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1 Distance measures between states

This section is about distance measures between quantum states. We’ll see various

ways of quantifying how different two quantum states are, including the fidelity and

the trace distance. I’ll also show you the Holevo-Helstrom Theorem, which relates

trace distance to the operational problem of distinguishing between a pair of states

by a measurement.

Recall that we consider two quantum states to be indistinguishable if, for any

measurement procedure, the probability distribution of outcomes is identical between

the two states. For example, |0⟩ and −|0⟩ are indistinguishable. In [Part 2, section 1 ]

we saw different probabilistic mixtures that resulted in the same density matrix. In

all such cases, the two states are indistinguishable; we don’t even consider them to

be different states.

Definition 1.1 (distinguishable states). We say two states are distinguishable if

they’re not indistinguishable. In other words, if for some measurement procedure, the

outcome probabilities are different for the two states.

For example, the |0⟩ and the |+⟩ state are distinguishable. Note that our definition

of distinguishable does not require us to be able to perfectly tell the two states apart.

Another example is 1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1| and |+⟩⟨+|.

Definition 1.2 (perfectly distinguishable states). Define two states to be perfectly

distinguishable if there is a measurement procedure that perfectly tells them apart.

For example, |+⟩ and |−⟩ are perfectly distinguishable.

We have three qualitative categories: indistinguishable, distinguishable, and per-

fectly distinguishable. Can we quantify how different two states are?

1.1 Operational distance measure

An operational way of quantifying the difference between two states is based on the

guess-the-state game that we’ve seen several times.

For any two states, which in general can be mixed states, imagine the game where

Alice flips a fair coin to decide which of the two states to set a quantum system to,

and then she sends the quantum system to Bob. Bob knows what the two possible

states are, but Alice does not tell him which one she chose. Bob’s goal is to apply

a measurement procedure measurement to the state that he received and to use the
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classical outcome to guess which state it was. We can write the success probability

of Bob’s optimal measurement procedure as (1 + δ)/2, where δ ∈ [0, 1].

The trivial strategy for Bob is to just guess a random bit (ignoring the system

that he receives from Alice). That strategy succeeds with probability 1
2
. We can think

of δ as how much better one can do than that baseline. Another way of viewing δ is

as the success probability minus the failure probability. It’s sometimes useful to look

at δ that way.

For a given pair of quantum states, what’s the best δ attainable? If the two states

are indistinguishable then δ = 0 is the best possible. At the other extreme, if the two

states are perfectly distinguishable then the success probability can be 1, so δ = 1.

An in-between case is when the two states are |0⟩ and |+⟩. These are not perfectly
distinguishable, but the distinguishing probability can be as high as

cos2(π
8
) =

1 + cos(π
4
)

2
=

1 + 1√
2

2
, (1)

so δ = 1√
2
≈ 0.707. Another in-between case is 1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| vs. |+⟩⟨+|, for which

the best possible distinguishing probability is 3
4
=
(
1 + 1

2

)
/2, so in that case δ = 1

2
.

This is one natural way of quantifying the distance between two states, in terms

of the highest distinguishing probability possible. A natural question is: given two

density matrices ρ0 and ρ1, what is the highest distinguishing probability possible?

In section 1.5, we’ll see a systematic way of addressing such questions.

1.2 Geometric distance measures

Now, let’s look at the distance between two quantum states form a different perspec-

tive: a geometric perspective.

1.2.1 Euclidean distance

If we have two d-dimensional pure states, |ψ0⟩ and |ψ1⟩ then it seems natural to take

the Euclidean distance between their state vectors
∣∣|ψ0⟩ − |ψ1⟩

∣∣
2
.

Figure 1: Euclidean distance between pure states |ψ0⟩ and |ψ1⟩.
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If their Euclidean distance is small then it’s intuitively natural to think of the states

as “close”. But, if their Euclidean distance is large, should we think of the states as

“far apart”? Not necessarily, because of global phases. Note that −|ψ⟩ is the unit

vector farthest away from |ψ⟩ (the Euclidean distance being 2), even though these

are the same state.

Also, it is not so clear how this notion of Euclidean distance can be extended to

mixed-states.

1.2.2 Fidelity

Another notion of distance is called the fidelity, which for pure states is the absolute

value of the inner product between the state vectors
∣∣⟨ψ0|ψ1⟩

∣∣.

Figure 2: Fidelity between pure states |ψ0⟩ and |ψ1⟩.

This distance measure is calibrated in reverse in the sense that large fidelity means

“close” and small fidelity means “far”. Clearly, fidelity 1 means indistinguishable

and fidelity 0 means perfectly distinguishable (since orthogonal states are perfectly

distinguishable). Notice how the absolute value takes care of any distinctions between

vectors due to global phases.

For the in-between values of fidelity, if the fidelity is close to 1 means that the

states are “close”.

What about the fidelity between mixed states? It turns out that there is a def-

inition of fidelity for mixed states. If ρ0 and ρ1 are the density matrices of the two

mixed states, then the fidelity is given by the formula

F (ρ0, ρ1) = Tr
(√√

ρ0 ρ1
√
ρ0

)
. (2)

I’m not going to explain this formula, but I want you to see it. You cannot simplify

this formula by cyclically permuting one of the
√
ρ0 factors to the other side because

of the square root within the trace. One reasonable property that this has is that, it

agrees with the definition
∣∣⟨ψ0|ψ1⟩

∣∣ for the very special case of pure states. This is

easy to verify, which I’ll leave as an exercise.

5



Exercise 1.1. Prove that, if ρ0 = |ψ0⟩⟨ψ0| and ρ1 = |ψ1⟩⟨ψ1| then it holds that

F (ρ0, ρ1) =
∣∣⟨ψ0|ψ1⟩

∣∣.
After looking at that expression for fidelity involving all those square roots of

matrices, let’s think about what it means to take the square root of a matrix. This

is part of a more general functional calculus on square matrices.

1.3 Functional calculus for linear operators

Suppose that M is a normal matrix and f : C → C. Then we can define f applied

to the matrix M as follows. Since M is normal, we can diagonalize M in some

orthonormal basis (the columns of some unitary U) as

M = U∗


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd

U. (3)

Define f(M) as the matrix where f is applied to each eigenvalue, namely,

f(M) = U∗


f(λ1) 0 · · · 0

0 f(λ2) · · · 0
...

...
. . .

...

0 0 · · · f(λd)

U. (4)

Square root of a positive matrix

Every x ∈ C has at least one square root, and if x ̸= 0 then x has two square roots.

However, if x ∈ R+ = {x ∈ R : x ≥ 0} then x has a unique square root in R+.

Whenever M ≥ 0, there is a natural definition of
√
M since then the eigenvalues

of M are in R+ and have unique square roots in R+.

� A word of caution: in general, for positive matrices L and M , it does not hold

that
√
LM =

√
L
√
M . This is because L and M may not be simultaneously

diagonalizable. They are each diagonalizable, but not necessarily with respect to

the same orthonormal basis.
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Von Neumann entropy of a positive matrix

Whenever M ≥ 0, it makes sense to define M logM (which is related to the von

Neumann Entropy of a quantum state, defined as Tr
(
M logM

)
), that will come up

in a later part of the course.

Absolute value of any matrix

We can also define the absolute value of a normal matrix M using the functional

calculus, as the absolute values of all the eigenvalues

|M | = U∗


|λ1| 0 · · · 0

0 |λ2| · · · 0
...

...
. . .

...

0 0 · · · |λd|

U. (5)

Notice that

|M | =
√
M∗M, (6)

and this interesting because for any (not necessarily normal) matrix M , it holds that

M∗M ≥ 0. Therefore, we have a definition of the absolute value that extends to any

matrix (not necessarily diagonalizable).

1.4 Trace norm and trace distance

Now, I’d like to show you a very interesting distance measure between quantum states,

called the trace distance. First, I’ll show you the definition of the trace norm of a

matrix, which is the trace of the absolute value of the matrix.

Definition 1.3 (trace norm). For any M ∈ Cd×d, the trace norm of M is defined as

∥M∥1 = Tr
(
|M |

)
= Tr

(√
M∗M

)
. (7)

The notation is as a norm with subscript 1 (sometimes this alternative notation is

used, with the subscript “tr”).

It’s not too hard to show that, if M is normal then the trace norm of M is the

1-norm of the vector of eigenvalues of M . In other words, if the eigenvalues of M are

λ1, λ2, . . . , λd then

∥M∥1 = |λ1|+ |λ2|+ · · ·+ |λd|. (8)
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Now we are ready to define the trace distance between two states. It’s the trace

norm of the difference between their density matrices.

Definition 1.4 (trace distance). For any two d-dimensional states, whose density

matrices are ρ0 and ρ1, the trace distance between them is

∥ρ0 − ρ1∥1. (9)

Of all the different matrix norms on which we could base a distance measure,

what’s so special about the trace norm? Why is this a meaningful measure of distance

between states? The answer is given by the amazing Holevo-Helstrom Theorem.

1.5 The Holevo-Helstrom Theorem

Remember the δ that arose in our discussion of state distinguishability? We defined δ

to be the advantage over random guessing in the guess-the-state game. In fact, that

δ is exactly the trace norm multiplied by 1
2
. So the trace norm coincides with how

well the states can be distinguished in the guess-the-state game!

Theorem 1.1 (Holevo-Helstrom Theorem). Let ρ0 and ρ1 be the density matrices of

two d-dimensional states. If one of these two states is prepared by the flip of a fair

coin and then the best distinguishing procedure succeeds with probability

1 + 1
2
∥ρ0 − ρ1∥1
2

. (10)

(If the trace distance had been defined as 1
2
∥ρ0 − ρ1∥1 instead of ∥ρ0 − ρ1∥1 then the

factor of 1
2
would not apear in Eq. (10). But we’re stuck with the standard definition.)

To prove the Holevo-Helstrom Theorem, we need to show:

• There is a measurement whose success probability is 1
2
+ 1

4
∥ρ0 − ρ1∥1.

• No measurement can perform better than 1
2
+ 1

4
∥ρ0 − ρ1∥1.

1.5.1 Attainability of success probability 1
2
+ 1

4
∥ρ0 − ρ1∥1

In this section, we prove the attainability part of Theorem 1.1. Namely, that there

exists a measurement that attains success probability 1
2
+ 1

4
∥ρ0 − ρ1∥1, where ρ0 and

ρ1 are the density matrices of the states that we wish to distinguish between.
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Note that, since ρ0 and ρ1 are Hermitian, ρ0 − ρ1 is also Hermitian. But notice

that, because of the minus sign, ρ0 − ρ1 need not be positive. In general, ρ0 − ρ1 has

some negative eigenvalues.

Consider the two projectors, Π0 and Π1, defined as follows. Let Π0 be the projector

onto the space of all eigenvectors of ρ0 − ρ1 whose eigenvalues are ≥ 0. Let Π1 be

the projector onto the space of all eigenvectors of ρ0 − ρ1 whose eigenvalues are < 0.

Then Π0 and Π1 are orthogonal projectors and Π0+Π1 = I. Therefore Π0 and Π1 are

the elements of a POVM measurement. We’ll show that this measurement succeeds

with probability 1
2
+ 1

4
∥ρ0 − ρ1∥1.

First note that (
Π0 − Π1

)(
ρ0 − ρ1

)
=
∣∣ρ0 − ρ1

∣∣. (11)

To see why this is so, think of Π0 − Π1 and ρ0 − ρ1 in diagonal form (they are

simultaneously diagonalizable). Π0−Π1 has a +1 eigenvalue in all the positions where

the corresponding eigenvalue of ρ0−ρ1 is non-negative. Π0−Π1 has a −1 eigenvalue in

all the positions where the corresponding eigenvalue of ρ0−ρ1 is negative. Therefore,
Π0 −Π1 flips the sign of all the negative eigenvalues of ρ0 − ρ1, resulting in

∣∣ρ0 − ρ1
∣∣.

Note that Eq. (11) implies that

Tr
(
(Π0 − Π1)(ρ0 − ρ1)

)
= ∥ρ0 − ρ1∥1. (12)

We can also expand

Tr
(
(Π0 − Π1)(ρ0 − ρ1)

)
= Tr(Π0ρ0)− TrΠ0ρ1)− Tr(Π1ρ0) + Tr(Π1ρ1) (13)

=
(
Tr(Π0ρ0) + Tr(Π1ρ1)

)
−
(
Tr(Π0ρ1) + Tr(Π1ρ0)

)
, (14)

where 1
2

(
Tr(Π0ρ0)+Tr(Π1ρ1)

)
is the success probability,1 and 1

2

(
Tr(Π0ρ1)+Tr(Π1ρ0)

)
is the failure probability.1 So the success probability minus the failure probability is

equal to 1
2
times the trace distance.

Note that our proof of this part is constructive. It actually gives us a recipe

to determine the optimal measurement for distinguishing between two mixed states:

consider the matrix that is one density matrix subtracted from the other density

matrix; take the projector to the positive eigenspace of this matrix and the projector

to the negative eigenspace of this matrix; that’s the POVM measurement that solves

the distinguishing problem with success probability 1
2
+ 1

4
∥ρ0 − ρ1∥1.

1Averaged over the random choice of the state.
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1.5.2 Optimality of success probability 1
2
+ 1

4
∥ρ0 − ρ1∥1

So far, we’ve proved that a particular measurement attains the proposed success

probability. But how do we know that there isn’t an even better measurement? In

this section, we prove the optimality part of Theorem 1.1. Namely, that there does

not exist a measurement whose success probability exceeds 1
2
+ 1

4
∥ρ0 − ρ1∥1.

Let E0 and E1 be the POVM elements of any 2-outcome POVM measurement for

distinguishing between ρ0 and ρ1. We’ll prove an upper bound on it’s performance.

First, notice that E0 and E1 are simultaneously diagonalizable.2 Why? Because

E1 = I−E0. So if E0 is diagonal is some coordinate system then so is E1. Therefore,

we can write

E0 = U∗


p0 0 · · · 0

0 p1 · · · 0
...

...
. . .

...

0 0 · · · pd−1

U and E1 = U∗


q0 0 · · · 0

0 q1 · · · 0
...

...
. . .

...

0 0 · · · qd−1

U. (15)

The eigenvalues of E0 and E1 are between 0 and 1 and corresponding eigenvalues sum

to 1. It follows that the largest eigenvalue of E0 − E1 ≤ 1.

Definition 1.5 (infinity norm). For a normal matrix M , the infinity norm3 ∥M∥∞
is defined as the absolute value of the largest eigenvalue of M .

In this language, we have that ∥E0 − E1∥∞ ≤ 1. We will make use of the following

lemma, which is an instance of Hölder’s inequality for matrices.

Lemma 1.1. For any Hermitian L and M , Tr(LM) ≤ ∥L∥∞∥M∥1.

Now, let’s continue proving that any POVM measurement for distinguishing be-

tween ρ0 and ρ1 does not outperform the measurement that we constructed. Define

A =
ρ0 + ρ1

2
and B =

ρ0 − ρ1
2

. (16)

Note that ρ0 = A+B, ρ1 = A−B, and Tr(A) = 1.

2Please note that this only holds because it’s a 2-outcome POVM measurement. For POVM

measurements with 3 or more outcomes, the matrices might not be simultaneously diagonalizable.
3This is equivalent to the spectral norm, which is defined for all matrices.
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The success probability (averaged over inputs) is

1
2
Tr(E0ρ0) +

1
2
Tr(E1ρ1) =

1
2
Tr(E0(A+B)) + 1

2
Tr(E1(A−B)) (17)

= 1
2
Tr((E0 + E1)A) +

1
2
Tr((E0 − E1)B) (18)

≤ 1
2
Tr(A) + 1

2
∥E0 − E1∥∞∥B∥1 (19)

= 1
2
+ 1

4
∥ρ0 − ρ1∥1. (20)

This proves optimality and we have now completed the proof of the Holevo-Helstrom

Theorem.

1.6 Purifications and Ulhmann’s Theorem

Next, I’d like to show you what a purification of a quantum state is. Any mixed state

can be viewed as a pure state on some larger system with part of that larger system

traced out.

Let ρ be any density matrix of a d-dimensional system. Suppose ρ can be written

as a probabilistic mixture of m pure states, as

ρ =
m−1∑
k=0

pk |ψk⟩⟨ψk| . (21)

Now, consider the pure state on a d-dimensional register and an m-dimensional reg-

ister

|ϕ⟩ =
m−1∑
k=0

√
pk |ψk⟩ ⊗ |k⟩ . (22)

It’s easy to see that Tr2 |ϕ⟩⟨ϕ| = ρ. The pure state |ϕ⟩ is called a purification of ρ.

This is one way to purify ρ, but the purification of a state is not unique.

Now, let’s recall the previous strange-looking definition of fidelity between gen-

eral mixed states that I showed you earlier—but which I didn’t explain. Using our

language of the trace norm, we can rewrite the expression for fidelity as

F (ρ0, ρ1) =
∥∥√ρ0√ρ1∥∥1. (23)

For any two density matrices, we can take purifications of them and then take the

inner product of these purifications. The result will depend on which purification we

choose. The following theorem relates the fidelity between mixed states with inner

products of their purifications.
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Theorem 1.2 (Ulhmann’s Theorem). For any two mixed states ρ0 and ρ1, the fidelity

between them is the maximum ⟨ϕ0|ϕ1⟩ taken over all purifications |ϕ0⟩ and |ϕ1⟩.

For further details, please see [Nielsen and Chuang, Quantum Computation and Quan-

tum Information, pp. 410–411].

1.7 Fidelity vs. trace distance

We’ve discussed fidelity and trace distance, mostly the latter. Known relationships

between them are

1− F (ρ0, ρ1) ≤ ∥ρ0 − ρ1∥1 ≤
√

1− F (ρ0, ρ1)2. (24)

In particular, suppose that we have two mixed states with density matrices ρ0 and

ρ1, and we want to show that their trace distance is small. One way to do this is to

construct purifications of them whose inner products are close to 1. By Ulhmann’s

Theorem and the second inequality above, for any purifications |ϕ0⟩ and |ϕ1⟩ we have

∥ρ0 − ρ1∥1 ≤
√
1− ⟨ϕ0|ϕ1⟩2. (25)

2 Simple quantum error-correcting codes

In this section, we begin the subject of quantum error-correcting codes, which can

protect quantum states from noise. We’ll first briefly review some results about

error-correcting codes for classical information. Then we’ll consider quantum error-

correcting codes and I’ll explain Shor’s nine-qubit quantum error-correcting code.

Let’s start by discussing what noise is. Broadly speaking, noise is when informa-

tion gets disturbed. Imagine that Alice wants to send some bits to Bob, but their

communication channel is flawed.

Figure 3: Alice sending Bob a bit over a noisy communication channel.
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Suppose that, for each bit b ∈ {0, 1} that Alice sends via the channel, what Bob

receives is {
b with prob. 1− ϵ

¬b with prob. ϵ,
(26)

for some parameter ϵ ∈ [0, 1
2
]. So each bit gets flipped with probability ϵ. This

mapping from states of bits to states of bits is called a binary symmetric channel,

and we refer to it as BSC (or as BSCϵ, to specify the parameter ϵ).

This channel can be viewed as a classical analogue of the depolarizing channel.

Recall that the depolarizing channel takes a qubit as input and produces as output

a probabilistic mixture of that state and the maximally mixed state. The binary

symmetric channel outputs a probabilistic mixture of the input bit and a classical

maximally mixed state (which is a uniformly distributed random bit). If we identify

bit 0 with the probability vector
[
1
0

]
and bit 1 with

[
0
1

]
then the binary symmetric

channel BSCϵ is a linear mapping such that

BSCϵ

[
1
0

]
= (1− 2ϵ)

[
1
0

]
+ 2ϵ

[ 1
2

1
2

]
(27)

BSCϵ

[
0
1

]
= (1− 2ϵ)

[
0
1

]
+ 2ϵ

[ 1
2

1
2

]
. (28)

Now suppose that Alice wants to communicate a bit b ∈ {0, 1} to Bob and their

communication channel is a binary symmetric channel BSCϵ. Can Alice and Bob

reduce the noise level to a smaller ϵ? The obvious way is for Alice and Bob to get

a better communication hardware, with a smaller parameter ϵ. But Alice and Bob

have an alternative to investing in better hardware: they can use an error-correcting

code.

2.1 Classical 3-bit repetition code

Perhaps the simplest error-correcting code is the 3-bit repetition code, which works

as follows. To transmit bit b ∈ {0, 1}, Alice encodes b into three copies of b. Then

Alice sends each of these three bits through the channel. Then Bob takes the majority

value of the three bits that he receives (which might not all be the same, because

some bits might get flipped by the channel).

How well does this perform? The system succeeds if no more than one bit is

flipped (because that doesn’t change the majority) and it fails if two or more bits
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are flipped. Assume that the channel behaves independently for each bit that passes

through it.

Then the failure probability can be calculated as follows. There are three ways

that one bit can be flipped, each occurring with probability ϵ2(1 − ϵ). And there

is one way that all three bits can flip, occurring with probability ϵ3. So the failure

probability is

3ϵ2(1− ϵ) + ϵ3 = 3ϵ2 − 2ϵ3. (29)

Here’s a plot of the failure probability resulting from this scheme as a function of the

original failure probability of the channel.

Figure 4: Failure probability of the 3-bit repetition code as a function of ϵ.

If ϵ = 1
2
then there is no improvement: the success probability remains at 1

2
. But this

should not be surprising, because, if ϵ = 1
2
then the channel sends no information: it

just outputs a random bit uncorrelated with the bit that Alice is sending. But when

ϵ is smaller there is an advantage. For example, when ϵ = 1
10

the failure probability

from using the code is around 1
35
. And the smaller ϵ is the more pronounced the error

reduction is. If ϵ = 1
1000

then the failure probability from using the codes is around
1

300000
(a three-hundred-fold decrease).

What price are we paying for this improvement? The main cost is that that three

bits have to be sent instead of one.

Definition 2.1 (rate of a code). The rate of a code is the inverse of the expansion

in message length due to the encoding.

The rate of this code is 1
3
. Each bit of the encoding conveys 1

3
of a bit of the data to

be transmitted.

If the data is a long string of bits then there will be errors, but fewer errors using

the code. With no code, the expected fraction of errors is ϵ. With the code, the
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expected fraction of errors is 3ϵ2 − 2ϵ3. Suppose that Alice wants to send a Gigabyte

to Bob (that’s around 8.5 billion bits) and their communication channel has noise

parameter ϵ = 1
100

. Without the code, the fraction of errors will be around 85 million.

With the code, the fraction of errors will be about 24 thousand. That’s significantly

fewer errors. Achieved at the cost of sending three Gigabytes instead of one.

But suppose the we don’t want any errors. Can this be achieved? One approach

is to use a larger repetition code than 3-bits. That reduces the error probability

for each bit. But this also reduces the rate—so, in the above example, many more

Gigabytes would have to be sent. But there are much better error-correcting codes

than repetition codes.

2.2 Brief remarks about the existence of good classical codes

An error-correcting code need not separately encode each bit. Rather, each block of

n bits (a message) can be encoded into a block of m bits (a codeword). The rate

of such a code is n
m
. Note that a small rate means a large message expansion (an

inefficiency); whereas, a rate close to 1 means a small message expansion.

A fundamental result about the existence of good classical error-correcting codes

can be informally stated as:

For a binary symmetric channel with any error parameter ϵ < 1
2
, the

success probability for encodings of long strings can be made arbitrarily

close to 1, while maintaining a constant rate.

So, in fact, Alice doesn’t have to send many Gigabytes in order to get every single

bit through to Bob correctly.

I’m going to state the result about good error-correcting codes more precisely.

Please note that I’m not going to give the details of the construction or the analysis.

The theory of error-correcting codes is a large field of study, that could easily take a

course its own course to explain.

In order to state the result, we need some basic definitions for block codes. Such a

code consists of an encoding function E : {0, 1}n → {0, 1}m and a decoding function

D : {0, 1}m → {0, 1}n. The rate of such a code is n
m
.

Assuming that the communication channel is a binary symmetric channel with

error parameter ϵ, the error probability of a code of the above form is defined as the

maximum, for all a1a2 . . . an ∈ {0, 1}n, of

Pr
[
D(BSCϵ(E(a1a2 . . . an)))

]
̸= a1a2 . . . an. (30)
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Just to be clear: success means all the bits are successfully received at the other end;

that there are no errors.

Definition 2.2 (Shannon entropy). The Shannon entropy of a probability vector

(p1, p2, . . . , pd) is defined as

H(p1, p2, . . . , pd) = −
d∑

k=1

pk log pk . (31)

Define R : [0, 1
2
] → [0, 1] as R(ϵ) = 1−H(ϵ, 1− ϵ). Here is a plot of this function.

Figure 5: The rate function R(ϵ).

I’m now going to state the result about good multi-bit error-correcting codes. Let

the noise level be any ϵ < 1/2. Think of that as a property of the communication

channel that you’re stuck with using.

Then you can select any rate r, as long as r < R(ϵ). And you can select an

arbitrarily small δ > 0, which is your desired error probability bound. Then there

exists an error-correcting code E : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n with rate
n
m
> r and whose failure probability is less than δ.

There are additional considerations, that I’d like to mention, even though I won’t

go in the details:

• One is the block-length n. The smaller δ is, the larger n has to be.

• Another is the computational cost of computing E and D. The bottom line is

that there are codes for which this can be done efficiently.

OK, so that was a very brief overview of error-correcting codes for classical infor-

mation. The question is what happens with quantum error-correcting codes.
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2.3 Shor’s 9-qubit quantum error-correcting code

We started with a simple classical error-correcting code, the 3-bit repetition code.

So we might be tempted to start with a quantum repetition code, where a qubit is

encoded as three copies of itself.

Figure 6: A näıve first attempt at a 3-qubit quantum repetition code.

Of course, this fails for multiple reasons, starting with the fact that a general quantum

state cannot be copied (the no-cloning theorem).

It’s easy to copy classical information, and all error-correcting codes for classical

information are based on some sort of redundancy. But the no-cloning theorem kind

of suggests that redundancy for quantum information might not be possible. That

was the thinking shortly after Shor’s algorithms for factoring and discrete log came

out. But the underlying intuition that no-cloning implies no-redundancy was wrong.

I’m going to show you the first error-correcting code, that was discovered by Peter

Shor in the mid-1990s. It’s a 9-qubit code that is constructed by combining two 3-

qubit codes that protect against very limited error types.

2.3.1 3-qubit code that protects against one X error

Let’s start with a simple 3-qubit code that protects against a very restricted error-set.

Suppose the only error possible is a Pauli X, a bit flip. Then these encoding and

decoding circuits protect against up to one X-error.

Figure 7: 3-qubit code that protects against one X error.

The encoding circuit takes a qubit as input and produces three qubits as output.

Then the encoded data is affected by an error e, where e can be any one of these four
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unitary operations:

I ⊗ I ⊗ I

(no error)

X ⊗ I ⊗ I

(flip 1st qubit)

I ⊗X ⊗ I

(flip 2nd qubit)

I ⊗ I ⊗X

(flip 3rd qubit)
(32)

Then the three qubits are input to the decoding circuit.

It turns out that, in all four cases of e, the data is correctly recovered. The final

state of the first qubit is the same as its initial state. It’s a straightforward exercise to

verify these, but I recommend that you work through some of these cases to convince

yourself.

If you work out the final states, you will see that the second and third qubits

end up in a state that depends on what the error operation e is. We’ll refer to these

two qubits as the syndrome of the error, denoted as |se⟩. So, not only does the

encoding/decoding protect the data against the errors, but the decoding process also

reveals what the error e is.

What about other errors? Specifically, what happens if there is a Z-error on one

of the three encoded qubits? A Z-error is not corrected; instead it’s passed through.

By this, I mean that if the data is in state α0 |0⟩ + α1 |1⟩ then applying a Z-error

to one of the three encoded qubits causes the output of the decoding circuit to be

α0 |0⟩ − α1 |1⟩, which is the same as applying Z directly to the original data. So this

encoding/decoding does not protect against an Z-error, but passes it through.

2.3.2 3-qubit code that protects against one Z error

Now, here’s another 3-qubit code which protects against up to one Z-error.

Figure 8: 3-qubit code that protects against one Z error.

The encoding/decoding is like the code in figure 7 for protecting against X-errors, but

with a layer of Hadamard gates added to the end of the encoding and the beginning

of the decoding. This is essentially a re-purposing of our code for X-errors into a

code for Z-errors. Think of a Z-error and the H gates. Since HZH = X and

HH = I, any Z-errors effectively become X-errors and then are handled as the

previous encoding/decoding in figure 7.
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2.3.3 9-qubit code that protects against one Pauli error

By combining the 3-qubit codes from figures 7 and 8, we can obtain a 9-qubit code

that protects against any Pauli error (I, X, Y , or Z) in any one of the nine qubit

positions. The encoding/decoding circuits are the following.

Figure 9: Shor’s 9-qubit code.

A nice way of understanding how this code works is in terms of it’s inner part (the

last two layers of gates in the encoding part and first three layers of gates in the

decoding part) and an outer part (the other gates). The inner part consists of three

blocks, where each block is a copy of our code for X-errors from figure 7. And the

outer part is our code for Z-errors from figure 8.

What happens if there’s an X-error? It’s corrected by the inner part. What

happens if there’s a Z-error? A Z-error is passed through by the inner part and then

corrected by the outer part. What happens if there’s a Y -error? Since Y = iXZ

(and the phase i makes no difference in this context), this can be viewed as a Z-error

and an X-error. The inner part corrects the X-error and the outer part corrects the

Z-error.

So if the error e is any Pauli error in one qubit position then it is corrected by

this code; the data is recovered in the final state of the first qubit. There are 28

different one-qubit Pauli errors e (including I⊗9) that this code protects against. The

final state of eight qubits after the first qubit is the error syndrome |se⟩, and contains

information about which error was corrected.4

In fact, this codes corrects against an arbitrary error in any one qubit position

and it is also effective for communicating through a channel with depolarizing noise.

4A curiosity is that some of the 28 possible one-qubit Pauli errors have the error syndrome.

19



2.4 Quantum error models

Let’s step back and consider some of the error models that the Shor code protects

against. There are several error models, but let’s focus on two that are the most

closely related to our discussion.

Worst-case unitary noise

By worst-case unitary noise noise, we mean that there is a set of possible unitary

errors, and the error can be any one of them. For example, the Shor code is resilient

against an arbitrary one-qubit Pauli error on a 9-qubit encoding.

Figure 10: Arbitrary unitary error on one single qubit.

In fact, if a code is resilient against any 1-qubit Pauli error then it is resilient against

any 1-qubit unitary operation U . To see why this is so, note that any 2× 2 unitary

U can be expressed as

U = η0I + ηxX + ηyY + ηzZ, (33)

for some η0, ηx, ηy, ηz ∈ C. Then it’s a straightforeward exercise to deduce from

figure 9 that, if the error is set to e = I⊗j−1 ⊗ U ⊗ I⊗8−j (that is, applying U to the

j-th qubit), then the output will state is(
α0 |0⟩+ α1 |1⟩

)
⊗
(
η0 |s0⟩+ ηx |sx,j⟩+ ηy |sy,j⟩+ ηz |sz,j⟩

)
, (34)

where |s0⟩, |sx,j⟩, |sy,j⟩, |sz,j⟩ are the respective error syndromes of I, X, Y , Z in

position j.

More generally, there exist other codes, with m-qubit encodings which have the

property there, for some threshold k, the error can be an arbitrary unitray operation

acting on any subset of the qubits of size k.

Depolarizing noise

Our discussion of classical error-correcting codes was based on the binary symmet-

ric channel, which flips any bit passing through it with probability ϵ. A quantum
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analogue of the binary symmetric channel is the depolarizing channel, which can be

defined as the mixed unitary channel of the form
I with prob. 1− ϵ (no error)

X with prob. ϵ/3 (bit flip)

Y with prob. ϵ/3 (bit+phase flip)

Z with prob. ϵ/3 (phase flip)

(35)

for a parameter ϵ ≤ 3
4
. This is like the binary symmetric channel, but allowing for the

fact that a qubit can be flipped in more than one way (bit-flip, phase-flip, or both).

Exercise 2.1. Show that the definition of the depolarizing channel in Eq. (35) is

equivalent to our earlier definition of the depolarizing channel, as mapping each state

ρ to a convex combination of that state and the maximally mixed state, namely

pρ+ (1− p)
(
1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1|

)
(for some p). (36)

In the depolarizing noise model, we assume that every qubit of the encoded state is

independently affected by a depolarizing channel. So all of the qubits incur an error;

however, there is a bound ϵ on the severity of that error.

Figure 11: Depolarizing error on every qubit.

How does the Shor code perform in this model? For the depolarizing channel with

parameter ϵ, let’s think of ϵ as the effective error probability, since the qubit passes

through the channel is undisturbed with probability 1 − ϵ. If a qubit is encoded by

the Shor code and each of the nine qubits of the encoding incurs a depolarizing error

with parameter ϵ then we can analyze the effective error probability resulting from

the encoding/decoding process. It turns out that this effective error probability is

upper bounded cϵ2, for some constant5 c. So, if ϵ is small enough to begin with, then

the reduction due to squaring ϵ is more than the effect of multiplying by c, so the

effective error is decreased. The cost is that Alice has to send nine qubits to convey

just one qubit. So the rate of this code is 1
9
.

Are there better codes than this? And are there good multi-qubit quantum error-

correcting codes? This will be discussed in section 3.

5I don’t know the exact constant, but it is less than 36.
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2.5 Redundancy vs. cloning

The Shor code encodes one qubit in state α0 |0⟩ + α1 |1⟩ into nine qubits, in state

α0 |0⟩L + α1 |1⟩L where

|0⟩L =
(

1√
2
|000⟩+ 1√

2
|111⟩

)⊗3

(37)

|1⟩L =
(

1√
2
|000⟩+ 1√

2
|111⟩

)⊗3

. (38)

Sometimes, |0⟩L and |1⟩L are referred to as the logical zero and logical one of the

code.

The encoded state has the property that, if any error is inflicted on any one of

its qubits then the data can still be recovered. To be clear, note that the recovery

procedure is not provided with any information about which qubit has been affected

by an error.

Which of the nine qubits contains the data? The answer is that no individual qubit

contains any information about the qubit. The information is somehow “spread out”

among the nine qubits.

A natural question is whether there is a more efficient code that requires fewer

than nine qubits and protects against any one-qubit error. This question will be

answered in section 3.

I’d like to briefly mention a different type of error, called an erasure error. For this

type of error, the positions of the affected qubits are known. One way of viewing this

is that some of the qubits are “lost,” but we know the positions of the lost qubits—and

the remaining qubits are undisturbed. For example, suppose that a qubit is encoded

via the Shor code into nine qubits and then qubit 2 and qubit 6 go missing.

Figure 12: Erasure error on 2 qubits.

It turns out that the Shor code can handle any two erasure errors. From any seven

of the nine encoded qubits, the data can be recovered.

Finally, here’s a theorem that’s very easy to prove but it helps clarify the distinc-

tion between redundancy and copying.

Theorem 2.1 (non-existence of a 4-qubit code protecting against two erasure errors).

There does not exist a 4-qubit code that protects against two erasure errors.
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Proof. Suppose that we had such a code. Then, take the first two qubits and think

of them as an encoding with two missing qubits. Same with the last two qubits.

Figure 13: 4-qubit code protecting against two erasure errors violates the no-cloning theorem.

If the code was resilient against two erasure errors then we could recover the data

from each of these, thereby producing two copies of the data. This would contradict

the no-cloning theorem.

3 Calderbank-Shor-Steane codes

In this section, we will begin with a quick overview of classical linear error-correcting

codes, and then I’ll explain how to construct good quantum error-correcting codes

from certain classical linear codes using a method due to Calderbank, Shor and Steane.

These are commonly called CSS codes.

In section 2.2, I stated results about multi-bit classical error-correcting codes,

without saying anything about how these codes work. We’re going to begin by looking

at some of the structure of classical linear codes.

3.1 Classical linear codes

Here we consider certain block codes that encode n-bit data as m-bit codewords.

Definition 3.1 (linear code). An error-correcting code is linear if the the mapping

from data to codewords is a linear mappping from {0, 1}n to {0, 1}m, with respect to

the field Z2. In particular, the set of codewords is a linear space.

The 3-bit repetition code from section 2.1 is a linear code. In particular, the set of

its codewords is {000, 111}, which is a 1-dimensional subspace of {0, 1}3.
Another example of a linear code is the code given by the table in figure 14.
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data codeword

000 0000000

001 1010101

010 0110011

011 1100110

100 0001111

101 1011010

110 0111100

111 1101001

Figure 14: A 7-bit classical error-correcting code.

This code linearly maps 3-bit strings of data into 7-bit codewords. The codewords

are a 3-dimensional subspace of {0, 1}7. In fact, the three strings 1010101, 0110011,

0001111 (codewords for 001, 010, 100) are a basis for the 3-dimensional subspace. In

section 3.3, I’ll show you how codes that have this linear structure (and additional

properties) can be converted into quantum error-correcting codes in a systematic

way. And the 7-bit code in figure 14 will serve as a running example to illustrate the

construction.

Although an error-correcting code is a mapping from {0, 1}n to {0, 1}m, its error-
correcting properties can be deduced from properties of it set of codewords, and we

frequently refer to a code by its set of codewords.

Definition 3.2 (Hamming distance). For any two binary m-bit strings, their Ham-

ming distance is defined as the number of bit positions in which they are different.

That’s how many bits you need to flip to convert between the two strings.

Definition 3.3 (distance of a code). The distance of a code is the minimum Ham-

ming distance between any two codewords. For linear codes, this is equivalent to the

minimum distance from any non-zero codeword to the zero codeword.

What’s the minimum distance of the 7-bit code in figure 14? Since it’s a linear code, it

suffices to check the minimum Hamming weight of all the non-zero codewords, which

is 4. So the minimum distance is 4.

The minimum distance of a classical code is closely related to its error-correcting

properties.

Theorem 3.1. If the minimum distance of a code is d then ⌊d−1
2
⌋ is the number of

errors that can be corrected. In other words, as long as the number of bits flipped is

strictly less than d
2
, they can be corrected.
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Proof. First think of the subset of the m-bit strings that are the codewords, and as-

sociate with each codeword a neighbourhood that consists of all m-bit strings whose

distance from that codeword is strictly less than d
2
. Figure 15 is a schematic illustra-

tion of the codewords (in blue) and their associated neighborhoods (in grey).

Figure 15: Neighborhoods with associated with associated with codewords.

Note that none of the neighborhoods intersect (because if they did then there would

be an m-bit string whose distance from two different codewords is strictly less than d
2
,

violating the fact that the minimum distance is d). If fewer than d
2
bits of any code-

word are flipped then the perturbed codeword stays within the same neighborhood

(e.g., the red point in figure 15). Therefore, there is a unique codeword whose distance

is less than d
2
from the perturbed codeword. So there is an unambiguous decoding.

As an example, suppose that, for the code in figure 14, one bit of a codeword is

flipped, resulting in the string 10001010. Can you find the unique codeword whose

distance is 1 from this string?

3.1.1 Dual of a linear code

You may recall the dot product between binary strings a, b ∈ {0, 1}m that we previ-

ously saw in the context of Simon’s algorithm, which is

a · b = a1b1 + a2b2 + · · ·+ ambm mod 2. (39)

Remember that this this is not an inner product because the dot product of a non-

zero vector with itself can be zero. But it has some nice properties and we can very

loosely think of two strings as being “orthogonal” if their dot product is zero.
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Definition 3.4 (dual code). For any linear code whose codewords are C ⊆ {0, 1}m,
define the dual code as

C⊥ =
{
a ∈ {0, 1}m

∣∣ for all b ∈ C, a · b = 0
}
. (40)

The set C⊥ can be loosely thought as all codewords that are orthogonal to C.

The codewords of the 7-bit code in figure 14 are

C =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001
}
, (41)

and the dual of that code is

C⊥ =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001,

1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011, 0010110
}
. (42)

Every vector in C has dot product zero with every vector in C⊥.

Note that C⊥ is a superset of C (it contains all of C, plus additional strings). This

can happen because the dot product is not an inner product. What’s the minimum

distance of C⊥ in this example? The minimum distance of C⊥ is 3. Note that this

means that C⊥ can correct against a 1-bit error.

3.1.2 Generator matrix and parity check matrix

For every linear code with n-bit data andm-bit codewords, we associate two matrices.

One matrix is the n×m generator matrix, G, which expresses the encoding process

as a linear operator. Namely, for all a ∈ {0, 1}n,

E(a) = aG. (43)

The convention in coding theory is that binary strings are row vectors and the matrix

multiplication is on the right side.

For our running 7-bit code example, the generator matrix is

G =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 (44)
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and to encode a three-bit string a ∈ {0, 1}3, we right multiply by the generator matrix

E(a) =
[
a0 a1 a2

] 1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 =
[
b0 b1 b2 b3 b4 b5 b6

]
. (45)

It’s not hard to see that the rows of G are a basis for the set of codewords.

Another interesting matrix associated with a linear code is called the m× (m−n)
parity check matrix, H, which can be used to check whether a given string is a

codeword or not. For any string b ∈ {0, 1}m, b ∈ C if and only if bH = 0m−n, the

zero vector. The columns of H are a basis for C⊥, the dual of C.

For our 7-bit code example, a parity check matrix is

H =



1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1


(46)

Notice that the space generated by the rows of G is orthogonal to the space generated

by the columns of H. This is expressed succinctly by the fact that GH = 0n×(m−n),

the n× (m− n) zero matrix.

3.1.3 Error-correcting via parity-check matrix

Let C ⊂ {0, 1}m be a linear code with with distance d and let H be a parity check

matrix of C. Here’s how to correct errors using H.

For any codeword b ∈ {0, 1}m, let b′ be the perturbed codeword after an error has

been applied. It’s useful to think of an m-bit error vector, e, that has a 1 in each

position where a bit is flipped, and a 0 in the other positions. Then we can write

b′ = b+ e, where the vectors are added bitwise (mod 2). If fewer than d
2
bits of b are

flipped then the Hamming weight of e is less than d
2
.

Now, consider what happens if we multiply b′ by the parity check matrix H

b′H = (b+ e)H (47)

= bH + eH (48)

= eH (49)
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(where we are using the fact that bH = 0 because b is a codeword).

We call bH the syndrome of the error e. For linear codes, the syndrome depends

only on the error, and not on the codeword on which the error occurred. This property

will be especially valuable when we construct quantum error-correcting codes based

on classical linear codes.

Referring back to our running example 7-bit code, here’s a table of the syndromes

of all the error under consideration. That is, where at most one bit is flipped.

e eH

0000000 0000

1000000 1001

0100000 1010

0010000 1011

0001000 1100

0000100 1101

0000010 1110

0000001 1111

Figure 16: Syndromes associated with errors.

In general, all errors e that are of Hamming weight less than d
2
have unique syndromes.

Let’s go through am example of an error-correction procedure using the syndrome

table in figure 16. Suppose that we receive the string 1001010 from the channel

(and we’re not told what the error is). Multiplying by the parity check matrix, we

obtain
[
1 0 0 1 0 1 0

]
H =

[
1 0 1 1

]
, so the syndrome of the error is 1011. Looking at

the syndrome table, we can see that this syndrome corresponds to the error 0010000

(i.e., the third bit is flipped). So we can flip the third bit again to correct the error,

obtaining the original codeword b = 1011010. To get the data a ∈ {0, 1}3 from the

codeword b, we can use the fact that
[
a0 a1 a2

]
G = b (where G is a generator matrix

for the code) and solve the system of linear equations to get a.

As an aside, for large m and where d grows as a function of m, the syndrome

table can be of size exponential in m. So it is not efficient to explicitly construct the

entire table of errors and syndromes. Good error-correcting codes with large block

sizes are designed with special additional structural properties which enable the error

as a function of the syndrome to be computed efficiently.

All this information about classical linear codes is useful for understanding the

methodology of CSS codes.
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3.2 H⊗H⊗ · · · ⊗H revisited

Before discussing the CSS code construction, I’d like to show you some more nice

properties of the m-fold tensor product of Hadamard gates. We’ve already seen in

the notes [Part II: Quantum algorithms (I), section 6.3.1] that

H⊗m |0m⟩ = 1√
2m

∑
b∈{0,1}m

|b⟩ , (50)

and, more generally, for any w ∈ {0, 1}m,

H⊗m |w⟩ = 1√
2m

∑
b∈{0,1}m

(−1)b·w |b⟩ , (51)

where b · w denotes the dot-product b0w0 + b1w1 + · · ·+ bm−1wm−1.

Now, here’s a generalization of the above two equations related to states that are

uniform superpositions over the elements of a linear subspace C ⊆ {0, 1}m. Applying
H⊗m to such a state results in an equally weighted superposition of the elements

of C⊥. Namely,

H⊗m
(

1√
|C|

∑
a∈C

|a⟩
)
= 1√

|C⊥|

∑
b∈C⊥

|b⟩ . (52)

Also, for a uniform superposition over the elements of a linear subspace C ⊆ {0, 1}m
offset by some w ∈ {0, 1}m, there is a similar expression with phases,

H⊗m
(

1√
|C|

∑
a∈C

|a+ w⟩
)
= 1√

|C⊥|

∑
b∈C⊥

(−1)b·w |b⟩ . (53)

Notice that Eq. (52) generalizes Eq. (50), since {0m} is the zero-dimensional linear

subspace of {0, 1}m and {0m}⊥ = {0, 1}m. Similarly, Eq. (53) generalizes Eq. (51).

Exercise 3.1. Prove Eqns. (52) and (53).

Hint: if G is the n×m generator matrix of C then

1√
|C|

∑
a∈C

|a⟩ = 1√
2n

∑
b∈{0,1}n

|bG⟩ . (54)
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3.3 CSS codes

A CSS code is based on two classical linear codes, C0, C1 ⊆ {0, 1}m, that are related

by these properties:

• C0 ⊊ C1

• C⊥
0 ⊆ C1.

Two relevant parameters are k = dim(C1)− dim(C0) and d, the distance of code C1.

From this, we will construct a quantum error-correcting code that encodes k qubits

as m qubits, and protects against any errors in fewer than d
2
qubits.

From our running example, we can take

C0 =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001
}
, (55)

C1 =
{
0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001,

1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011, 0010110
}
. (56)

Clearly C0 ⊊ C1 and C
⊥
0 = C1. For this example, k = dim(C1)−dim(C0) = 4−3 = 1,

and d = 3 (the distance of code C1).

In general, let G0 and G1 be generator matrices for C0 and C1, respectively.

Suppose that G0 is an n×m matrix and G1 is an (n+k)×m matrix. We can express

G1 =

[
G0

W

]
, (57)

where W is a k×m matrix representing the additional rows to add to G0 in order to

extend the span from C0 to C1.

In our running example, we have

G0 =

 1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 W =
[
1 1 1 1 1 1 1

]
(58)

G1 =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

1 1 1 1 1 1 1

 . (59)
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3.3.1 CSS encoding

For linear codes C0 ⊂ C1 ⊆ {0, 1}m such that C⊥
0 ⊆ C1, let k = dim(C1)− dim(C0).

The related CSS code encodes a k-qubit state as an m-qubit state as follows.

For all v ∈ {0, 1}k, define the logical basis state |v⟩L as the m-qubit state

|v⟩L = 1√
|C0|

∑
a∈C0

|a+ vW ⟩ . (60)

Then an arbitrary k-qubit (pure) state∑
v∈{0,1}k

αv |v⟩ (61)

is encoded as the m-qubit state∑
v∈{0,1}k

αv |v⟩L =
∑

v∈{0,1}k
αv

(
1√
|C0|

∑
a∈C0

|a+ vW ⟩
)
. (62)

Returning to our running example, we have logical qubits

|0⟩L = |0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩
|0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩ (63)

|1⟩L = |1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩
|1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩ . (64)

The state |0⟩L is a uniform superposition of the elements of C0. The state |1⟩L is a

uniform superposition of the elements of C0+1111111. Any 1-qubit state α0 |0⟩+α1 |1⟩
is encoded as the 7-qubit state α0 |0⟩L + α1 |1⟩L. This is called the Steane code and

we’ll show that it protects against any 1-qubit error.

3.3.2 CSS error-correcting

Let C0 ⊂ C1 ⊆ {0, 1}m be linear such that C⊥
0 ⊆ C1 and let k = dim(C1)− dim(C0).

We will show how to perform error-correction for the related CSS code, correcting

any Pauli error acting on fewer than d
2
qubits, where d is the distance of code C1.

We begin by showing how to correct X-errors acting on fewer than d
2
qubits. The

encoding of a k-qubit state is of the form of Eq. (62). This state is a superposition

of basis states from the larger code C1, whose minimum distance is d.
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We can write the X-error operator as Ee = Xe0 ⊗ Xe1 ⊗ · · · ⊗ Xem−1 , where

e ∈ {0, 1}m has Hamming weight less than d
2
. For encoded data |ψ⟩, the state Ee |ψ⟩

is the encoding subjected to the error.

Based on the parity check matrix H1 of C1, we can create a circuit than produces

the error syndrome |Se⟩ in an ancillary register.

Figure 17: Computing the X-error syndrome.

Since the syndrome depends only on the error vector e and not any computational

basis state from C1, the output of the circuit is the product state
(
Ee |ψ⟩

)
⊗ |Se⟩.

In our running example, this syndrome is computed using the parity check matrix

H1 =



0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


(65)

and, based the entries of H1, a circuit for producing the X-error syndrome is this.

Figure 18: Explicit circuit computing the X-error syndrome for the Steane code.

It’s easy to confirm that, for any computational basis state in the code word, this

computes the syndrome |Se⟩ associated with error e. Once the error syndrome Se has
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been computed, the error e can be deduced and undone. So this procedure corrects

X-errors, as long as there are fewer than d
2
of them.

What about Z-errors? To correct against Z-errors, we apply an H operation to

each qubit of the encoded data. This converts the encoding to the Hadamard basis,

where Z-errors are X-errors.

What does the encoding look like in the Hadamard basis? Using the results from

section 3.2, this is

H⊗m

( ∑
v∈{0,1}k

αv |v⟩L

)
=

∑
v∈{0,1}k

αvH
⊗

(
1√
|C0|

∑
a∈C0

|a+ vW ⟩

)
(66)

=
∑

v∈{0,1}k
αv

(
1√
|C⊥

0 |

∑
b∈C⊥

0

(−1)b·(vW ) |b⟩

)
. (67)

Since C⊥
0 ⊆ C1, this state is also a superposition of computational basis states from

C1. Therefore, we can apply the procedure in figure 17 again in the Hadamard basis.

Figure 19: Computing the Z-error syndrome.

From the syndrome, the Z-errors (which are X-errors in the Hadamard basis) can be

undone. Then H⊗m is applied again to return to the computational basis.

So far, we can correct X-errors and Z-errors. Since Y = iXZ, each Y -error is like

an X-error and a Z-error, and each of those is corrected by the two aforementioned

procedures.

3.3.3 CSS code summary

The Steane 7-qubit CSS code and the Shor 9-qubit code both protect against a 1-qubit

error; however, note that the Steane code has better rate.

In general, the performance of a CSS code depends on the performance of the

classical linear codes C0 ⊂ C1 ⊆ {0, 1}m (with C⊥
0 ⊆ C1) on which it is based.

Since good classical codes of the above form exist, there exist qualitatively good

quantum error-correctng codes. It turns out that there exists a threshold ϵ0 = 0.055...
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such that, for the depolarizing channel with error parameter ϵ < ϵ0, there exist CSS

codes of constant rate and arbitrarily small failure probability. This is qualitatively

equivalent to what’s achievable with classical error-correcting codes, although the

specific constants are smaller.

This gives an idea of what quantum error-correcting codes can accomplish. But

this is just the beginning. There are many other quantum error-correcting codes,

some of which are better in certain respects than CSS codes. Also, the depolarizing

channel is a kind of standard noise model, but it’s not the only one. Quantum error-

correcting codes that perform well against this model tend to perform well against

variations of this error model. And there is some fine-tuning possible if one knows

the exact error model.

3.4 Very brief remarks about fault-tolerance

The error-correcting codes that I’ve described assume that the noise is restricted to

the communication channel. They assume that the encoding and decoding processes

are not subject to any noise. What about noise during the execution of a quantum

circuit?

Suppose that we want to execute a quantum circuit, but there is noise during the

computation. One simple way of modeling this is to assume that there is a depolarizing

channel at each qubit applied at each time step.

Figure 20: Noisy gates modeled by a depolorizing channel at each qubit at each time step.

How can we cope with this kind of noise? If the error parameter of the depolorizing

channel ϵ is very small then this is OK. Suppose that the size of the computation is

less than 1
10ϵ

. Then, with good probability, none of the qubits incurs a flip (by which

I mean a bit-flip, phase-flip, or both), so the computation succeeds.

But, if ϵ is a constant (dictated by the precision of our hardware), then size of the

largest circuit possible will also be bounded by a constant. If we want to execute a
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larger circuit then we need a smaller ϵ, which means better precision in our quantum

gates. For very large circuits we would need very high precision components.

But we can do much better than this, due to the celebrated Threshold Theorem.

Theorem 3.2 (Threshold Theorem, rough statement). There exists a constant ϵ0 > 0

such that if the precision per gate per time step is below ϵ0 then we can perform

arbitrarily large computations without having to further increase the precision.

The rough idea is to convert the circuit that we want to perform into a another circuit

that is fault-tolerant. The fault-tolerant circuit uses error-correcting codes in place

of each qubit, and performs additional operations that correct errors at regular time

intervals, so they don’t accumulate. The known fault-tolerant constructions can be

quite elaborate, and use several clever ideas. But what’s nice is that the fault-tolerant

circuits are not that much larger asymptotically than the original circuits. In some

formulations, the size increase is by a logarithmic factor; and in some formulations,

by a constant factor.

This result is quite impressive, if you consider that there is noise during any

encoding and decoding operation within the fault-tolerant circuit.
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