Introduction to Quantum Information Processing (Fall 2021)

QIC710/CS768/CO681/PHYS767/AMATH871/PMATH871

Solutions to Sample Assignment A

1(a) What is the most general form of a strategy for this game? For each input received (0 or 1), there can be some probability distribution for the resulting guess. However, in the case of input 1 guessing I is *never* correct. Therefore, no generality is lost if we restrict our attention to strategies of this form (for some parameter $\epsilon \in [0, 1]$):

Strategy $B(\epsilon)$

if the bit received is 0 then randomly guess $\begin{cases} I & \text{with probability } 1 - \epsilon \\ II & \text{with probability } \epsilon \end{cases}$

if the bit received is 1 then guess II

(Any strategy that is not of this form can be improved by changing it to always guess II in the case of input 1.)

For set-up I, this strategy succeeds with probability $1 - \epsilon$. For set-up II, this strategy succeeds with probability $\frac{1}{2} + \frac{1}{2}\epsilon$. Therefore, the average-case success probability of strategy $B(\epsilon)$ is the average of these two success probabilities

$$\frac{1}{2}(1-\epsilon) + \frac{1}{2}(\frac{1}{2} + \frac{1}{2}\epsilon) = \frac{3}{4} - \frac{1}{2}\epsilon + \frac{1}{4}\epsilon \tag{1}$$

$$=\frac{3}{4}-\frac{1}{4}\epsilon.$$
 (2)

This is maximized when $\epsilon = 0$. Therefore, strategy B(0), which is the same as strategy A, achieves optimum average-case success probability.

Note: It was mentioned in class that, in the context of average-case success probability, we need only consider the four deterministic strategies and note that strategy A is the best among these. This is a consequence of a general result that's sometimes referred to as "Yao's Lemma". A solution along these lines would need to include a clear statement or reference to that lemma. Note that there is no such lemma for worst-case success probability; in fact, in part (b) the optimal strategy is *not* deterministic.

1(b) The highest possible worst-case success probability is $\frac{2}{3}$ (higher than what strategy A attains). To see why this is so, we refer to the strategies of the form $B(\epsilon)$ that we defined in part (a) (without loss of generality, we need only consider strategies of the form $B(\epsilon)$). The worst-case success probability of $B(\epsilon)$ is the minimum of the success probabilities of the two cases, which is

$$\min\left\{1-\epsilon, \frac{1}{2}+\frac{1}{2}\epsilon\right\}.$$
(3)

For what value of parameter ϵ is this maximized? Since $1 - \epsilon$ decreases as a function of ϵ and $\frac{1}{2} + \frac{1}{2}\epsilon$ increases as a function of ϵ , the expression is maximized at the value of ϵ where the expressions are equal

$$1 - \epsilon = \frac{1}{2} + \frac{1}{2}\epsilon,\tag{4}$$

which occurs when $\epsilon = \frac{1}{3}$. Therefore, worst-case success probability is maximized by strategy $B(\frac{1}{3})$ and is $\frac{2}{3}$.

2. If the rotation R_{θ} is applied then the two states become

$$R_{\theta}|0\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle \quad \text{vs.} \quad R_{\theta}|+\rangle = \cos(\theta + \frac{\pi}{4})|0\rangle + \sin(\theta + \frac{\pi}{4})|1\rangle. \tag{5}$$

Since $\theta \in [0, \pi/4]$, $R_{\theta}|0\rangle$ is closer to $|0\rangle$ than $|1\rangle$, and $R_{\theta}|+\rangle$ is closer to $|1\rangle$ than $|0\rangle$. Therefore, we can assume that: for measurement outcome 0 the guess is 0; and for outcome 1 the guess is + (e.g., it's easy to check that guessing + in case of outcome 0 would lead to a lower success probability).

The average-case success probability as a function of θ is

$$p(\theta) = \frac{1}{2} |\langle 0|R_{\theta}|0\rangle|^2 + \frac{1}{2} |\langle 1|R_{\theta}|+\rangle|^2 = \frac{1}{2} \cos^2(\theta) + \frac{1}{2} \sin^2(\theta + \frac{\pi}{4}).$$
(6)

For what $\theta \in [0, \pi/4]$ is this maximized? Since $p(\theta)$ is differentable, we can use calculus to determine where the maximum is. The derivative is

$$p'(\theta) = \cos(\theta)\sin(\theta) - \sin(\theta + \frac{\pi}{4})\cos(\theta + \frac{\pi}{4})$$
(7)

$$= \frac{1}{2}\sin(2\theta) - \frac{1}{2}\sin(2(\theta + \frac{\pi}{4})),$$
(8)

where we have used the formula $\sin(2x) = 2\sin(x)\cos(x)$ in Eq. (8).

The derivative is zero when

$$\sin(2\theta) = \sin(2(\theta + \frac{\pi}{4})). \tag{9}$$

Since $\theta = \theta + \frac{\pi}{4}$ cannot occur, the only way for Eq. (9) to be satisfied is if

$$2(\theta + \frac{\pi}{4}) = \pi - 2\theta \tag{10}$$

(using the fact that $\sin(x) = \sin(\pi - x)$). This occurs if and only if $\theta = \pi/8$. Therefore the optimal rotation angle $\theta \in [0, \frac{\pi}{4}]$ must be one of $0, \frac{\pi}{8}, \frac{\pi}{4}$. It's easy to check these three cases and $\theta = \frac{\pi}{8}$ is the optimum. For $\theta = \frac{\pi}{8}$, the average-case success probability is

$$p(\frac{\pi}{8}) = \frac{1}{2}\cos^2(\frac{\pi}{8}) + \frac{1}{2}\sin^2(\frac{\pi}{8} + \frac{\pi}{4})$$
(11)

$$=\cos^2(\frac{\pi}{8}).\tag{12}$$

Note: For this state distinguishing problem, $\cos^2(\frac{\pi}{8})$ is also the highest worst-case success probability.

3. Suppose that

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle)(\beta_0|0\rangle + \beta_1|1\rangle) = \alpha_0\beta_0|00\rangle + \alpha_0\beta_1|01\rangle + \alpha_1\beta_0|10\rangle + \alpha_1\beta_1|11\rangle.$$
(13)

We'll show that this results in a contradiction. Eq. (13) implies

$$\alpha_0 \beta_0 = \frac{1}{\sqrt{2}} \tag{14}$$

$$\alpha_0 \beta_1 = 0 \tag{15}$$

$$\alpha_1 \beta_0 = 0 \tag{16}$$

$$\alpha_1 \beta_1 = \frac{1}{\sqrt{2}}.\tag{17}$$

There is no solution to these equations because Eq. (15) implies that either $\alpha_0 = 0$ (which contradicts Eq. (14)) or $\beta_1 = 0$ (which contradicts Eq. (17)).