#∗ is defined as
exp/ 𝑟 = 𝑔. (modulo 𝑝)

Relative to a prime modulus 𝑝, for a generator 𝑔 ∈ ℤ#∗ , we define two functions/problems:

Shor’s quantum algorithm solves this at cost 𝑂(𝑛&log 𝑛)

Classical gate cost is 𝑂 𝑛& log 𝑛

Discrete log and Simon

4

Richard Cleve 2020

When is 𝑓 𝑎%, 𝑎& = 𝑓 𝑏%, 𝑏& ?

Shor’s clever idea: define 𝑓: ℤ#'%× ℤ#'% → ℤ#∗ as 𝑓 𝑎%, 𝑎& = 𝑔0"𝑠'0# mod 𝑝

Theorem: 𝑓 𝑎%, 𝑎& = 𝑓 𝑏%, 𝑏& if and only if 𝑎%, 𝑎& − 𝑏%, 𝑏& = 𝑘 𝑟, 1 for some 𝑘 ∈ ℤ#'%

Simon’s property is like the modulo 2 case of this in 𝑛 dimensions:

𝑟, 1

DLP input: 𝑝 (prime), 𝑔 (generator of ℤ#∗), 𝑠 ∈ ℤ#∗ output: 𝑟 = log/ 𝑠

𝑎%, … , 𝑎1 − 𝑏%, … , 𝑏1 mod 2
𝑘 𝑟%, … , 𝑟1 for 𝑘 ∈ ℤ&

𝑓 𝑎 = 𝑓 𝑏 if and only if 𝑎⨁𝑏 ∈ 01, 𝑟

Proof of the theorem

5

Richard Cleve 2020

When is 𝑓 𝑎%, 𝑎& = 𝑓 𝑏%, 𝑏& ?

Shor’s clever idea: define 𝑓: ℤ#'%× ℤ#'% → ℤ#∗ as 𝑓 𝑎%, 𝑎& = 𝑔0"𝑠'0# mod 𝑝

Theorem: 𝑓 𝑎%, 𝑎& = 𝑓 𝑏%, 𝑏& if and only if 𝑎%, 𝑎& − 𝑏%, 𝑏& = 𝑘 𝑟, 1 for some 𝑘 ∈ ℤ#'%

DLP input: 𝑝 (prime), 𝑔 (generator of ℤ#∗), 𝑠 ∈ ℤ#∗ output: 𝑟 = log/ 𝑠

Proof:

Therefore, 𝑓 𝑎%, 𝑎& = 𝑓 𝑏%, 𝑏& iff 𝑎% − 𝑟𝑎& = 𝑏% − 𝑟𝑏& (mod 𝑝 − 1)

iff 𝑎%, 𝑎& − 𝑏%, 𝑏& J 1, −𝑟 = 0 “orthogonal” to 1, −𝑟

iff 𝑎%, 𝑎& − 𝑏%, 𝑏& is a multiple of 𝑟, 1

Since 𝑠 = 𝑔., we have 𝑠0# = 𝑔.0# and 𝑓 𝑎%, 𝑎& = 𝑔0"𝑠'0# = 𝑔0"𝑔'.0# = 𝑔0"'.0#
𝑟, 1

1, −𝑟iff 𝑎%, 𝑎& J 1, −𝑟 = 𝑏%, 𝑏& J 1, −𝑟

𝑟, 1 % 1, −𝑟 = 0

Simon mod m for 𝒇: ℤ𝒎 𝒅 → 𝑻

6

Richard Cleve 2020

Definition: a function 𝑓: ℤ2 3 → 𝑇 is 𝒎-to-1 if, for all 𝑎 ∈ ℤ2 3,
the set of points in ℤ2 3 that 𝑓 maps to 𝑓(𝑎) has size 𝑚

colliding sets: subsets of ℤ2 3 of size 𝑚 on which 𝑓 is constant

Simon’s problem
𝑓 is the special case where 𝑚 = 2 and 𝑑 = 𝑛

Shor’s function in DLP
𝑓 is special case where 𝑚 = 𝑝 − 1 and 𝑑 = 2

schematic for ℤ* +

𝑘𝑟 ∶ 𝑘 ∈ ℤ*
𝑎 + 𝑘𝑟 ∶ 𝑘 ∈ ℤ*Simon mod 𝒎 property

𝑓: ℤ2 3 → 𝑇 is 𝑚-to-1 and there exists 𝑟 ∈ ℤ2 3

for which every colliding set is of the form:
{𝑎, 𝑎 + 𝑟, 𝑎 + 2𝑟, … , 𝑎 + (𝑚 − 1)𝑟} for some 𝑎 ∈ ℤ2 3

Equivalent to: 𝑓(𝑎) = 𝑓(𝑏) iff 𝑎 − 𝑏 is a multiple of 𝑟

Simon’s problem mod m

7

Richard Cleve 2020

schematic for ℤ* +

𝑘𝑟 ∶ 𝑘 ∈ ℤ*
𝑎 + 𝑘𝑟 ∶ 𝑘 ∈ ℤ*Simon mod 𝒎 property

𝑓: ℤ2 3 → 𝑇 is 𝑚-to-1 and there exists 𝑟 ∈ ℤ2 3

for which every colliding set is of the form:
{𝑎, 𝑎 + 𝑟, 𝑎 + 2𝑟, … , 𝑎 + (𝑚 − 1)𝑟} for some 𝑎 ∈ ℤ2 3

give 𝑇 an additive group
structure (e.g. ℤ|-|)

each register is
𝑚-dimensional
(not just qubits)

|𝑇|-dimensional

Queries:
⋮

|𝑎3⟩

|𝑎%⟩

𝑓
|𝑏⟩

⋮
|𝑎3⟩

|𝑎%⟩

|𝑏 + 𝑓 𝑎 ⟩

Goal: to determine 𝑟

Simon mod 𝒎 algorithm (overview)

8

Richard Cleve 2020

𝐻
𝐻
𝐻| ⟩0

⋮
| ⟩0

| ⟩0

⋮
| ⟩0

𝑓
𝐻
𝐻
𝐻

𝐻 has a natural 𝑚-dimensional analogue:

⋮
|0⟩

|0⟩

𝑓
|0⟩

𝐹!∗

𝐹!∗

𝐹!∗

𝐹!
𝐹!
𝐹!

random 𝑏 ∈ 0,1 1

such that 𝑏 J 𝑟 = 0

Recall that Simon’s algorithm is based on: For Simon mod 𝑚, we’ll try this:

where 𝜔 = 𝑒&45/2 (Fourier transform)

𝑚%&' elements of ℤ! %

are “orthogonal” to 𝑟

𝑟

𝐹2 = '
!

1 1 1 ⋯ 1
1 𝜔 𝜔(⋯ 𝜔!&'
1 𝜔(𝜔) ⋯ 𝜔(!&'
⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔!&' 𝜔(!&' ⋯ 𝜔 !&' !

We’ll see that the output is similar
random 𝑏 ∈ ℤ2 3

such that 𝑏 J 𝑟 = 0

𝑓

Fourier transform

9

Richard Cleve 2020

𝜔

𝜔*./

𝜔0

𝜔1

𝐹2 = /
*

1 1 1 ⋯ 1
1 𝜔 𝜔+ ⋯ 𝜔*./
1 𝜔+ 𝜔2 ⋯ 𝜔+ *./

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔*./ 𝜔+ *./ ⋯ 𝜔 *./ !

Primitive 𝒎th root of unity: 𝜔 = 𝑒+34/*

Fourier transform

Exercise:
prove these

𝜔+

𝜔2

𝜔6 𝜔*.+

𝜔7 𝜔* = 1 = 𝜔8

⋰

1 + 𝜔 + 𝜔+ + ⋯ + 𝜔*./ = 0

1 + 𝜔+ + 𝜔2 + ⋯ + 𝜔+ *./ = 0

1 + 𝜔0 + 𝜔1 + ⋯ + 𝜔0 *./ = 0

1 + 𝜔*./ + 𝜔+ *./ + ⋯ + 𝜔 *./ ! = 0

1 + 𝜔* + 𝜔* + ⋯ + 𝜔* = 𝑚

Exercise: prove that 𝐹2 is unitary

𝐹2∗ =
/
*

1 1 1 ⋯ 1
1 𝜔./ 𝜔.+ ⋯ 𝜔.*./
1 𝜔.+ 𝜔.2 ⋯ 𝜔.+ *./

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔. *./ 𝜔.+ *./ ⋯ 𝜔. *./ !

⋮ ⋮ ⋮ ⋮ ⋮
2𝜋/𝑚

Fourier transform

10

Richard Cleve 2020

𝐹2⨂𝐹2|𝑎%, 𝑎&⟩ = X
7∈ℤ*#

𝜔0:7|𝑏%, 𝑏&⟩

For all 𝑎%, 𝑎& ∈ ℤ2× ℤ2

𝐹2∗⨂𝐹2∗ |𝑎%, 𝑎&⟩ = X
7∈ℤ*#

𝜔'0:7|𝑏%, 𝑏&⟩

𝐹2 = /
*

1 1 1 ⋯ 1
1 𝜔 𝜔+ ⋯ 𝜔*./
1 𝜔+ 𝜔2 ⋯ 𝜔+ *./

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔*./ 𝜔+ *./ ⋯ 𝜔 *./ !

𝐹2∗ =
/
*

1 1 1 ⋯ 1
1 𝜔./ 𝜔.+ ⋯ 𝜔.*./
1 𝜔.+ 𝜔.2 ⋯ 𝜔.+ *./

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔. *./ 𝜔.+ *./ ⋯ 𝜔. *./ !

dot product
𝑎", 𝑎# % 𝑏", 𝑏# = 𝑎" 𝑏" + 𝑎# 𝑏# mod 𝑚

𝐹2|𝑎⟩ =
1
𝑚

X
7∈ℤ*

𝜔07 |𝑏⟩

𝐹2∗ |𝑎⟩ =
1
𝑚

X
7∈ℤ*

𝜔'07 |𝑏⟩

For all 𝑎 ∈ ℤ2

❶ ❷ ❸

Simon mod 𝒎 algorithm

11

Richard Cleve 2020

|0⟩
|0⟩

𝑓
|0⟩

𝐹!∗

𝐹!∗
𝐹!
𝐹!

(for simplicity, set 𝑑 = 2)

9
(:&,:!)∈ℤ'!

|𝑎/,𝑎+⟩|0⟩❶

9
(:&,:!)∈ℤ'!

|𝑎/,𝑎+⟩|𝑓 𝑎/, 𝑎+ ⟩❷

colliding sets of 𝑓

𝑎 + 𝑘𝑟
∶ 𝑘 ∈ ℤ*

Let 𝑓: ℤ2 3 → 𝑇 satisfy the
Simon mod 𝑚 condition

9
?∈ℤ'

| 𝑎/, 𝑎+ +𝑘 𝑟/, 𝑟+ ⟩

uniform superposition over a random colliding set:❸

= |𝑎',𝑎(⟩ + | 𝑎', 𝑎(+ 𝑟', 𝑟(⟩ + | 𝑎', 𝑎(+2 𝑟', 𝑟(⟩ + ⋯+ | 𝑎', 𝑎(+ 𝑚 − 1 𝑟', 𝑟(⟩

❹

❹ Applying 𝑭𝒎∗ ⨂𝑭𝒎∗

12

Richard Cleve 2020

𝐹2∗⨂𝐹2∗ applied to the superposition of a random colliding set is:

𝐹*∗⨂𝐹*∗ 9
?∈ℤ'

| 𝑎/, 𝑎+ +𝑘 𝑟/, 𝑟+ ⟩ = 9
?∈ℤ'

𝐹*∗⨂𝐹*∗ | 𝑎/, 𝑎+ +𝑘 𝑟/, 𝑟+ ⟩

= 9
?∈ℤ'

9
@∈ℤ'!

𝜔. :A?B C@ |𝑏/, 𝑏+⟩

= 9
?∈ℤ'

9
@∈ℤ'!

𝜔.:C@𝜔.? BC@ |𝑏/, 𝑏+⟩

= 9
@∈ℤ'!

𝜔.:C@ 9
?∈ℤ'

𝜔.? BC@ |𝑏/, 𝑏+⟩

Therefore, the measured result is a random 𝑏%, 𝑏& such that 𝑏%, 𝑏& J 𝑟%, 𝑟& = 0

𝑚 elements of ℤ!×ℤ!
are “orthogonal” to 𝑟', 𝑟(

𝑟', 𝑟(

= 0 if 𝑏/, 𝑏+ > 𝑟/, 𝑟+ ≠ 0
1/𝑚 if 𝑏/, 𝑏+ > 𝑟/, 𝑟+ = 0Measuring this state: Pr[(𝑏/, 𝑏+)] =

Summary of Simon mod 𝒎 algorithm

13

Richard Cleve 2020

⋮
|0⟩

|0⟩

𝑓
|0⟩

𝐹!∗

𝐹!∗

𝐹!∗

𝐹!
𝐹!
𝐹!

We’ve shown that if 𝑓: ℤ2 3 → 𝑇 has the Simon mod 𝑚 property then

𝑚%&' elements of ℤ! %

that are “orthogonal” to 𝑟

𝑟

From repeated runs of this, there are various ways of determining 𝑟

random 𝑏 ∈ ℤ2 3

such that 𝑏 J 𝑟 = 0

Discrete log ⟵ Simon mod 𝒎

14

Richard Cleve 2020

(𝑛 qubits)

(𝑛 qubits)

(𝑛 qubits)

𝑂(𝑛(log 𝑛) elementary gates

𝑏/ (in binary)

𝑏+ (in binary)

That’s the basic idea behind Shor’s algorithm for the discrete log problem

How do we implement the 𝑓-query and 𝐹#'%?

We can implement the query algorithm
with qubits and 1- and 2-qubit gates

Quantum query algorithm

|0⟩
|0⟩

𝑓
|0⟩

𝐹+&'
𝐹+&'

𝐹+&'∗

𝐹+&'∗

(ℤ+&')

(ℤ+&')

(ℤ+)

𝑏/
𝑏+

input: black-box for 𝑓: ℤ#'%& → ℤ#∗

such that 𝑓 𝑎%, 𝑎& = 𝑔0"𝑠'0#mod 𝑝

output: 𝑟 ∈ ℤ#'% such that 𝑔. = 𝑠

Back-box problem
input: 𝑛-bit prime 𝑝 and 𝑔, 𝑠 ∈ ℤ#∗

output: 𝑟 ∈ ℤ#'% such that 𝑔. = 𝑠

Discrete log problem

No, because 9
:,@

α:,@ |𝑎⟩|𝑏⨁𝑓 𝑎 ⟩|𝑔 𝑎 ⟩ 9
:,@

α:,@ |𝑎⟩|𝑏⨁𝑓(𝑎)⟩ |𝑔(𝑎)⟩

How not to simulate an 𝒇-query

15

Richard Cleve 2020

If 𝑓: 0,1 1" → 0,1 1# is efficiently computable by a classical circuit, how do we
efficiently simulate an 𝑓-query |𝑎⟩|𝑏⟩ ⟼ |𝑎⟩|𝑏⨁𝑓(𝑎)⟩ for quantum algorithms?

Quantum circuits can simulate classical circuits: |𝑎⟩|00…0⟩|𝑏⟩ ⟼ |𝑎⟩|𝑔(𝑎)⟩|𝑏⨁𝑓(𝑎)⟩
(where the intermediate register is from the Toffoli gates)

𝑋
𝑋
𝑋

𝑋

| ⟩𝑎'
| ⟩𝑎(
| ⟩𝑎,
| ⟩0
| ⟩0
| ⟩0
| ⟩0
| ⟩𝑏 | ⟩𝑏 ⨁MAJ(𝑎', 𝑎(, 𝑎,)

| ⟩𝑎'
| ⟩𝑎(
| ⟩𝑎,
| ⟩¬ 𝑎' ∧ 𝑎(

| B¬ 𝑎' ∧ 𝑎(∧ ¬ 𝑎' ∧ 𝑎,

| ⟩¬ 𝑎' ∧ 𝑎,
| ⟩¬ 𝑎(∧ 𝑎,

Example:

Is this OK for an 𝑓-query?

“garbage” |𝑔(𝑎)⟩

input |𝑎⟩

output |𝑏⨁𝑓(𝑎)⟩

≠

How to simulate an 𝒇-query

16

Richard Cleve 2020

𝑋
𝑋
𝑋

𝑋

| ⟩𝑎'
| ⟩𝑎(
| ⟩𝑎,
| ⟩0

| ⟩0

| ⟩0

| ⟩0

| ⟩0

𝑋
𝑋
𝑋

𝑋

| ⟩𝑎'
| ⟩𝑎(
| ⟩𝑎,
| ⟩0

| ⟩0

| ⟩0

| ⟩0

| ⟩0

| ⟩𝑏 | ⟩𝑏⨁𝑓(𝑎)

compute 𝑓 un-compute 𝑓copy

9
:,@

α:,@ |𝑎⟩|𝑏⨁𝑓(𝑎)⟩|00…0⟩ = 9
:,@

α:,@ |𝑎⟩|𝑏⨁𝑓(𝑎)⟩ |00…0⟩This is a good 𝑓-query because

More details of DLP algorithm

17

Richard Cleve 2020

We obtain a random 𝑏%, 𝑏& such that
𝑏%, 𝑏& J 𝑟, 1 ≡ 0 mod 𝑝 − 1

We can solve for 𝑟 = −𝑏&/𝑏% mod 𝑝 − 1,
if 𝑏% has an inverse in ℤ#'%

This is the case if and only if 𝑏% and 𝑝 − 1
are relatively prime (gcd(𝑏%, 𝑝 − 1) = 1)

The process can be repeated until such a
𝑏% arises, which occurs with good enough
frequency (further details omitted)

How do we calculate 𝑟 from 𝑏%, 𝑏& ?

Efficiently implementing 𝐹#'% is tricky

Instead, Shor implemented 𝐹&-
for the power of 2 nearest to 𝑝 − 1

With careful error-analysis it can
be shown that this is good enough
in terms of error probability

Next lecture we’ll see how to efficiently implement 𝐹&-

Calculating 𝑟 Implementing the Fourier transform

