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1 Quantum states as density matrices

Let’s begin by considering a couple of situations where Alice has an apparatus for

creating quantum states for Bob, who has no apparatus. When Bob needs a specific

state, he asks Alice to create it and send it to him.

Figure 1: Alice uses her apparatus to prepare states for Bob.

The story of the fake-plus state

Suppose that Bob asks Alice to create a qubit in state |+〉 = 1√
2
|0〉+ 1√

2
|1〉 and send

it to him. But suppose that Alice’s state preparation device is broken in that it can

only prepare qubits in state |0〉 or |1〉.
What is Alice to do? She cannot create the state |+〉 literally. Suppose she tries

to fake it by flipping a fair coin and then creating either |0〉 or |1〉, depending on the

coin’s outcome—while keeping the coin’s outcome secret from Bob. The state that

Alice creates can be described as{
|0〉 with probability 1

2

|1〉 with probability 1
2
.

(1)

Let’s call this the fake-plus state.

How good is this fake-plus state as a substitution for the real plus state |+〉? Is

there any way that Bob can tell the difference? If, for any measurement that Bob

can perform, the outcome probabilities are exactly the same then the substitution is

a good one. Note that if Bob measures the fake plus state in the computational basis

then the outcome probabilities are the same as measuring |+〉 in the computational

basis. So far so good.

But there are other measurements for which the outcome probabilities are differ-

ent. Can you think of one?

Exercise 1.1. Give a measurement which has different outcome probabilities for the

fake-plus state (1) than for the true plus state |+〉.

So the fake-plus state is not a good substitute for the plus state.
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The story of the fake-fake-plus state

Now, let’s consider a different scenario. Suppose that Bob doesn’t want a |+〉 state;

instead, he wants Alice to prepare for him a fake-plus state, the state in Eq. (1). But

this time, let’s suppose that Alice’s apparatus is broken in a different way: it can only

prepare |+〉 and |−〉 states.

What can Alice do in this case? It won’t do to send Bob a |+〉 state, because we

already know that the plus state and the fake-plus state do not behave the same for

all measurements. What if Alice tries to fake it this time by flipping a fair coin and

then sending |+〉 or |−〉, depending on the outcome (again keeping the coin outcome

secret). Such a state can be described as{
|+〉 with probability 1

2

|−〉 with probability 1
2
.

(2)

Let’s call this the fake-fake-plus state. Is the fake-fake-plus state (2) a good substitute

for the fake-plus state (1)?

The two states certainly don’t look the same. So your first guess might be that

there’s a measurement for which the outcome probabilities are different. But it turns

out that, for every measurement that Bob can make, the outcome probabilities for

state (1) are exactly the same as they are for state (2). Even though the two states

don’t look the same, the fake-fake-plus state is a good substitute for the fake-plus

state.

1.1 Probabilistic mixtures of states

We are now in the realm of probabilistic mixtures of states. These are states where

a random process is used to decide which pure state to prepare. Let (p1, p2, ..., pm)

be a probability vector and let |ψ1〉 , |ψ1〉 , . . . , |ψm〉 be d-dimensional quantum states

(they need not be orthogonal). Imagine that k ∈ {1, 2, . . . ,m} is sampled according

the the probability distribution (p1, p2, ..., pm), and then state |ψk〉 is produced (but

k is not revealed). Such a state can be described as
|ψ1〉 with probability p1

|ψ2〉 with probability p2
...

...
...

|ψm〉 with probability pm.

(3)
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These states are called mixed states. The “ordinary” states, describable by a single

normalized vector |ψ〉, are called pure states. In Eq. (3), if one of the probabilities is

1 and the others are 0 then the state is a pure state.

Let’s look at some examples of probabilistic mixtures of states. We have already

seen these two mixed states:{
|0〉 with probability 1

2

|1〉 with probability 1
2

and

{
|+〉 with probability 1

2

|−〉 with probability 1
2
,

(4)

and I claimed that they are indistinguishable—but I did not explain why. How do

these two states compare with{
|0〉 with probability 1

2

|−〉 with probability 1
2
?

(5)

Are they also indistinguishable from this state?

Mixed states for qubits can be probability distributions on any number of vectors,

for example
|0〉 with prob. 1

4

|1〉 with prob. 1
4

|+〉 with prob. 1
4

|−〉 with prob. 1
4

and


|0〉 with prob. 1

3

−1
2
|0〉+

√
3
2
|1〉 with prob. 1

3

−1
2
|0〉 −

√
3
2
|1〉 with prob. 1

3
.

(6)

And the probability distribution need not be uniform, as shown in this example{
cos(π

8
) |0〉 − sin(π

8
) |1〉 with prob. cos2(π

8
)

sin(π
8
) |0〉+ cos(π

8
) |1〉 with prob. sin2(π

8
).

(7)

Definition 1.1 (indistinguishable states). Two probabilistic mixtures of states are

indistinguishable if, for all possible measurements, the outcome probabilities are the

same for the two states.

Now, consider the six mixed states appearing in in (4)(5)(6)(7) above. Which

pairs are indistinguishable? To address such questions, we need to understand these

kinds of states better. A very useful approach is to express these states in terms of

their density matrices.
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1.2 Density matrices

Given a probability distribution on a set of state vectors, one might be tempted to

consider the weighted average of the state vectors p1 |ψ1〉+ p2 |ψ2〉+ · · ·+ pm |ψm〉 as

a useful object. However, this kind of average turns out to be of little use. One indi-

cator that it’s not worth much is that the weighted average can change dramatically

depending on the global phases associated with the vectors—which shouldn’t matter.

Also, notice that, for the second mixed state in Eq. (6), the weighted average is the

zero vector.

Mixed states can be nicely characterized by a different kind of averaging, which

occurs in the definition of the density matrix.

Definition 1.2 (density matrix). For a mixed state of the form of Eq. (3), where

|ψ1〉 , |ψ1〉 , . . . , |ψm〉 are d-dimensional, its density matrix is the d× d matrix

ρ = p1 |ψ1〉 〈ψ1|+ p2 |ψ2〉 〈ψ2|+ · · ·+ pm |ψm〉 〈ψm| . (8)

Note that the density matrix of any pure state |ψ〉 is |ψ〉 〈ψ|. For example, the

state |ψ〉 = α0 |0〉+ α1 |1〉 has density matrix

ρ =
(
α0 |0〉+ α1 |1〉

)(
ᾱ0 〈0|+ ᾱ1 〈1|

)
(9)

=

[
α0

α1

] [
ᾱ0 ᾱ1

]
(10)

=

[
|α0|2 α0ᾱ1

α1ᾱ0 |α1|2

]
. (11)

The entries along the diagonal are the absolute values squared of the amplitudes and

the off-diagonal entries are cross-terms involving the amplitudes.

Also note from Definition 1.2 that the density matrix of a probabilistic mixture

of pure states is the weighted average of the density matrices of the pure states. For

example, the density matrices of |0〉 and |1〉 are

|0〉 〈0| =

[
1 0

0 0

]
and |1〉 〈1| =

[
0 0

0 1

]
(12)

and the density matrix of the first mixed state in Eq. (4) is

1
2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2

[
1 0

0 0

]
+ 1

2

[
0 0

0 1

]
=

[
1
2

0

0 1
2

]
. (13)
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Regarding the second mixed state in Eq. (4), the density matrices of |+〉 and |−〉 are

|+〉 〈+| =

[
1
2

1
2

1
2

1
2

]
and |−〉 〈−| =

[
1
2
−1

2

−1
2

1
2

]
(14)

and the density matrix of their mixture is

1
2
|+〉〈+| + 1

2
|−〉〈−| = 1

2

[
1
2

1
2

1
2

1
2

]
+ 1

2

[
1
2
−1

2

−1
2

1
2

]
=

[
1
2

0

0 1
2

]
. (15)

Notice that the density matrices for the two mixed stated in Eq. (4) are the same. This

is related to the fact that the states are indistinguishable—which will be explained

shortly.

Exercise 1.2 (a straightforward calculation). Work out the density matrices of the

mixed states appearing in (5)(6)(7).

Let me make a comment about global phases in vector states. When we repre-

sent (pure) states as vectors, there’s this issue that if multiply the vector by a unit

complex number (of the form eiθ, for θ ∈ R) then it’s essentially the same state; it’s

indistinguishable from the original state. The density matrix of eiθ |ψ〉 is

eiθ |ψ〉 〈ψ| e−iθ = |ψ〉 〈ψ| . (16)

So global phases don’t even show up in density matrices, which is nice. It means that,

using density matrices, we don’t need to define an equivalence relation to account for

global phases.

Now, let’s look at some examples of density matrices for higher dimensional sys-

tems than qubits. The density matrix of |00〉 is

|00〉 〈00| =


1

0

0

0

 [1 0 0 0
]

=


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , (17)

and the density matrices of the other computational basis states are also diagonal

matrices with a 1 in one position.

The density matrix of the Bell state 1√
2
|00〉+ 1√

2
|11〉 is

1√
2

0

0
1√
2

[ 1√
2

0 0 1√
2

]
=


1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2

 (18)
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and the density matrix of the state{
|00〉 with probability 1

2

|11〉 with probability 1
2

(19)

is

1
2


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ 1
2


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 =


1
2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
2

 . (20)

If we were adopt the terminology used for state (1), we might call state (19) a fake-

Bell state. Notice that the difference between the density matrices of the Bell state
1√
2
|00〉+ 1√

2
|11〉 and the fake-Bell state (19) is in the two off-diagonal entries of their

density matrices.

1.2.1 Effect of unitaries on mixed states

Every probabilistic mixture of states has a density matrix associated with it; however,

different probabilistic mixtures can result in the same density matrix (for example the

two states in Eq. (4)). Suppose that we apply a unitary operation U on a probabilistic

mixture of states. How does this affect the density matrix?

If we begin with a mixed state of the form
|ψ1〉 with prob. p1

|ψ2〉 with prob. p2
...

...
...

|ψm〉 with prob. pm

(21)

then applying U changes the state to
U |ψ1〉 with prob. p1

U |ψ2〉 with prob. p2
...

...
...

U |ψm〉 with prob. pm.

(22)

This is because, whatever |ψk〉 is randomly selected, it gets converted to U |ψk〉.
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Let ρ denote the density matrix of the original state. That is,

ρ =
m∑
k=1

pk |ψk〉 〈ψk| . (23)

Then the density matrix after U is applied is

m∑
k=1

pk
(
U |ψk〉

)(
U |ψk〉

)∗
=

m∑
k=1

pkU |ψk〉 〈ψk|U∗ (24)

= U

(
m∑
k=1

pk |ψk〉 〈ψk|

)
U∗ (25)

= UρU∗. (26)

What is remarkable is that the density matrix of the modified state depends only

on the density matrix of the original state. It does not depend on what specific

probabilistic mixture is used to create the original state.

1.2.2 Effect of measurement on mixed states

Now, let’s consider the effect of a measurement of a d-dimensional mixed state. As

usual, the computational basis is denoted as |0〉 , |1〉 , . . . , |d− 1〉. Let the mixture be
|ψ1〉 with prob. p1

|ψ2〉 with prob. p2
...

...
...

|ψm〉 with prob. pm.

(27)

There are two different ways that randomness arises in such a measurement: the

randomness that was used to select one of the pure states; and, the randomness that

arises in the measurement process for the selected state.

If the selected state is |ψj〉 then the probability of measurement outcome k is

| 〈k|ψj〉 |2 = 〈k|ψj〉 〈ψj|k〉 = 〈k|
(
|ψj〉 〈ψj|

)
|k〉 (28)

(where we are using the fact that the expressions are all products of row matrices and

column matrices and that matrix multiplication is associative).
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If we average this over all possibilities of |ψj〉 then the probability of outcome k is

m∑
j=1

pj 〈k|
(
|ψj〉 〈ψj|

)
|k〉 = 〈k|

(
m∑
j=1

pj |ψj〉 〈ψj|

)
|k〉 (29)

= 〈k| ρ |k〉 , (30)

where ρ is the density matrix of the original state. Also, when the measurement

outcome is k, the residual state is |k〉.
Once again, the result of the operation depends only on the density matrix of the

original state. It does not depend on what specific probabilistic mixture is used to

create the original state.

1.2.3 Information processing solely in terms of density matrices

In sections 1.2.1 and 1.2.2, we saw that, for a mixed state with density matrix ρ:

• Applying a unitary operation U to the state changes it to one with density

operator UρU∗.

• Applying a measurement in the computational basis to the state produces clas-

sical and quantum outcomes

(
0, |0〉

)
with prob. 〈0| ρ |0〉(

1, |1〉
)

with prob. 〈1| ρ |1〉
...

...
...(

d−1, |d−1〉
)

with prob. 〈d−1| ρ |d−1〉.

(31)

In both cases, the result of the operation depends only on the density matrix of the

state (not on the specific probabilistic mixture that is used to generate the state).

From this, we can deduce1 the following theorem.

Theorem 1.1. Whenever two mixed states have the same density matrix, the states

are equivalent.

Theorem 1.1 implies that the fake-plus state (1) and fake-fake-plus state (2) are

indistinguishable.

1Actually, we have not yet shown that the outcomes of exotic measurements depend only on the

density matrix. Although this is indeed true, it is more convenient to address this later. (Exotic

measurements are those where the state being measured is isometrically embedded into a larger

space, followed by a unitary and measurement in the larger space.)
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1.3 Some properties of matrices

Prior to our use of the density matrix framework, our matrices have mostly been uni-

tary, representing unitary operations on quantum states. Now, we also have density

matrices that describe states (and which are not unitary). Henceforth, more types

of matrices will arise as we develop our models of quantum information theory. In

this section, we review some useful definitions and properties of matrices that will be

used.

Definition 1.3 (normal matrix). A matrix M ∈ Cd×d is normal if M∗M = MM∗.

An important property of normal matrices is that they are diagonalizable in some

orthonormal basis.

Theorem 1.2 (spectral theorem). A matrix M ∈ Cd×d is normal if and only if there

exists a unitary U ∈ Cd×d such that

M = U∗


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd

U. (32)

Although Definition 1.3 is the common textbook definition of normal, the statement

of Theorem 1.2 can be taken as an alternative definition.

To help understand normal matrices, it’s useful to see examples of abnormal ma-

trices. Consider these two: [
1 1

0 1

] [
1 1

0 2

]
. (33)

The first matrix is not normal because it is not even diagonalizable. The second

matrix is diagonalizable but not unitarily (it has eigenvectors [ 10 ] and [ 11 ], which are

not orthogonal).

For any normal matrix, by Theorem 1.2, we can imagine it to be diagonal in the

coordinate system of some orthonormal basis. Note that a square matrix M is unitary

(defined as M∗M = I) if and only if all its eigenvalues have absolute value 1 (i.e.,

they are points on the unit circle in C. And a matrix M is Hermitian (defined as

M = M∗) if and only if all its eigenvalues are in R.
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Definition 1.4 (positive). A matrix M ∈ Cd×d is positive2 if and only if, M is

normal and, for all states |ψ〉 ∈ Cd, it holds that 〈ψ|M |ψ〉 ≥ 0.

A normal matrix is positive if and only if all of its eigenvalues are in R and greater

than or equal to 0.

Definition 1.5 (trace). The trace of a matrix M ∈ Cd×d (denoted as Tr(M)) is

defined as the sum of its diagonal entries

Tr(M) =
d∑

k=1

Mk,k. (34)

As simple as the definition of the trace is, it has some interesting properties. An

obvious property is that it is linear. That is, for all A,B ∈ Cd×d and all α, β ∈ C,

Tr(αA+ βB) = αTr(A) + β Tr(B). (35)

Also, for all A ∈ Cd1×d2 and B ∈ Cd2×d1 ,

Tr(AB) = Tr(BA). (36)

Equation (36) implies that the trace is coordinate system independent, in the sense

that, for all S,A ∈ Cd×d where S is invertible,

Tr(S−1AS) = Tr(A). (37)

Also, notice that, in Eq. (36), A and B need not be square matrices. For example,

Tr(|ψ〉 〈φ|) = Tr(〈φ| |ψ〉) = 〈φ|ψ〉 . (38)

A word of caution: here are some properties that, in general, the trace does not have:

o In general, the trace is not multiplicative (in the sense that the determinant is).

In general, Tr(AB) = Tr(A) Tr(B) does not hold.

o Moreover, Eq. (36) does not mean that you can arbitrarily reorder any product

in the argument of the trace. For example, Tr(ABC) = Tr(BAC) does not hold

in general. But, for the trace of a product, the product can always be cyclically

permuted as Tr(A1A2 . . . Am−1Am) = Tr(AmA1A2 . . . Am−1).

2In some communities, the terminology positive semidefinite is used instead of positive.
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1.3.1 Characterizing density matrices

Not all matrices arise as the density matrix of some probabilistic mixture of states.

The following theorem precisely characterizes which matrices are density matrices.

Theorem 1.3 (characterization of valid density matrix). A matrix ρ ∈ Cd×d is the

density matrix of some probabilistic mixture of pure states if and only if ρ is positive

and Tr(ρ) = 1.

Exercise 1.3. Prove Theorem 1.3.

Theorem 1.4 (characterization of pure states). If ρ ∈ Cd×d is a density matrix then

ρ is a pure state if and only if Tr(ρ2) = 1.

Exercise 1.4. Prove Theorem 1.4.

1.4 Bloch sphere for qubits

The set of density matrices for qubits has a nice representation as points in the Bloch

sphere. In this section, I explain this correspondence. Consider the Pauli matrices

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]
Z =

[
1 0

0 −1

]
Y =

[
0 −i
i 0

]
(39)

(where in this context I is an honorary Pauli matrix). Every 2 × 2 matrix can be

expressed as a linear combination of I, X, Y , Z. Since Tr(I) = 2 and Tr(X) =

Tr(Y ) = Tr(Z) = 0, we can express any density matrix ρ as

ρ =
I + cxX + cyY + czZ

2
. (40)

Let’s develop a geometric picture for the set of all possible triples (cx, cy, cz) that

correspond to valid 2 × 2 density matrices. Let’s start with pure states. Any pure

state of a qubit can be written as

|ψ〉 = cos( θ
2
) |0〉+ eiφ sin( θ

2
) |1〉 , (41)

for some θ, φ ∈ [0, 2π].
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The density matrix of this state is

|ψ〉 〈ψ| =

[
cos2( θ

2
) e−iφ cos( θ

2
) sin( θ

2
)

eiφ cos( θ
2
) sin( θ

2
) sin2( θ

2
)

]
(42)

=
1

2

[
1 + cos(θ) e−iφ sin(θ)

eiφ sin(θ) 1− cos(θ)

]
(43)

=
1

2

[
1 + cos(θ)

(
cos(φ)− i sin(φ)

)
sin(θ)(

cos(φ) + i sin(φ)
)

sin(θ) 1− cos(θ)

]
(44)

=
I + cos(φ) sin(θ)X + sin(φ) sin(θ)Y + cos(θ)Z

2
. (45)

Therefore, the coefficients in Eq. (40) are

(cx, cy, cz) = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)). (46)

These triples are the polar coordinates of points on the surface of a sphere, as shown

in figure 2.

Figure 2: The coordinates (cx, cy, cz) of a pure state are a point on the surface of a sphere.

Think of this sphere as the Earth with the North Pole at the top. Points on the

surface can be expressed in terms of their latitude and longitude. The latitude θ is the

angular distance away from the North Pole. The longitude φ is an angle representing

the East-West distance from some arbitrary3 starting point. So all the pure states

correspond to points4 on the surface of this sphere, called the Bloch sphere.

3In geography, the convention is to set 0◦ at the Prime Meridian in Greenwich, UK.
4To avoid redundancy, it is natural to restrict the range of θ to [0, π].
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Where are states |0〉 and |1〉 situated on the Bloch sphere? State |0〉 lies at the

North Pole and |1〉 is at the South Pole, as illustrated in figure 3.

Figure 3: Position of states |0〉, |1〉, |+〉, |−〉, |+i〉, and |−i〉 on the Bloch sphere.

Notice that |0〉 and |1〉 are orthogonal as vectors; however, their positions on the

Bloch sphere are 180◦ apart. Any two orthogonal vectors map to antipodal points on

the sphere (180◦ apart).

Where are |+〉 and |−〉? They lie on the equator. State |+〉 has longitude φ = 0

(it lies at the intersection of the equator and the Prime Meridian) and |−〉 is at the

antipodal point.

Notice the angle-doubling again. The angle between |0〉 and |+〉 is 45◦, but the

angle between their points on the Bloch sphere is 90◦. In general, for any two state

vectors, if we map them to the sphere, the angular distance between them doubles.

There are two other points on the sphere that are in natural positions relative to

the points we have considered so far: those that are 90◦ from |0〉, |1〉, |+〉, and |−〉.
They correspond to the states

|+i〉 = 1√
2
|0〉+ i√

2
|1〉 (47)

|−i〉 = 1√
2
|0〉 − i√

2
|1〉 . (48)

There is some nice symmetry among the six states |0〉, |1〉, |+〉, |−〉, |+i〉, and |−i〉.
The surface of the Bloch sphere consists of all the pure states, and it turns out the

mixed states are all the points inside the sphere. For any probabilistic mixture of pure

states, its position in the Bloch sphere is the weighted average of the positions of the

pure states. For example, an equally weighted mixture of |0〉 and |1〉 (the so-called

fake-plus state from Eq. (1)) is the point right at the centre of the sphere. And an
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equally weighted mixture of |0〉 and |+〉 is the midpoint of the line connecting their

positions on the sphere.

For qubit systems, it’s often very useful to think of states—and the operations

acting on them—on the Bloch sphere.

A word of caution:

o Do not conflate state vectors with points on the Bloch sphere!

o The Bloch sphere is for one-qubit states. For higher dimensional systems, there’s

an analogous geometric shape—but it’s not a hypersphere. It’s shape is somewhat

complicated and it doesn’t satisfy all the properties that one might expect to hold

based on the case of qubits. For example, not all points on the surface of this shape

are pure states (some are mixed states). For qutrits, the shape is 7-dimensional.

2 State transitions in the Kraus form

So far, we have seen various kinds of operations that can be performed on quantum

systems. We have seen unitary operations and measurements. There are also opera-

tions that are described in words (or annotated quantum circuits), such as “add an

ancilla qubit”, “measure the second qubit”, and “take the first qubit as the output.”

The Kraus form is a unified framework for describing all of these, as well as some

other kinds of quantum operations. We begin with this definition.

Definition 2.1 (Kraus operators). A sequence of d1 × d2 matrices A0, A2, . . . , Am−1
is a sequence of Kraus operators if

m−1∑
k=0

A∗kAk = I, (49)

where I denotes the d2 × d2 identity matrix.

Note that the matrices in the above definition need not be square: if Ak is d1 × d2
then A∗kAk is d2 × d2.

At first glance, Definition 2.1 may look mysterious. In this section, we’ll see that

several quantum state transformations, including measurements, unitary operations

(and other natural transformations) are expressible in terms of Kraus operators.
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2.1 Measurements via Kraus operators

For any Kraus operators A0, A2, . . . , Am−1 ∈ Cd1×d2 , define the the following mea-

surement operation, whose classical output is k ∈ {0, 1, . . . ,m− 1}.

Input to the measurement: is a d2-dimensional quantum system, whose state can

be described by a d2 × d2 density matrix ρ.

Output of the measurement: can be described as as the probabilistic mixture

(
0 ,

A0ρA
∗
0

Tr(A0ρA∗0)

)
with prob. Tr(A0ρA

∗
0)(

1 ,
A1ρA

∗
1

Tr(A1ρA∗1)

)
with prob. Tr(A1ρA

∗
1)

...
...

...
...(

m−1 ,
Am−1ρA

∗
m−1

Tr(Am−1ρA∗m−1)

)
with prob. Tr(Am−1ρA

∗
m−1),

(50)

where the first component is the classical outcome k ∈ {0, 1, . . . ,m − 1} and

the second component is the residual state, which is a d1 × d1 density matrix

(if d1 6= d2 then the dimensions of the input and output systems are different).

The first question is whether the above makes sense. Are the probabilities non-

negative real numbers that sum to 1? Are the residual states valid density matrices?

To get an idea why this measurement makes sense, consider the case of pure states.

If ρ = |ψ〉〈ψ| then, for all k,

Tr(AkρA
∗
k) = Tr(Ak |ψ〉〈ψ|A∗k) = Tr(〈ψ|A∗kAk |ψ〉) = 〈ψ|A∗kAk |ψ〉 . (51)

Clearly, 〈ψ|A∗kAk |ψ〉 ≥ 0, since this is the inner product of Ak |ψ〉 with itself. Also,

m−1∑
k=0

Tr(AkρA
∗
k) =

m−1∑
k=0

〈ψ|A∗kAk |ψ〉 = 〈ψ|

(
m−1∑
k=0

A∗kAk

)
|ψ〉 = 〈ψ|ψ〉 = 1. (52)

The more general case where ρ is a mixed state can by analyzed by averaging over

pure states.

Exercise 2.1 (straightforward). Show that, for an arbitrary d2×d2 density matrix ρ,

it holds that Tr(AkρA
∗
k) ≥ 0 (for all k) and

∑m−1
k=0 Tr(AkρA

∗
k) = 1. Also show that

(AkρAk)/Tr(AkρA
∗
k) is a valid density matrix (for all k).

Next, we’ll see some measurements expressed in terms of Kraus operators.
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2.1.1 Computational basis measurements

Let us begin with the basic measurement with respect to the computational basis. For

a d-dimensional system, the computational basis is |0〉 , |1〉 , . . . , |d− 1〉. To express

this measurement in the Kraus form, set

Ak = |k〉〈k| (53)

for each k ∈ {0, 1, . . . , d− 1}. It’s easy to check that these are valid Kraus operators,

in the sense of Definition 2.1.

Exercise 2.2. Show that A0, A1, . . . , Ad−1, as defined as in Eq. (53), are valid Kraus

operators.

For Ak, as defined as in Eq. (53), it holds that

Tr(AkρA
∗
k) = Tr(|k〉〈k| ρ |k〉〈k|) = Tr(〈k|k〉 〈k| ρ |k〉) = 〈k| ρ |k〉 (54)

and

AkρA
∗
k

Tr(AkρA∗k)
=
|k〉 〈k| ρ |k〉 〈k|
〈k| ρ |k〉

= |k〉 〈k| (55)

(where we have used the fact that 〈k| ρ |k〉 is a scalar). This is consistent with our

definition of the measurement in the computational basis in section 1.2.2.

2.1.2 Projective measurements

A projective measurement is a measurement with respect to orthogonal subspaces. In

the case of pure states, the effect of such a measurement is for the state to project to

one of the subspaces, where the probabilities are the projection lengths squared.

These measurements were discussed in the notes [Part 1: A Primer for Beginners,

Section 8.1]. What follows is a description of these measurements in the Kraus form

using projectors.

Definition 2.2 (projector). A matrix Π is a projector if Π is normal and Π2 = Π.

Note that the eigenvalues of a projector are 0 or 1. Geometrically, if a projector is

applied to a vector then the result is its component in the 1-eigenspace.

Definition 2.3 (orthogonal and complete projectors). Let Π0,Π1, . . . ,Πm−1 ∈ Cd be

a sequence of projectors. The projectors are orthogonal if ΠjΠk = 0 (the zero matrix)

for all j 6= k. The projectors are complete if Π0 + Π1 + · · ·+ Πm−1 = I.
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Here’s a simple example of orthogonal and complete projectors in C3.

Figure 4: Π0 = |0〉〈0|+ |1〉〈1| and Π1 = |2〉〈2| are orthogonal and complete projectors in C3.

It’s easy to see that any sequence of orthogonal and complete projectors are Kraus

operators.

Exercise 2.3. Show that if Π0,Π1, . . . ,Πm−1 are orthogonal and complete projectors

then they are Kraus operators, in that they satisfy Eq. (49).

Therefore, a sequence of orthogonal and complete projectors defines a measurement

in the Kraus form. The probability of outcome k is Tr(ΠkρΠk) = Tr(ρΠk).

Let’s look at what these measurements do for pure states. If ρ = |ψ〉〈ψ| then

Tr(ρΠk) = Tr
(
|ψ〉 〈ψ|Πk

)
(56)

= 〈ψ|Πk |ψ〉 (57)

=
∣∣Πk |ψ〉

∣∣2, (58)

which is the projection length squared of |ψ〉 to the 1-eigenspace of Πk. And the

corresponding residual state can be shown to be Πk |ψ〉 normalized.

2.1.3 Measuring the first of two registers

Suppose that we have a system consisting of two registers, with respective dimensions

d1 and d2.

Figure 5: A system consisting of a d1-dimensional register and a d2-dimensional register.
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All the pure states on this combined system are d1d2-dimensional vectors and the

density matrices are in d1d2 × d1d2 matrices. A measurement of the first register in

the computational basis can be defined along the lines of the notes [Part 1: A Primer

for Beginners, Section 8.2]. In the language of Kraus operators, we can define this

measurement as follows. Let |0〉 , |1〉 , . . . , |d1 − 1〉 be the computational basis for the

first register and set the Kraus operators to be

Ak =
(
|k〉〈k|

)
⊗ I, (59)

for k ∈ {0, 1, . . . , d1 − 1} (where I denotes the d2 × d2 identity matrix). Following

Eq. (50), for each k ∈ {0, 1, . . . , d1}, the output can be shown to be5(
k , |k〉〈k| ⊗

(
〈k| ⊗ I

)
ρ
(
|k〉 ⊗ I

)
Tr
((
〈k| ⊗ I

)
ρ
(
|k〉 ⊗ I

))
)

(60)

with probability Tr
((
〈k| ⊗ I

)
ρ
(
|k〉 ⊗ I

))
.

2.1.4 Trine state measurement

So far, all the Kraus measurements that we’ve seen are projective measurements.

However, Kraus measurements need not be projective, as the next example shows.

Let’s begin by considering the problem of distinguishing between the trine states

|φ0〉 = |0〉 (61)

|φ1〉 = −1
2
|0〉+

√
3
2
|1〉 (62)

|φ2〉 = −1
2
|0〉 −

√
3
2
|1〉 , (63)

which are three vectors in C2, with angle 120◦ between each pair.

Figure 6: The trine states in C2.

5The key step is that
(
|ψ〉〈ψ| ⊗ I

)
ρ
(
|ψ〉〈ψ| ⊗ I

)
=
(
|ψ〉 ⊗ I

)((
〈ψ| ⊗ I

)
ρ
(
|ψ〉 ⊗ I

))(
〈ψ| ⊗ I

)
= |ψ〉〈ψ| ⊗

((
〈ψ| ⊗ I

)
ρ
(
|ψ〉 ⊗ I

))
.
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Suppose that we’re given one of these states (we’re not told which one) and our goal is

to perform a measurement that guesses the state correctly with as high a probability

as possible. It turns out the optimal performance (for a worst-case input state) cannot

attained by any projective measurement in C2.

Define these three Kraus operators

A0 =
√

2
3
|φ0〉 〈φ0| =

[√
2/3 0

0 0

]
(64)

A1 =
√

2
3
|φ1〉 〈φ1| =

1

4

[√
2/3 −

√
2

−
√

2
√

6

]
(65)

A2 =
√

2
3
|φ2〉 〈φ2| =

1

4

[√
2/3

√
2

√
2

√
6

]
. (66)

Notice that these are not projectors (because of the factor
√

2/3 ), and they are

not orthogonal. Nevertheless, since A∗0A0 + A∗1A1 + A∗2A2 = I, these are valid Kraus

operators. Using this measurement for the trine state distinguishing problem results in

success probability 2
3
. This is not achievable using projective measurements (however,

it is achievable using one of the so-called exotic measurements, where the system is

embedded into a larger dimensional space before a projective measurement).

2.2 Quantum channels via Kraus operators

For a sequence of Kraus operators, A0, A2, . . . , Am−1 ∈ Cd1×d2 define the following

state transformation, called a quantum channel, which maps quantum states to quan-

tum states with no classsical side information.

Input to the channel: is a d2-dimensional quantum system, whose state can be

described by a d2 × d2 density matrix ρ.

Output of the channel: is a d1-dimensional quantum system, whose state is

A0ρA
∗
0 + A1ρA

∗
1 + · · ·+ Am−1ρA

∗
m−1. (67)

2.2.1 Unitary operations

Any d × d unitary operation U corresponds to a quantum channel with one single

Kraus operator U . The channel maps each d× d density matrix ρ maps ρ to UρU∗.

We can think of quantum channels as generalizations of unitary operations.
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2.2.2 Decoherence of a qubit

I will first explain what this channel does, and then show you two different ways of

“implementing” the channel in terms of Kraus operators. The decoherence channel

changes the state of its input qubit from

ρ =

[
ρ00 ρ01
ρ10 ρ11

]
to

[
ρ00 0

0 ρ11

]
. (68)

The diagonal density matrix can be viewed as a probabilistic mixture of |0〉〈0| and

|1〉〈1|. On the Bloch sphere, the diagonal density matrices are on the axis connecting

|0〉〈0| and |1〉〈1|. The effect of the channel is to move the state “horizontally” (i.e.,

parallel to the equatorial plane) to the vertical axis connecting |0〉〈0| and |1〉〈1|.

Figure 7: Effect of the decoherence channel on pure state |ψ〉〈ψ|.

I will show you two operationally different ways of implementing this channel.

Measuring without looking at the outcome

Our first way of implementing the decoherence channel can be intuitively thought of as

measuring the qubit in the computational basis—but without looking at the classical

outcome. We might imagine that Bob performs the measurement, but covers his eyes

so that he doesn’t see the classical outcome. But let’s think about it this way: Bob

sends the qubit to Alice, who performs the measurement (and sees the outcome) and

then Alice sends the qubit back to Bob, but she does not send him the classical output

of the measurement.
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The quantum part of the outcome of Alice’s measurement is{
|0〉 with prob. 〈0| ρ |0〉
|1〉 with prob. 〈1| ρ |1〉.

(69)

Since Alice obtains the classical outcome, from her perspective, the quantum outcome

is always either |0〉〈0| or |1〉〈1|. But Bob does not receive the classical outcome so,

from his perspective, the quantum outcome is the density matrix

〈0|ρ|0〉 |1〉〈1|+ 〈1|ρ|1〉 |1〉〈1| . (70)

This can be expressed in the Kraus form by setting the Kraus operators of a

quantum channel to |0〉〈0| and |1〉〈1|. Then a density matrix ρ = [
ρ00 ρ01
ρ10 ρ11 ] maps to[

1 0

0 0

] [
ρ00 ρ01
ρ10 ρ11

] [
1 0

0 0

]
+

[
0 0

0 1

] [
ρ00 ρ01
ρ10 ρ11

] [
0 0

0 1

]
=

[
ρ00 0

0 ρ11

]
. (71)

Probabilistic mixture of I and Z

Another way of implementing the decoherence channel is intuitively based on applying

a randomly selected unitary to the state. Bob sends the qubit to Alice, who does the

following. She flips a fair coin, and then either applies I or Z to the qubit, depending

on the outcome of the coin flip. Then she sends the qubit back to Bob, but she does

not reveal the coin flip.

Since Alice knows outcome of the coin flip, from her perspective, the state is either

ρ or ZρZ. But Bob does not know the coin flip so, from his perspective, the state is{
ρ with prob. 1

2

ZρZ with prob. 1
2
.

(72)

and the density matrix of this mixture is

1
2
ρ+ 1

2
ZρZ. (73)

This can be expressed in the Kraus form by setting the Kraus operators of a quantum

channel to 1√
2
I and 1√

2
Z. Then a density matrix ρ = [

ρ00 ρ01
ρ10 ρ11 ] maps to(

1√
2
I
)
ρ
(

1√
2
I
)∗

+
(

1√
2
Z
)
ρ
(

1√
2
Z
)∗

= 1
2
ρ+ 1

2
ZρZ (74)

= 1
2

[
ρ00 ρ01
ρ10 ρ11

]
+ 1

2

[
1 0

0 −1

] [
ρ00 ρ01
ρ10 ρ11

] [
1 0

0 −1

]
(75)

=

[
ρ00 0

0 ρ11

]
. (76)
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Comparison of the two implementations of the decoherence channel

From Bob’s perspective, who doesn’t receive any classical measurement outcomes or

coin flip outcomes, the two implementations of the decoherence channel are identical.

However, they are not literally the same. In the first implementation, the state is

actually measured and it cannot be recovered at a later time, even with the classical

information that Alice has. In the second implementation, Alice performs no mea-

surement. If, at some later time, she reveals the coin flip to Bob then he can recover

the initial state (by applying either I or Z to the state).

So there’s an advantage to the second implementation. But there is also a dis-

advantage: if Bob asks Alice later on “what was the measurement outcome?”, she

cannot answer that question. There is no classical bit b ∈ {0, 1} that Alice can pro-

duce and send to Bob such that, if Bob then measures his decohered state in the

computational basis, the outcome is guaranteed to be b.

Exercise 2.4 (conceptual). Suppose that Bob believes that he has figured out a new

way of measuring a qubit that is reversible. His idea is to first implement the random

unitary method to create the decohered state, which can serve as the quantum outcome

(remembering what the coin flip is, so that the can undo the unitary later on). Now

all that’s lacking is that classical outcome. Bob’s idea is to measure the decohered

qubit in the computational basis to obtain a bit that can serve as the the classical

outcome of the measurement. Will doing all this result in a faithful simulation of the

measurement operation? And, after all these operations have been performed, is there

a way for Bob to recover the original state?

2.2.3 General measurement without seeing the outcome

For any sequence of Kraus operators A0, A2, . . . , Am−1, we have defined an associated

measurement in section 2.1 and an associated channel in section 2.2. The associated

channel can always be interpreted as performing the associated measurement without

looking at the classical outcome.

2.2.4 General mixed unitary channels

For any sequence of unitary operations U0, U1, . . . , Um−1 with associated probabilities

p0, p1, . . . , pm−1, consider the operation where k ∈ {0, 1 . . . ,m−1} is randomly chosen

according to probabilities p0, p1, . . . , pm−1 and then Uk is applied. If the selected k is
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not revealed then this procedure maps any input state ρ to the output state

p0 U0 ρU
∗
0 + p1 U1 ρU

∗
1 + · · · + pm−1 Um−1 ρU

∗
m−1. (77)

This is easy to express in the Kraus form, by setting the Kraus operators to

Ak =
√
pk Uk (78)

for k ∈ {0, 1, . . . ,m− 1}.

Exercise 2.5 (may be challenging). Can every quantum channel, as defined in

Eq. (67), be expressed as a probability distribution on a set of unitary operations?

Either prove this to be the case or give a counterexample.

2.2.5 Adding an ancilla

A natural quantum operation is to append an ancilla in state |ψ〉 after a register. Let

|ψ〉 be d2-dimensional. The input to this operation is a d1-dimensional system, whose

state is described by a d1 × d1 density matrix ρ. The output is a d1d2-dimensional

system, whose state is ρ⊗
(
|ψ〉〈ψ|

)
.

Figure 8: The operation of appending an ancilla in state |ψ〉 after a register.

This can be expressed as a channel in the Kraus form with one Kraus operator

A0 = I ⊗ |ψ〉 . (79)

Applying the channel to state ρ ∈ Cd1×d1 produces the state

A0ρA
∗
0 =

(
I ⊗ |ψ〉

)
ρ
(
I ⊗ 〈ψ|

)
(80)

=
(
I ⊗ |ψ〉

)(
ρ⊗ [ 1 ]

)(
I ⊗ 〈ψ|

)
where [ 1 ] is a 1×1 matrix (81)

=
(
IρI
)
⊗
(
|ψ〉 [ 1 ] 〈ψ|

)
(82)

= ρ⊗
(
|ψ〉〈ψ|

)
. (83)

(The insertion of the 1×1 matrix [ 1 ] above is an optional step to make the product

easier to parse in a form where the identity (A⊗B)(C ⊗D) = (AC)⊗ (BD) can be

applied [Part 1: A Primer for Beginners, Section 6.6, Lemma 6.1].)
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An explicit example is the addition of an ancilla in state |0〉 after a qubit. This is

accomplished by the Kraus operator

A0 =

[
1 0

0 1

]
⊗
[
1

0

]
=


1 0

0 0

0 1

0 0

 . (84)

Note that we have addressed the case of adding an ancilla in a pure state. What if

we want to add an ancilla in a mixed state? I leave this as an exercise.

Exercise 2.6. Suppose that we want to add an ancilla in the mixed state σ ∈ Cd2×d2

to the end of a d1-dimensional system. Show how to express this as a quantum channel

in the Kraus form.

2.2.6 Partial trace

Suppose that Bob is in possession of a system consisting of two registers. Let his

first register be d1-dimensional and his second register be d2-dimensional. Suppose

that Bob wants to discard his first register. What does this mean? Intuitively, we

can imagine that Bob sends his first register to a faraway place where he will never

access it again. Another way of thinking about this is that the first register doesn’t

move, but Bob decides to henceforth completely ignore it. He ghosts his first register.

What’s the state of Bob’s remaining register?

Figure 9: Tracing out the first of two registers.

This question arose the context of pure states in the notes [Part 1: A Primer for

Beginners, Section 6.3]. If one restricts to pure states (representable as unit vectors)

then subsystems might not have states of their own. For example, there is no pure

state that captures the state of the second qubit of the Bell state 1√
2
|00〉+ 1√

2
|11〉.

However, we are now working in a broader context that includes mixed states

(representable as density matrices). In this broader context, subsystems always have

well-defined states of their own. The states of subsystems are captured by a quantum

channel called the partial trace.
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One way of deriving the definition of the partial trace is to use the fact that

what happens to the discarded system is inconsequential to the remaining system. In

particular, there is no harm in measuring the discarded system in some orthonormal

basis, say |0〉 , |1〉 , . . . , |d1 − 1〉 (and not looking at the classical or quantum outcomes

of the measurement). Following Eq. (59), the quantum channel corresponding to this

measurement (without looking at the classical outcome) has Kraus operators

|k〉〈k| ⊗ I, (85)

for k ∈ {0, 1, . . . , d1−1}. But the output of this channel includes the residual quantum

state of the first register (see Eq. (60)). To eradicate this residual state, we modify

the Kraus operators to

〈k| ⊗ I. (86)

It’s easy to check that 〈0|⊗I, 〈1|⊗I, . . . , 〈d1−1|⊗I are valid Kraus operators and

the quantum channel that they define is the partial trace.

Definition 2.4 (partial trace). This definition is in the context of a system with a

d1-dimensional register and a d2-dimensional register. There are two partial traces.

The partial trace Tr1 : Cd1d2×d1d2 → Cd2×d2 is defined as, for all ρ ∈ Cd1d2×d1d2,

Tr1(ρ) =

d1−1∑
k=0

(
〈k| ⊗ I

)
ρ
(
|k〉 ⊗ I

)
. (87)

And the partial trace Tr2 : Cd1d2×d1d2 → Cd1×d1 is defined as, for all ρ ∈ Cd1d2×d1d2,

Tr2(ρ) =

d2−1∑
k=0

(
I ⊗ 〈k|

)
ρ
(
I ⊗ |k〉

)
. (88)

The subscript of Tr denotes which system is being traced out. In the above definition,

the measurement is with respect to the computational basis, but the channel is the

same if a different orthonormal basis is used.

Recall that the trace of a square matrix is the sum of its diagonal entries. We can

also call this the full trace and its definition can be written as Tr(ρ) =
∑d−1

k=0 〈k| ρ |k〉.
And the entries of the partial trace of ρ are sums of the matrix entries of ρ.
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For the case of two 1-qubit registers,

Tr1


ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11
ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11

 =

[
ρ00,00 + ρ10,10 ρ00,01 + ρ10,11
ρ01,00 + ρ11,10 ρ01,01 + ρ11,11

]
(89)

Tr2


ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11
ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11

 =

[
ρ00,00 + ρ01,01 ρ00,10 + ρ01,11
ρ10,00 + ρ11,01 ρ10,10 + ρ11,11

]
. (90)

It should be noted that, although a measurement was introduced to derive6 the

formulas for the partial trace, the measurement does not have to occur. If one register

is discarded then the state of the other register is given by the formula for the partial

trace whether or not the discarded register is measured.

Now, let’s calculate the state of the second qubit of the Bell state 1√
2
|00〉+ 1√

2
|11〉.

Applying the formula in Eq. (89) to the density matrix of the state, we obtain

Tr1

((
1√
2
|00〉+ 1√

2
|11〉

)(
1√
2
〈00|+ 1√

2
〈11|

))
= Tr1


1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2

 (91)

=

[
1
2

0

0 1
2

]
. (92)

There’s something remarkable about this. Until now, all our mixed states have been

expressed as probabilistic mixtures of pure states. However, a mixed state can arise

from a process without any explicit occurrence of randomness or measurement. For

the pure state 1√
2
|00〉+ 1√

2
|11〉, the state of each of its individual qubits is

[ 1
2

0

0 1
2

]
.

6An alternative way of deriving the formula for Tr1 : Cd1d2×d1d2 → Cd2×d2 is to define Tr1 as the

unique linear operator with the property that, for all ρ ∈ Cd1×d1 and σ ∈ Cd2×d2 , Tr1(ρ⊗σ) = Tr(ρ)σ.
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3 State transitions in the Stinespring form

In the previous section, I showed you how to express quantum measurements and

quantum channels in terms of Kraus operators. In this section, I’m going to show

you another form for expressing state transitions, called the Stinespring form.

3.1 Measurements in the Stinespring form

Imagine that the input state is a d-dimensional register. First, we append an m-

dimensional ancilla register in some computational basis state, say |0〉. The combined

system is md-dimensional. Next, we apply some md × md unitary operation U to

the combined system. Finally, we measure one register in the computational basis,

yielding a classical outcome k and a residual quantum state in the other register.

Figure 10: Quantum circuit for a measurement in the Stinespring form.

It’s natural for the dimensions of the registers coming out of U to be the same as

those of the registers going in (` = m and c = d). But we allow for the dimensions

of the outgoing registers to be different, as long as the total dimension is the same

(md = `c). To get a feeling for this, consider the case where all the dimensions are

powers of 2. In that case, we can assume that each register is a bunch of qubits.

Figure 11: Quantum circuit on qubits for a measurement in the Stinespring form.

In this example, the input state is 5 qubits, whereas the residual outgoing state is 4

qubits. Also, the ancilla is 2 qubits, whereas the number of qubits that are measured
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is 3. As long as the total number of qubits going into U and coming out of U is

preserved, this makes perfect sense.

Also, note that some of the dimensions can be 1. A 1-dimensional register is

essentially the same as no register. A 1×1 density matrix is
[

1
]

and
[

1
]
⊗ ρ = ρ.

For example, for a measurement in an orthonormal basis specified by U , a very strict

translation into the form of figure 11 is obtained by setting m = c = 1 and ` = d

(where U = I in the case of the computational basis).

Figure 12: Measurement with respect to an orthonormal basis specified by U .

But figure 12 is pedantic, and we can freely omit the wires of dimension 1 (and omit

any I gates). With this relaxation, we can denote a measurement with respect to an

orthonormal basis in the Stinespring form as follows.

Figure 13: Measurement with respect to the computational basis and a basis specified by U .

Remember the “exotic measurements” in the notes [Part 1: A Primer for Begin-

ners, Section 9]? It should be clear that those measurements are subsumed by these

Stinespring measurements.

Figure 14: Exotic measurement in the Stinespring form.

3.2 Channels in the Stinespring form

As we noted earlier, one way of thinking about a channel is as a measurement where

we don’t look at the classical part of the outcome. So we could define Stinespring

channels that way. We’ll do that, but we’ll simplify things by noting that, if we’re
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not going to see the classical outcome then, instead of performing the measurement,

we can trace out that register, like this.

Figure 15: Quantum circuit for a channel in the Stinespring form.

Notice the circuit notation that I’m using here for tracing out a register: the imagery

is supposed evoke that the register is tossed away.

Here are some of our most basic channels in the Stinespring form (loosely in the

form of figure 15).

Figure 16: Unitary channel, add ancilla |0〉〈0| channel, and partial trace Tr1 channel.

All these channels are rather trivial examples. In the next subsections, we review

some more interesting examples.

3.2.1 Decoherence of a qubit

The qubit decoherence channel was defined in the Kraus form in section 2.2.2. The

output of this channel corresponds to the residual state when a qubit is measured in

the computational basis (but where we don’t see the classical part of the outcome).

Here’s a Stinespring circuit for the decoherence channel.

Figure 17: Decoherence of a qubit channel.

How does this work? Consider the case of a pure state α0 |0〉 + α1 |1〉. The CNOT

gate causes the state of the two qubits to become α0 |00〉 + α1 |11〉, and tracing out
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the first qubit yields the mixed state[
|α0|2 0

0 |α1|2

]
= |α0|2 |0〉〈0|+ |α1|2 |1〉〈1| , (93)

which is consistent with the definition of this channel. So at least this works for the

special case of pure states.

Exercise 3.1 (easy). Show that the circuit in figure 17 implements the decoherence

channel, as defined in section 2.2.2.

3.2.2 Reset channel

Here’s a very simple channel that I haven’t mentioned before, that I’ll call the reset

channel. The input is a qubit and the output is a qubit in state |0〉 (regardless of

what the input state is). Here’s a very simple Stinespring circuit for this.

Figure 18: Circuit for the reset channel (with two different notations for the SWAP gate).

It’s obvious that this circuit works: it traces out the input qubit and produces a qubit

in state |0〉 as output. The following question about the reset channel is non-trivial.

Exercise 3.2. Express the reset circuit in the Kraus form (in terms of Kraus opera-

tors). (Hint: two Kraus operators suffice.)

Later in this section, we will see recipes for converting between the Stinespring form

and the Kraus form, but there is a simple solution to the above which you might try

to discover directly.

3.2.3 Depolarizing channel

The depolarizing channel is fundamental, and used as a natural model of noise. We’ll

be seeing more of this channel when we get to the subject of quantum error-correcting

codes. The channel is parameterized by p ∈ [0, 1], and it maps an input qubit in state

ρ ∈ C2×2 to an output qubit in state

pρ+ (1− p)
[
1
2

0

0 1
2

]
. (94)
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In other words, with probability p, the state is left alone and with probability 1 − p
the state is changed to the maximally mixed state

[ 1
2

0

0 1
2

]
. Here’s what the effect of

this channel looks like on the Bloch sphere.

Figure 19: Effect of depolarizing channel on pure state |ψ〉〈ψ|.

The maximally mixed state is at the centre of the Bloch sphere. The channel moves

states towards the centre. In fact, the channel shrinks the entire Bloch sphere by a

factor of p towards the centre.

Can we represent this channel in Stinespring form? Here’s one Stinespring circuit

for this channel, where R =
[√1−p −√p
√
p
√
1−p

]
.

Figure 20: The depolarizing channel in the Stinespring form.

At first glance, this circuit may look complicated. But we can understand it by first

looking at the two middle qubits. The H and CNOT gate are manufacturing a Bell

state 1√
2
|00〉 + 1√

2
|11〉. Note that each qubit of the Bell state is in state

[ 1
2

0

0 1
2

]
.

Then the rest of the circuit applies{
SWAP with prob. p

I with prob. 1− p.
(95)

This can be seen by noting that the circuit is equivalent to this.
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Figure 21: An equivalent circuit for the depolarizing channel.

Notice that this Stinespring form uses three ancilla qubits. Can this channel be

constructed with fewer ancilla qubits?

A very easy way to reduce the ancilla to two qubits is to skip the Bell state and

just initialize one ancilla qubit to the mixed state 1
2
|0〉〈0|+ 1

2
|1〉〈1|. Technically, this

isn’t in the Stinespring form of figure 15, since that requires all ancilla qubits to be

initialized to a pure state. But a construction allowing an ancilla to be initialized to

a mixed state might nevertheless be useful in some contexts.

However, it turns out that there is a different Stinespring circuit for the depolariz-

ing channel that uses only two ancilla qubits initialized to state |00〉. The construction

is rather elegant, and I leave it as an exercise.

Exercise 3.3. Give a Stinespring form for the depolarizing channel that uses only

two ancilla qubits in initial state |00〉.

Is two qubits the optimal size of the ancilla? It turns out that one ancilla qubit is

not enough for the depolarizing channel.

Exercise 3.4. Prove that there is no Stinespring form for the depolarizing channel

that uses only one ancilla qubit.

And we can make more a fine-grained distinction regarding the size of the ancilla:

what if the ancilla is allowed to be a qutrit?

Exercise 3.5. Is there a Stinespring form for the depolarizing channel that uses one

qutrit as ancilla? Justify your answer.

3.3 Equivalence of Kraus and Stinespring channels

Recall from Definition 2.1 that A0, A1, . . . , A`−1 is a sequence of Kraus operators if

`−1∑
k=0

A∗kAk = I. (96)
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Associated with any sequence of Kraus operators, we have two transformations: a

Kraus measurement and a Kraus channel. We’re now going to prove two theorems.

Theorem 3.1 (Kraus to Stinespring). Any transformation in the Kraus form can be

simulated in the Stinespring form.

Theorem 3.2 (Stinespring to Kraus). Any transformation in the Stinespring form

can be simulated in the Kraus form.

3.3.1 Kraus to Stinespring

In this section we prove Theorem 3.1. For Kraus operators A0, A1, . . . , A`−1 ∈ Cc×d,

consider the block matrix 
A0

A1

...

A`−1

 , (97)

which is an `c× d matrix. The columns of this matrix are orthonormal because

[
A∗0 A∗1 · · · A∗`−1

]
A0

A1

...

A`−1

 =
`−1∑
k=0

A∗kAk = I. (98)

One consequence of this is that d ≤ `c. Otherwise, the number of orthonormal

vectors would have to exceed the dimension of the space in which they exist, which

is impossible.

So we have ` Kraus operators that are c × d matrices and d ≤ `c. To make the

dimensions work out nicely, I’d like to assume that d divides `c. For this to hold, we

might have to increase `. It’s straightforward to show that this can be done, where

the new value of ` is less than double the original value of `. If ` is increased we can

add more Kraus operators that are zero matrices. Note that the larger set of matrices

are still Kraus operators. So we can assume that d divides `c and set m = `c
d

. Then

we have `c = md.

Now, consider to the block matrix in Eq. (97) of Kraus operators again. Since its

columns are orthonormal, we can extend this set of `c-dimensional column vectors

to be an orthonormal basis of size `c. If we add these column vectors to the block
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matrix, we end up with a square unitary matrix. Call this `c× `c matrix U , which is

of the form

U =


A0

A1

...

A`−1

∣∣∣∣∣∣∣∣∣W
 . (99)

Now consider this circuit.

Figure 22: Stinespring circuit (omitting the final measurement/trace-out stage).

The input to the circuit consists of two registers: an m-dimensional ancilla and our

d-dimensional input state. The circuit applies U to this. We can calculate the density

matrix of the output state as

U
(
|0〉〈0| ⊗ ρ

)
U∗ =


A0

A1

...

A`−1

∣∣∣∣∣∣∣∣∣W


ρ 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



A∗0 A∗1 · · · A∗`−1

W ∗
 (100)

=


A0ρ

A1ρ
...

A`−1ρ

∣∣∣∣∣∣∣∣∣ 0


A∗0 A∗1 · · · A∗`−1

W ∗
 (101)

=


A∗0ρA0 A∗0ρA1 · · · A∗0ρA`−1
A∗1ρA0 A∗1ρA1 · · · A∗1ρA`−1

...
...

. . .
...

A∗`−1ρA0 A∗`−1ρA1 · · · A∗`−1ρA`−1

 . (102)

For the Stinespring channel, the final step is to trace out the first register. This

partial trace is the sum of the c× c blocks along the diagonal, which is

`−1∑
k=0

AkρA
∗
k. (103)
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For the Stinesrping measurement, the final step is to measure the first register in the

computational basis. This measurement is defined in the Kraus form in section 2.1.3,

and it is straightforward to deduce that the probability that the outcome of this

measurement is k is Tr(AkρA
∗
k).

3.3.2 Stinepring to Kraus

In this section I give a brief overview of the proof of Theorem 3.2. The Stinespring

form consists of three stages. The first two are: adding an ancilla in state |0〉; and

then applying a unitary operation U . The third stage is the partial trace for the

Stinespring channel, and the measurement of the first register for the Stinespring

measurement. Note that, in section 2, we have Kraus forms for each of these individual

operations. We can compose these Kraus forms to obtain a Kraus channel from a

Stinespring channel. And we can compose them to obtain a Kraus measurement from

a Stinespring measurement.

3.4 Unifying measurements and channels

I have been describing state transitions as if there’s a clear dichotomy between mea-

surements and channels. You either measure and get a classical outcome and a

residual state or you apply a channel and get just a quantum state as outcome. In

fact, there’s a general notion that unifies these.

Let f : {0, 1, . . . , `− 1} → T be some function. Suppose that we apply the Kraus

measurement and then apply f to the classical outcome. So the classical outcome

is f(k), rather than k.

Figure 23: Generalized quantum transformation.

If f is a constant function, then seeing f(k) provides us with no information about k.

So that corresponds to the case of a channel. The other extreme case is where f is

a bijection, for which knowing f(k) provides full information about k. And there are

in-between cases where f is not constant nor a bijection. In those cases, we receive

partial information about k. The classical outcome f(k) might narrow down the

possible values of k, but without uniquely determining k.
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3.5 POVM measurements

A final topic concerns POVM measurements (POVM stands for positive operator

valued measure7). This is a simplified way of describing a Kraus measurement, that

works if we only care about the classical outcome (so we do not care about the residual

quantum state).

Recall that, for Kraus operators A0, A1, . . . , A`−1, the associated measurement of

a state ρ produces outcome k with probability

Tr(AkρA
∗
k) = Tr(ρA∗kAk). (104)

For each Kraus operator Ak, define Ek = A∗kAk. All we need to know is the sequence

E0, E1, . . . , E`−1 to define the classical part of the measurement outcome. And we

can characterize such sequences E0, E1, . . . , E`−1 in a simple way.

Definition 3.1 (POVM elements). A sequence E0, E1, . . . , E`−1 is a sequence of

POVM elements if, for all k, it holds that Ek is positive,8 and

E0 + E1 + · · ·+ E`−1 = I. (105)

For a sequence of POVM elements E0, E1, . . . , E`−1 and a quantum state ρ, applying

the associated POVM measurement produces outcome k ∈ {0, 1, . . . , ` − 1} with

probability Tr(ρEk).

o A word of caution: for a POVM measurement, there is no way to define a residual

quantum state. This is because we cannot uniquely deduce a set of underlying

Kraus operators from POVM elements. We can find an Ak such that Ek = A∗kAk,

but this Ak is not unique, and for a different choices of Ak the residual state is

different. So we should use Kraus operators if we want to be able to refer to the

quantum state after the measurement.

7Regarding terminology, a positive operator valued measure is a generalization of the notion of a

measure, that you may have seen in probability theory or functional analysis. The word “measure”

is distinct from “measurement”. So it makes sense to say “POVM measurement”.
8Meaning that Ek is normal and all its eigenvalues are nonnegative reals.
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