Assignment 6 Due: 11:59pm, November 2, 2021

1. Approximating unitary transformations [15 points; 5 each]. There are situations where it is easier to approximate a unitary transformation than to compute it exactly. For a vector $v = (v_0, \ldots, v_{m-1})$, let $||v|| = \sqrt{\sum_{j=0}^{m-1} |v_j|^2}$, which is the usual Euclidean length of v. For any $m \times m$ matrix M, define its (spectral) norm ||M|| as

$$||M|| = \max_{||v||=1} ||Mv||.$$

Define the distance between two $m \times m$ unitary matrices U_1 and U_2 as $||U_1 - U_2||$.

- (a) Show that $||A B|| \le ||A C|| + ||C B||$, for any three $m \times m$ matrices A, B, and C. (Thus, this distance measure satisfies the *triangle inequality*.)
- (b) Show that, for any any $m \times m$ matrix A and the $\ell \times \ell$ identity matrix I, $||A \otimes I|| = ||A||$.
- (c) Show that, for any two $m \times m$ unitary matrices U_1 and U_2 , and any matrix A, $||U_1AU_2|| = ||A||$.
- 2. Approximate Fourier transform [15 points]. In the video lectures (and lecture notes), we computed F_{2^n} by a quantum circuit of size $O(n^2)$. Here, we compute an approximation of F_{2^n} within ϵ by a quantum circuit of size $O(n \log(n/\epsilon))$.
 - (a) [5 points] Recall that our quantum circuits for F_{2^n} use controlled-phase gates, of the form

$$P_k = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi i/2^k} \end{bmatrix},$$

for values of k that range between 2 and n. Show that $||P_k - I|| \le 2\pi/2^k$, where I is the 4×4 identity matrix. (Thus, P_k gets very close to I when k increases.)

(b) [10 points] The idea behind the approximate circuit for F_{2^n} is to start with the $O(n^2)$ circuit and then remove some of its P_k gates. Removing a P_k gate makes the circuit smaller but also changes the unitary transformation (it is equivalent to changing the P_k gate to an I gate). From part (a) and the properties of our measure of distance between unitary transformations from the previous question, we can deduce that if k is large enough then removing a P_k gate changes the overall unitary transformation by only a small amount. Show how to use this approach to obtain a quantum circuit of size $O(n \log(n/\epsilon))$ that computes a unitary transformation \tilde{F}_{2^n} such that

$$||\tilde{F}_{2^n} - F_{2^n}|| \le \epsilon.$$

(Hint: Try removing all P_k gates where $k \geq t$, for some carefully chosen threshold t. The properties of our distance measure from the previous question should be useful for your analysis here.)