
Quantum Information Processing

Quantum Algorithms (I)

Richard Cleve

Institute for Quantum Computing & Cheriton School of Computer Science

University of Waterloo

September 22, 2021

Abstract

The goal of these notes is to explain the basics of quantum information pro-

cessing, with intuition and technical definitions, in a manner that is accessible

to anyone with a solid understanding of linear algebra and probability theory.

These are lecture notes for the second part of a course entitled “Quan-

tum Information Processing” (with numberings QIC 710, CS 768, PHYS 767,

CO 681, AM 871, PM 871 at the University of Waterloo). The other parts of

the course are: a primer for beginners, quantum information theory, and quan-

tum cryptography. The course web site http://cleve.iqc.uwaterloo.ca/qic710

contains other course materials, including video lectures.

I welcome feedback about errors or any other comments. This can be sent to

cleve@uwaterloo.ca (with “Lecture notes” in subject heading, if at all possible).

© 2021 by Richard Cleve. All rights reserved.

1

Contents

1 Classical and quantum algorithms as circuits 3

1.1 Classical logic gates . 3

1.2 Computing the majority of a string of bits 4

1.3 Classical algorithms as logic circuits 6

1.4 Multiplication problem and factoring problem 6

1.5 Quantum algorithms as quantum circuits 8

2 Simulations between quantum and classical 8

2.1 The Toffoli gate . 9

2.2 Quantum circuits simulating classical circuits 10

2.3 Classical circuits simulating quantum circuits 13

3 A brief look at computational complexity classes 15

4 The black-box model 16

4.1 Classical black-box queries . 16

4.2 Quantum black-box queries . 17

5 Simple quantum algorithms in black-box model 20

5.1 Deutsch’s problem . 20

5.2 One-out-of-four search . 24

5.3 Constant vs. balanced . 26

5.4 Probabilistic vs. quantum query complexity 29

6 Simon’s problem 30

6.1 Definition of Simon’s Problem . 31

6.2 Classical query cost of Simon’s problem 32

6.2.1 Proof of classical lower bound for Simon’s problem 34

6.3 Quantum algorithm for Simon’s problem 36

6.3.1 Understanding H ⊗H ⊗ · · · ⊗H 36

6.3.2 Viewing {0, 1}n as a discrete vector space 37

6.3.3 Simon’s algorithm . 38

6.4 Significance of Simon’s problem . 43

2

1 Classical and quantum algorithms as circuits

In this section, we’ll see see a basic picture of classical and quantum algorithms as

circuits. We’ll consider simulations between classical and quantum circuits and we’ll

see the Toffoli gate.

1.1 Classical logic gates

Recall that the NOT gate takes one bit as input and outputs the logical negation of

the bit.

a ¬a
0 1

1 0

Figure 1: Table of input/output values of the NOT gate.

Here is the traditional notation for the gate that’s used in electrical engineering logic

diagrams, followed by more modern ways of denoting the gate.

Figure 2: Three notations for the NOT gate.

The logical AND gate takes two input bits and produces one output bit, which is 1 if

and only if both input bits are 1.

ab a ∧ b
00 0

01 0

10 0

11 1

Figure 3: Table of input/output values of the AND gate.

3

Here is the traditional electrical engineering notation for the AND gate followed by

more modern notation.

Figure 4: Two notations for the AND gate.

The fan-out operation is is often implicitly used in circuit diagrams. It’s essentially a

copying operation, whose output bits are multiple copies of its input bit. Recall that

it’s possible to copy classical information.

Figure 5: Notation for fan-out: of an input bit (left), and of the output of a gate (right).

What about the logical OR gate? We don’t need it as one of our fundamental

operations because it can be simulated by three NOT gates and one AND gate using

DeMorgan’s Law

a ∨ b = ¬(¬a ∧ ¬b). (1)

Similarly, we don’t need an XOR gate as a fundamental operation, which I leave as

an exercise.

Exercise 1.1. Define an XOR gate as mapping two input bits a and b to one output

bit a⊕ b. Show that an XOR gate can be simulated by AND and NOT gates.

1.2 Computing the majority of a string of bits

Every binary string of odd length has either more zeroes than ones or more ones than

zeroes. Define the majority of an odd-length string as the most common value. Here’s

a table of values of the majority function for 3-bit strings, denoted MAJ3.

4

a MAJ3(a)

000 0

001 0

010 0

011 1

100 0

101 1

110 1

111 1

Figure 6: Caption

Here’s a circuit that computes this majority function for 3-bit strings.

Figure 7: Classical circuit computing the majority value of three bits.

The input bits a1, a2, a3 are on the left, information flows from left to right, and the

output bit is b = MAJ3(a1, a2, a3). The circuit is based on this formula

MAJ(a1, a2, a3) = (a1 ∧ a2) ∨ (a1 ∧ a3) ∨ (a2 ∧ a3) , (2)

where the OR gates are simulated by NOT and AND gates. The total number of OR

and NOT gates is nine (and there are three implicit fan-out gates at the inputs).

Can you construct a classical circuit for the majority of odd-length strings larger

than three? What is the gate count of your construction as a function of the string

length? Does it grow polynomially or exponentially with respect to n?

Exercise 1.2 (level of difficulty depends on your prior familiarity with logic circuits).

Construct a classical circuit that computes the majority of n bits for arbitrarily large

odd n using a number of gates that scales polynomially with respect to n.

5

1.3 Classical algorithms as logic circuits

We can represent algorithms as logic circuits along the lines of this diagram.

Figure 8: Generic form of a classical circuit (information flows from left to right).

The inputs are on the left, time flows left to right and the outputs are on the right.

Classical computer algorithms are usually described in high level languages, but they

implicitly represent many low-level logic operations, like this circuit.

A reasonable overall cost measure is the number of gates. There are other measures

that we may care about such as the depth, which is the length of the longest path

from an input to an output. Or the width, which is the maximum number of gates at

any level, assuming that the gates are arranged in levels. But, to keep things simple,

let’s use the gate count as our main cost measure.

The number of gates depends on what the elementary operations are. We’ll take

these to be AND and NOT gates (and let’s not count the fan-out operations). What’s

important is that a gate does a constant amount of computational work. If we allowed

arbitrary gates then any circuit could be reduced to just one supergate, but the cost

of that one gate would not be very meaningful, since we expect large gates to be

expensive to implement.

1.4 Multiplication problem and factoring problem

Let’s consider the multiplication problem where one is given two n-bit binary integers

as input and the output is their product (a 2n-bit integer). For example, for inputs

101 and 111, the output should be 100011 (because the product of 5 and 7 is 35).

Think of the number of bits n as being quite large, larger than the number of

bits of the arithmetic logic unit of your computer. Do you know of an algorithm

for performing this? I believe that you do know such an algorithm, because you

learned one in grade school. In principle, you could multiply two numbers consisting

6

of thousands of digits by pencil and paper using that method. And it can be coded up

as an algorithm (commonly referred to as the grade school multiplication algorithm).

How efficient is this algorithm? Assuming you learned the algorithm that I did,

its running time scales quadratically in its input size. By quadratic, I mean some

constant times n2 (for sufficiently large n).

The constant depends on the exact gate set that you use and we’ll often use the

big-oh notation to suppress that.

Definition 1.1. For f, g : N→ N, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some constant

c > 0 (and for sufficiently large n).

Of course if we want to implement an algorithm then we do care about what the

constant multiple is. But if we’re looking at things theoretically then the big-oh

notation helps reduce clutter and focus attention on asymptotic growth rates, which

tend to be more important for large n.

There are more more efficient algorithms than the grade school method. The cur-

rent record is O(n log n) which is quite good. (There’s a rich history of multiplication

algorithms that evolved from O(n2) to O(n log n), but we won’t get into that here.)

Now, let’s look at the factoring problem, which can be roughly thought of as the

inverse of the multiplication problem. The input is an n-bit number and the output

is its prime factors. For example, for input 100011, the outputs are 101 and 111 (the

prime factors of 35).

You probably also learned this algorithm in grade school for factoring numbers:

First check if the number is divisible by 2. Then check for divisibility by 3. You can

skip 4, since that’s a multiple of 2. Then check 5, skip 6, check 7, and so on. You

can stop once you get to the square root of the number because if you haven’t found

a divisor by then, the number must be prime.

How expensive is this computationally? For large n, there are lots of divisors to

check, exponentially many. The cost is exponential in n, namely O(exp(n)). There are

more sophisticated algorithms than this method. The best currently-known classical

algorithm for factoring is the so-called number field sieve algorithm, which scales

exponentially in the cube root of n (to be more precise, exp(n1/3 log2/3(n))). Since

the cube root is in the exponent, this is still essentially exponential. There is no

currently-known classical algorithm for factoring whose cost scales polynomially with

respect to n.

In fact, the presumed difficulty of factoring is the basis of the security of many

cryptosystems.

7

1.5 Quantum algorithms as quantum circuits

Now let’s consider quantum circuits.

Figure 9: Generic form of a quantum circuit.

The input data is on the left, as computational basis states. Data flows from left to

right as a series of unitary gates. Then measurement gates occur at the end, which

yields the output of the computation.

Again, we can takes various cost measures for quantum circuits, such as the num-

ber of gates, the depth, or the width. Let’s focus on the number of gates. As with

classical circuits, we need a notion of what an elementary gate is. For now, let’s

consider the elementary gates to be the set of all 1-qubit and 2-qubit gates. We’ll

consider simpler gate sets later on.

Consider the factoring problem again. Peter Shor’s famous factoring algorithm

can be expressed as a quantum circuit for factoring that consists of O(n2 log n) gates—

a polynomial number of gates! An efficient implementation of this algorithm would

break several cryptosystems, whose security is based in the presumed computational

hardness of factoring.

2 Simulations between quantum and classical

It is natural to ask how the classical model of computation compares with the quantum

model of computation. Can quantum circuits simulate classical circuits? Can classical

circuits simulate quantum circuits? How efficient are the simulations?

For quantum circuits to simulate classical circuits, the Pauli X gate (that maps

|0〉 to |1〉 and |1〉 to |0〉 can be viewed as a NOT gate, but what quantum gate

corresponds to the AND gate? None of the operations that we’ve considered so far

has any resemblance to the AND gate. The Toffoli gate makes such a connection.

8

2.1 The Toffoli gate

I’d like to show you a 3-qubit gate called the Toffoli gate, which will be useful for

simulating AND gates. It’s denoted this way, like a CNOT gate, but with an additional

control qubit.

Figure 10: Toffoli gate acting on computational basis states (a, b, c ∈ {0, 1}).

On computational basis states |a〉, |b〉, and |c〉 it flips the third qubit if and only

if both of the control qubits are in state |1〉; otherwise it does nothing. The 8 × 8

unitary matrix for the gate is

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


. (3)

For arbitrary 3-qubit states, that are not necessarily computational basis states, the

action of the gate on the state is to multiply the state vector by this 8× 8 matrix.

The Toffoli gate is sometimes called the controlled-controlled-NOT gate. This

makes sense, because the Toffoli gate is a controlled-CNOT gate.

Figure 11: Toffoli gate is a controlled-CNOT gate (also a controlled-controlled-NOT gate).

9

2.2 Quantum circuits simulating classical circuits

Theorem 2.1. Any classical circuit of size s can be simulated by a quantum circuit

of size O(s), where the gates used are Pauli X, CNOT, and Toffoli.

Proof. We use Toffoli gates to simulate AND gates as illustrated in figure 12.

Figure 12: Using a Toffoli gate to simulate a classical AND gate.

Bits are represented as computational basis states in the natural way (bits a, b ∈ {0, 1}
are represented by |a〉 and |b〉). To compute the AND of a and b, a third ancilla qubit

in state |0〉 is added and then a Toffoli gate is applied as shown in figure 12. This

causes the state of the ancilla qubit to become |a ∧ b〉. The first two qubits can be

discarded, or just ignored for the rest of the computation. That’s how an AND gate

can be simulated.

To simulate NOT gates, we can use the Pauli X gate.

Figure 13: Using an X-gate to simulate a classical NOT gate.

Finally, we can explicitly simulate a fan-out gate by adding an ancilla in state |0〉
and apply a CNOT gate, as in figure 14.

Figure 14: Using a CNOT gate to simulate a classical fan-out gate.

10

Remember that circuit in figure 7 for computing the majority of 3 bits? Here’s a

quantum circuit that simulates that circuit using Toffoli gates for AND and X gates

for NOT.

Figure 15: Computing the majority of three bits using Toffoli and X gates.

The output is the last qubit. (Note how this quantum circuit does not need to

explicitly simulate the fan-out gates of the inputs.)

You may have noticed that we defined quantum circuits to be in terms of 1-qubit

and 2-qubit gates, but our simulation of classical circuits used 3-qubit gates: the

Toffoli gate. We can remedy this by simulating each each Toffoli gate by a series

2-qubit gates. I’m going to show how to do this.

To start, we will make use of a 2× 2 unitary matrix with the property that if you

square it you get the Pauli X. Since X is essentially the NOT gate, this matrix is

sometimes referred to as a “square root of NOT”. Note that, in classical information,

there is no square root of NOT, so the quantum square root of NOT can be regarded

as a curiosity. Let’s refer to this matrix as V .

Exercise 2.1 (straightforward). Find a 2× 2 unitary matrix V such that V 2 = X.

Henceforth, I’m going to assume that we have such a matrix V in hand. From this,

we can define a controlled-V gate. Also, we can define a controlled-V ∗ gate. Now,

consider the following circuit, consisting of 2-qubit gates.

Figure 16: Simulating a Toffoli gate in terms of 2-qubit gates.

11

I claim that it computes the Toffoli gate. How can we verify this?

Let’s discuss two possible approaches. The first approach has the advantage that

it’s completely mechanical. No creative idea is needed to carry it out. What you can

do is work out the 8 × 8 matrix corresponding to each gate and then multiply1 the

five matrices and see if the product is the matrix in Eq. (3) for the Toffoli gate.

A second approach is to try to find shortcuts based on the logic of the gates, to

avoid tedious calculations. In this case, note that it it sufficient to verify that the

circuits are equivalent in the case where the first two qubits are in computational

basis states |00〉, |01〉, |10〉, |11〉.
Consider the |00〉 case. In this case, none of the controlled-gates have any effect,

so the state on the third qubit doesn’t change—which is consistent with what the

Toffoli gate does in this case. What about the |01〉 case? Then none of the gates

controlled by the first qubit have any effect, so the circuit reduces to a controlled-V

followed by a controlled-V ∗, acting on the second and third qubits, which simplifies

to the identity (since V V ∗ = I). I’ll leave it to you to analyze the other two cases.

Exercise 2.2. Continue the analysis of the correctness of the circuit in figure 16 for

the cases where the control qubits are in state |10〉 and in state |11〉.

This kind of approach, when it can be made to work, has two advantages. It avoids

a tedious calculation. In addition, thinking about it this way, we can gain some

intuition about why the circuit works. In the future, if you need to design a quantum

circuit to achieve something, such intuition can be helpful.

Exercise 2.3 (Challenging). Show how to simulate a Toffoli gate using only CNOT

gates and 1-qubit gates. Thus, no controlled-U gates for U 6= X are allowed.

Some classical algorithms make use of random number generators and we have

not captured this in our definition of classical circuits. Say we allow our classical

algorithms to access random bits, that are zero with probability 1
2

and one with

probability 1
2
. Can we simulate such random bits with quantum circuits? This is

actually quite easy, since constructing a |+〉 state and measuring it yields a random

bit.

Figure 17: Using a Hadamard and a measurement gate to generate a classical random bit.

1A word of caution: gates go from left to right, but the corresponding matrix products go from

right to left (because we multiply vectors on the left by matrices).

12

But this entails an intermediate measurement. Our quantum circuits will not look

like the ones we defined earlier, where all the measurements are at the end. Can we

simulate random bits without the intermediate measurements? The answer is yes, by

the following construction.

Figure 18: Simulating random bits without using measurements.

Instead of measuring the qubit in the |+〉 state, we apply a CNOT gate to a target

qubit (an ancilla) in state |0〉. Then we ignore that ancilla qubit for the rest of

the computation. The final probabilities when the circuit is measured at the end

will be exactly the same as if a random bit had been inserted at that place in the

computation. I will leave this as an exercise for you to prove that this works.

Using our decomposition of the Toffoli gate into 2-qubit gates and our results about

simulating classical randomness, we can strengthen Theorem 2.1 to the following.

Corollary 2.1. Any classical probabilistic circuit of size s can be simulated by a

quantum circuit of size O(s), consisting of 1-qubit and 2-qubit gates.

2.3 Classical circuits simulating quantum circuits

Classical circuits can simulate quantum circuits but the only known constructions

have exponential overhead.

Theorem 2.2. A quantum circuit of size s acting on n qubits can be simulated by a

classical circuit of size O(sn22n).

Proof. The idea of the simulation is quite simple. An n-qubit state is a 2n-dimensional

vector
∑

x∈{0,1}n αx |x〉. Store the 2n in an array of size 2n, each with n-bits precision

(which means accuracy within 2−n).

13

α000

α001

α010

...

α111

Figure 19: 2n-dimensional array storing the amplitudes of state
∑

x∈{0,1}n

αx |x〉.

The initial state is a computational basis state. Each gate corresponds to 2n × 2n

matrix and the effect of the gate is to multiply the state vector by that matrix. In fact

that matrix will be sparse for 1-qubit gates and 2-qubit gates, with only a constant

number of nonzero entries for each row and each column. Therefore, there are a

constant number of arithmetic operations per entry of the array. Let’s allow O(n2)

elementary gates for each such arithmetic operation2 (on n-bit precision numbers).

The simulation cost is O(n22n) for each gate in the circuit. We multiply that by the

number of gates in the quantum circuit s to get a cost of O(sn22n). That’s the gate

cost to get the final state of the computation, just before the measurement.

What about the measurements? For this we, we compute the absolute value

squared of each entry of the array. Again, that’s 2n arithmetic operations. At this

point, the entries in the array are the probabilities after the measurement.

The output of the quantum circuit is not the probabilities; it’s a sample according

to the distribution. How do we generate that sample? First we sample the first bit

of the output, the probability that that this bit is 0 is the sum of the first half of

the entries of the array; the probability that bit is 1 is the sum of the second half.

Once we have the first bit, we can use a similar approach for the second bit, using

conditional probabilities, conditioned on the value of the first bit, and so on for the

other bits. This also costs O(n22n) elementary classical gates.

Note that if we take the quantum circuit that results from Shor’s algorithm and

then simulate it by a classical circuit then simulate that quantum circuit by a classical

circuit, the result is not very efficient. It’s expoenntial and in fact it it’s worse than

the best currently-known classical algorithm for factoring.

If we view the aforementioned simulation in the usual high-level language of algo-

rithms, it is exponential space in addition to exponential time (because it stores the

2Using simple grade-school algorithms for addition and multiplication.

14

huge array). In fact there’s a way to reduce the storage space to polynomial—while

maintaining exponential time.

Exercise 2.4 (challenge). Show how to do the above simulation as an algorithm using

only a polynomial amount of space (memory).

3 A brief look at computational complexity classes

On theoretical computer science, there are various taxonomies of computational prob-

lems according to their computational difficulty. I’ll briefly show you a few of these

and how the power of quantum computers fits in within this classification.

Consider all binary functions over the set of all binary strings (of the form f :

{0, 1}∗ → {0, 1}). The input is a binary string of some length n, where n can be

anything. And the output is one bit. These are sometimes called decision problems

since the answer is a binary decision, 0 or 1, yes or no, accept or reject. This is a

common convention for reasons of simplicity. Most problems that are not naturally

decision problems can be reworked to be expressed as decision problems.

P (polynomial time)

Solvable by O(nc)-size classical circuits3 (for some constant c).

BPP (bounded-error probabilistic polynomial time)

Solvable by O(nc)-size probabilistic classical circuits whose worst-case error

probability4 is ≤ 1
4
.

BQP (bounded-error quantum polynomial time)

Solvable by O(nc)-size quantum circuits with worst-case error probability ≤ 1
4
.

EXP (exponential time)

Solvable by O(2nc
)-size classical circuits.

The following containments among these complexity classes are known:

P ⊆ BPP ⊆ BQP ⊆ EXP. (4)

3Technically, we require uniform circuit families, one for each input size.
4There is some arbitrariness in the error bound 1

4 . Any polynomial-size circuit achieving this can

be converted into another circuit whose error probability is ≤ ε by repeating the process log(1/ε)

times and taking the majority value. Using 1
4 is simple, though any constant below 1

2 would work.

15

4 The black-box model

In the next few subsequent sections, we are going to see some simple quantum algo-

rithms in a framework called the black-box model. First, I’ll explain this computational

model.

4.1 Classical black-box queries

Imagine that f is some function that is unknown to us and we’re given a device that

enables us to evaluate f on any particular input, of our choosing, and that’s our only

way of acquiring information about f . Such a device is commonly called a black-box

for f .

Figure 20: A gate performing an f -query.

If we want to evaluate the function on some input x, we insert x into the black-box

and then the value of f(x) pops out, for us to see. We call this process of evaluating

the function at an input an f -query.

Now, suppose that we want to acquire some specific information about a func-

tion f , and that we want to do this with as few queries as possible. We can think

of this as a game, where we want to know something about an unknown function f ,

and we’re only allowed to ask questions like “what’s the value of f at point x?” for

any x of our choosing. How many such questions do we have to ask?

One example that illustrates the general idea is polynomial interpolation. Here,

one is given a black-box computing an unknown polynomial of degree up to d, and the

goal is to determine which polynomial it is. At how many points does the polynomial

have to be evaluated to accomplish this?

Figure 21: Interpolating linear and quadratic functions with as few queries as possible.

16

If f : R → R is an unknown linear function then one evaluation is insufficient for

determining what f is; however, two queries suffice. If f : R → R quadratic then

three evaluations are necessary and sufficient. In general, if f is a polynomial with

degree up to d then the number of queries that are necessary and sufficient is d+ 1.

We will focus our attention on functions over finite domains instead of R, such

as {0, 1}n. Let us begin by considering the simple case where we have an unknown

f : {0, 1} → {0, 1}. There are only four such functions and here are the tables of

values for each of them:

x f(x)

0 0

1 0

x f(x)

0 1

1 1

x f(x)

0 0

1 1

x f(x)

0 1

1 0

Figure 22: The four functions f : {0, 1} → {0, 1}.

Suppose that we’re given a black-box for such a function, but we don’t know of the

four functions it is.

Suppose that our goal is to determine whether:

• f(0) = f(1) (the first two cases in figure 22); or

• f(0) 6= f(1) (the last two cases in figure 22).

To be clear, we are not required to determine which of the four functions f is; just

whether it’s among the first two or the last two. How many queries do we need

to accomplish this? Please think about this. We will get back to this question in

section 5.1.

4.2 Quantum black-box queries

A classical query is along the lines of figure 20. We can set the input to any x

in the domain of f . Then we receive as output the value of f(x). Does it make

sense to define a quantum query? Let’s keep our attention on the simple case where

f : {0, 1} → {0, 1} (figure 22); we will consider more general cases later.

I first want to show you a näıve first attempt at defining a quantum query that

does not work. The classical query maps bits to bits. Define a quantum query

(mapping qubits to qubits) that correspondingly maps computational basis states to

computational basis states, as in figure 23.

17

Figure 23: Näıve attempt to define a quantum query—that doesn’t work!

For each of the four functions f : {0, 1} → {0, 1} in figure 22, here are the corre-

sponding mappings on computational basis states.

|a〉 |f(a)〉
|0〉 |0〉
|1〉 |0〉

|a〉 |f(a)〉
|0〉 |1〉
|1〉 |1〉

|a〉 |f(a)〉
|0〉 |0〉
|1〉 |1〉

|a〉 |f(a)〉
|0〉 |1〉
|1〉 |0〉

Figure 24: Input-output relationships for näıvely defined quantum query gate.

By linearity, we get these four linear operators.[
1 1

0 0

] [
0 0

1 1

] [
1 0

0 1

] [
0 1

1 0

]
(5)

The third and fourth are familiar unitary operations: the identity operation and the

Pauli X operation. But notice that the first two are not unitary operations. This

violation of unitarity is a serious problem. For example, the first two linear operators

both map the state |−〉 to the zero vector, a two-dimensional vector whose amplitudes

are both zero, which makes no sense as a quantum state. So this approach does not

work.

In order for a classical mapping to be quantizable in the above manner it must

be bijective. Then the underlying linear operator is given by a permutation matrix,

which is unitary.

We will first define a reversible classical f -query that is bijective whether or not

f itself is bijective. In the case where f : {0, 1} → {0, 1}, the reversible classical

f -query is the mapping {0, 1}2 → {0, 1}2 defined as (a, b) 7→ (a, b ⊕ f(a)) (for all

a, b ∈ {0, 1}). Here is notation for a reversible classical f -query.

Figure 25: Reversible classical f -query (for f : {0, 1} → {0, 1}).

18

Why is this mapping {0, 1}2 → {0, 1}2 bijective? One way to see this is to observe

that the mapping is its own inverse.

The reversible classical f -query is easy to quantize as the 2-qubit unitary operation

that maps |a〉 |b〉 to |a〉 |b⊕ f(a)〉 (for all a, b ∈ {0, 1}2). Here is notation for a

quantum f -query (in the case where f : {0, 1} → {0, 1}).

Figure 26: Quantum f -query (for f : {0, 1} → {0, 1}).

Note that the above defines the effect of the f -query on computational basis states.

This determines a unitary operator that defines the effect of the f -query on arbitrary

quantum states.

We can generalize the above definition to arbitrary functions f : {0, 1}n → {0, 1}m.

The f -query is a unitary operation acting on n+m qubits defined as follows.

Definition 4.1. Let function f : {0, 1}n → {0, 1}m. Then a quantum f -query is

defined as the unitary operation acting on n+m qubits with the property that, for all

a ∈ {0, 1}n and b ∈ {0, 1}m,

|a〉 |b〉 7→ |a〉 |b⊕ f(a)〉 , (6)

where b⊕ f(a) denotes the bit-wise5 XOR between the m-bit strings b and f(a).

Here is notation for a general quantum f -query.

Figure 27: Quantum f -query (for f : {0, 1}n → {0, 1}m).

5The bit-wise XOR between (b1, b2, . . . , bm) and (c1, c2, . . . , cm) is (b1⊕c1, b2⊕c2, . . . , bm⊕cm).

19

5 Simple quantum algorithms in black-box model

The simple quantum algorithms in this section are admittedly curiosities, rather than

practical algorithms. It’s hard to think of real-world applications that fit their frame-

work, and where it worth the trouble to build a quantum device to solve these prob-

lems. What you should pay attention to are the maneuvers that these quantum

algorithms make. After these algorithms, we’ll be seeing increasingly sophisticated

extensions of these maneuvers, that accomplish more dramatic algorithmic feats.

5.1 Deutsch’s problem

The first problem that we’ll consider involves functions f : {0, 1} → {0, 1} (the four

such functions are shown in figure 22). Remember the question of how many queries

are necessary to determine whether or not f(0) = f(1)? This is the definition of

Deutsch’s Problem.

Definition 5.1. Deutsch’s Problem is defined as the problem where one is given as

input a black box for some f : {0, 1} → {0, 1} and the goal is to determine whether

or not f(0) = f(1) by making queries to f .

Let’s first consider classical queries necessary to solve Deutsch’s problem. One

query is not sufficient. To see why this is so, suppose that you make one query at

some a ∈ {0, 1} to acquire f(a). This gives absolutely no information about the other

value, f(¬a). It is possible that f(¬a) = f(a) and it is possible that f(¬a) 6= f(a).

Therefore, two queries necessary and clearly two queries are also sufficient.

You may wonder whether the number of reversible classical queries is different. In

fact, reversible classical query at (a, b) provide exactly the same amount of information

as a simple classical queries of at a. The output of the reversible query at (a, b) is

(a, b ⊕ f(a)), and note that (a, b) are already known. Therefore, there are only two

possibilities of interest for the output:{
b⊕ f(a) = b, which occurs if any only if f(a) = 0;

b⊕ f(a) 6= b, which occurs if any only if f(a) = 1.
(7)

Therefore, even with reversible classical queries, one query is not sufficient.

Now let’s see what an algorithm solving Deutsch’s Problem with two reversible

classical queries looks like. Here’s a classical circuit expressing such an algorithm.

20

Figure 28: Classical algorithm for Deutsch that makes two reversible classical queries.

The first query XORs the value of f(0) to the second bit. Then the first bit is flipped

to 1, so the second query XORs the value of f(1) to the second bit. At the end,

the second bit contains the value of f(0) ⊕ f(1), which is the solution to Deutsch’s

problem.

There is an obvious 2-query quantum algorithm that solves Deutsch’s problem

just like the circuit in figure 28. But quantum circuits need not be restricted to

these types of operations, where states are always in computational basis states. This

quantum circuit that solves Deutsch’s problem with just one single query!

Figure 29: Quantum algorithm for Deutsch that makes just one quantum query.

How does it work? It’s very different from any classical algorithm. There are three

Hadamard transforms, and each one plays a different role in the computation. Let’s

look at how each Hadamard contributes to the computation in this order.

Figure 30: The three separate Hadamard transforms.

¶ What the first Hadamard does

This is the Hadamard applied to the second qubit, in state |1〉. Obviously, this

creates the |−〉 state. What’s interesting about creating this state here is that it’s an

21

eigenvector of the Pauli X. Performing an X-operation on |−〉 causes it to become6

1√
2
|1〉 − 1√

2
|0〉 = − |−〉.

With the second qubit in state |−〉, if the first qubit is in the computational basis

state |a〉 then the f -query causes the second qubit to change by a factor of −1 if and

only if f(a) = 1, as shown in the following circuit diagram.

Figure 31: Caption.

Note that (−1)f(a) is a succinct notation for expressing the two cases, since

(−1)f(a) =

{
+1 if f(a) = 0

−1 if f(a) = 1.
(8)

Notice that the 2-qubit output state is (−1)f(a) |a〉 |−〉 and the (−1)f(a) does not really

belong to a specific qubit of the two. We can equivalently write the circuit this way.

Figure 32: Caption.

But this is an interesting way of thinking about what the query does when the second

qubit is in state |−〉. Namely, the first qubit picks up a phase of (−1)f(a), and the

second qubit doesn’t change. We sometimes call this querying in the phase.

At this point, you might wonder why we should care about this, since this is a

global phase, and we know that global phases don’t matter. But it’s only a global

phase if the first qubit is in a computational basis state, of the form |a〉. It’s not a

global phase if the first qubit is in superposition. This brings us to the role of the

second Hadamard.

6Let’s keep track of the distinction between between |−〉 and − |−〉, even it’s only a global phase.

The significance of this will become clear shortly.

22

· What the second Hadamard does

This brings us to the role of the second Hadamard, that’s applied to the first qubit.

That causes the first input qubit to the query to be in an equally weighted superpo-

sition of |0〉 and |1〉, namely, the |+〉 state. Now the state of the first output qubit

after the query is in a superposition of |0〉 and |1〉 with respective phases (−1)f(0) and

(−1)f(1).

Figure 33: Caption.

So, after the query, the state of the first qubit is 1√
2
(−1)f(0) |0〉+ 1√

2
(−1)f(1) |1〉. Let’s

look at what this state is for each of the four possible functions back in figure 22.

The corresponding states of the first qubit are respectively

1√
2
|0〉+ 1√

2
|1〉 − 1√

2
|0〉− 1√

2
|1〉 1√

2
|0〉− 1√

2
|1〉 − 1√

2
|0〉+ 1√

2
|1〉 . (9)

Notice that, for the first two cases (where f(0) = f(1)), the state is ±
(

1√
2
|0〉+ 1√

2
|1〉
)
;

and for the last two cases (where f(0) 6= f(1)), the state is ±
(

1√
2
|0〉 − 1√

2
|1〉
)
.

Therefore, to solve Deutsch’s problem, we need only distinguish between ± |+〉 and

± |−〉. Which brings us to the third Hadamard.

¸ What the third Hadamard does

This Hadamard maps ± |+〉 to ± |0〉 and ± |−〉 to ± |1〉. Measuring the resulting

qubit in the computational basis yields{
0 if f(0) = f(1)

1 if f(0) 6= f(1).
(10)

Therefore, the output bit of the algorithm is the solution to Deutsch’s problem.

Here is a summary of the 1-query quantum algorithm for Deutsch’s problem, and

the role that each of the three Hadamard transforms plays in it.

23

Figure 34: Summary of the role that each H transformation plays in the algorithm.

This quantum algorithm accomplishes something with one query that would require

two classical queries by any classical algorithm.

Notice what this algorithm does not do. It does not somehow extract both values

of the function, f(0) and f(1), with one single query. In fact, if you run this algo-

rithm, then you get no information about the value of f(0) itself. Also, you get no

information about the value f(1) itself. You only get information about f(0)⊕ f(1).

5.2 One-out-of-four search

Now let’s try to generalize this methodology to another problem.

Let f : {0, 1}2 → {0, 1} with the special property that it attains the value 1 at

exactly one of the four points in its domain. There are four possibilities for such a

function and here are their truth tables.

x f00(x)

00 1

01 0

10 0

11 0

x f01(x)

00 0

01 1

10 0

11 0

x f10(x)

00 0

01 0

10 1

11 0

x f11(x)

00 0

01 0

10 0

11 1

Figure 35: The four functions f : {0, 1}2 → {0, 1} that take value 1 at a unique point.

Now, suppose that you’re given a black-box computing such a function. You’re

promised that it’s one of these four, but you’re not told which one. Your goal is

to determine which of the four functions it is.

24

First of all, how many classical queries do you need to do this? The answer is

three queries. You can query in the first three places and see if one of them evaluates

to 1. If none of them do then, by process of elimination, you can deduce that the 1

must be the fourth place.

Now, what about quantum queries? Let’s try to build a good quantum algorithm

for this. For functions mapping two bits to one bit, the queries look like this.

Figure 36: Query gate for a function f : {0, 1}2 → {0, 1}.

There are two qubits for the input, and a third qubit for the output of the function.

In the computational basis, the value of f(a1, a2) is XORed onto the third qubit. Of

course, that description is for states in the computational basis. But, there is a unique

unitary operation that matches this behavior on the computational basis states.

Let’s start, along the lines that we did for Deutsch’s algorithm: by setting the

target qubit to state ket-minus so as to query in the phase; and then querying the

inputs in a uniform superposition.

Figure 37: Starting along the lines of Deutsch’s algorithm. (Intermediate stages are marked.)

Let’s trace through the execution of this quantum circuit. At each stage, we will

determine the state of the three qubits at that stage.

State at stage ¶

The state after the Hamadard operations, but just before the query is(
|00〉+ |01〉+ |10〉+ |11〉

)
|−〉 . (11)

25

State at stage ·

The query does not affect the state of the third qubit, but it changes the state of the

first two qubits to
− |00〉+ |01〉+ |10〉+ |11〉 in the case of f00

|00〉 − |01〉+ |10〉+ |11〉 in the case of f01

|00〉+ |01〉 − |10〉+ |11〉 in the case of f10

|00〉+ |01〉+ |10〉 − |11〉 in the case of f11.

(12)

Looking at these four states, what noteworthy property do they have? They’re or-

thogonal! If you take the dot-product between any two of these vectors then you

get two positive terms and two negative terms, which cancel out. Since they’re or-

thogonal, we can measure with respect to this basis. In other words, there exists a

unitary operation U that maps these states to the computational basis, and then we

can measure in the computational basis.

Figure 38: Quantum algorithm for the 1-out-of-4 search problem.

So this quantum circuit only makes one quantum query and it correctly identifies the

function (among the four). And this would require 3 classical queries.

As an aside, a small challenge question is to give a quantum circuit with only H

and CNOT gates that computes the above U . I’ll leave this for you to consider.

It is possible to get a more dramatic quantum vs. classical query separation than

1 vs. 3?

5.3 Constant vs. balanced

Next we’ll see a problem where a quantum algorithm solves a problem with exponen-

tially fewer queries than any classical algorithm.

Let f : {0, 1}n → {0, 1}. We call such a function constant if either its value is 0

everywhere, or its value is 1 everywhere. We call such a function balanced if its value

is 0 in exactly the same number of places that its value is 1. There are 2n possible

26

inputs to such a function. Therefore, a balanced function takes value 0 in exactly

2n−1 places and it takes value 1 in exactly 2n−1 places.

Here are some examples of tables of functions for the n = 3 case:

a f1(a) f2(a) f3(a) f4(a) f5(a)

000 0 1 0 1 0

001 0 1 0 1 0

010 0 1 0 0 0

011 0 1 0 1 0

100 0 1 1 0 0

101 0 1 1 0 0

110 0 1 1 0 1

111 0 1 1 1 0

Figure 39: Examples of functions that are constant, balanced, and neither.

The first two functions, f1 and f2, are the two constant functions: the all-zero func-

tion and the all-one function. The third function f3 is a balanced function with all

the zeroes before all the ones. And f4 is another balanced function, but with the

positions of the zeros and ones mixed up. How many balanced functions are there?

Exponentially many (the number is approximately 2n√
n
). And f5 is neither constant

nor balanced—just as a reminder that this third category exists.

For the constant-vs-balanced problem, we’re given a black-box computing a func-

tion that is promised to be either constant or balanced, but we’re not told which one.

Our goal is to figure out which of the two cases it is, with as few queries to f as

possible.

First of all, how many queries do we need to solve this problem by a classical

algorithm? If you think about this, you’ll probably realize that, even if you query

the function in many spots and always see the same value, you still might not know

which way it goes. It could be constant. But it could also be that, in many of the

places that you did not query, the function takes the opposite value and it’s actually

a balanced function. It’s only after you’ve queried in more than half of the spots

that you can be sure about which case it is. Therefore, for number of queries that a

classical algorithm must make is 2n−1 + 1. That’s a lot of queries when n is large.

How many queries can a quantum algorithm get by with? In fact, this problem

can be solved by a quantum algorithm that makes just one single query! Let’s see

how that works.

27

We’ll start off as usual, setting the target qubit to state |−〉 and setting the the

other qubits—those where the inputs to f are—into a uniform superposition of all

n-qubit basis states. That’s what applying a Hadamard to each of n qubits in state

|0〉 does.

Figure 40: Starting off in a manner similar to the two previous algorithms.

So the state right after the query is

1√
2n

(∑
a∈{0,1}n

(−1)f(a) |a〉
)
⊗ |−〉 . (13)

The first n qubits are the interesting part of this state, which is a uniform superpo-

sition of all 2n computational basis states of n qubits, with a phase of (−1)f(a) for

each |a〉.
What does this state looks like in the constant case? In that case, either all the

phases are +1 or all the phases are−1. So the state remains in a uniform superposition

of computational basis states and just picks up a global phase of +1 or −1.

Now, what can we say about the state in the balanced case? There are lots of

possibilities, depending on which particular balanced function it is. But one thing

we can say is that the state is orthogonal to the state that arises in the constant

case. Why? Because, in the computational basis, the state will have +1 in half of

its components and −1 in the other half. So when you take the dot product, with a

vector that has (say) +1 in each component you get an equal number of +1s and −1s,

which cancel and results in zero.

Something that we’ve seen a few times before is that, when the cases that we’re

trying to distinguish between result in orthogonal states, we’re in good shape. Being

orthogonal means that, in principle, the states are perfectly distinguishable.

Let’s make this more explicit. Suppose that we now apply a Hadamard to each of

the first n qubits, and consider what happens in the constant case and in the balanced

case. In the constant case, this transforms the state to the ± |00 . . . 0〉 = ± |0n〉. In

28

the balanced case, since unitary operations preserve orthogonality relationships, the

state is transformed to some state that is orthogonal to |0n〉.
After this final layer of Hadamards, we measure the state of the first n qubits.

Figure 41: Quantum algorithm for the 1-out-of-4 search problem.

If the outcome is 00 . . . 0 = 0n then we report “constant” and if the outcome is

any string that’s not 0n (not all zeroes) then we report “balanced”. Note that, in the

balanced case, it’s impossible to get outcome 0n, because measuring a state orthogonal

to |0n〉 cannot result in outcome 0n.

That’s how the one-query quantum algorithm for the constant-vs-balanced prob-

lem works. It achieves something with one single query that requires exponentially

many queries by any classical algorithm.

5.4 Probabilistic vs. quantum query complexity

Although everything I’ve said about the classical and the quantum query cost for

the constant-vs-balanced problem is true, there’s something unsatisfying about the

“exponential reduction” in the number of queries that the quantum algorithm attains.

The classical query cost is expensive only if we require absolutely perfect performance.

If a classical procedure queries f in random locations then, in the case of a balanced

function, it would have to be very unlucky to always draw the same bit value.

Here’s a classical probabilistic procedure that makes just two queries and per-

forms fairly well. It selects two locations randomly (independently) and then outputs

“constant” if the two bits are the same and “balanced” if the two bit values are

different.

What happens if f is constant? In that case the algorithm always succeeds. The

two bits will always be the same. What happens if f is balanced? In that case

the algorithm succeeds with probability 1
2
. The probability that the two bits will be

different will be 1
2
.

By repeating the above procedure k times, we can make the error probability

exponentially small with respect to k. Only 4 queries are needed to obtain success

29

probability 3
4
. And the success probability can be made to any constant, arbitrarily

close to 1, with a constant number of queries.

In summary, we’ve considered three problems in the black-box model. For each

problem, a quantum algorithm solves it with just one query, but more queries are

required by classical algorithms.

classical classical

problem quantum deterministic probabilistic

Deutsch 1 2 2

1-out-of-4 search 1 3 3

Const. vs. balanced 1 2n−1 + 1 O(1)

Figure 42: Summary of query costs for problems considered so far.

For Deutsch’s problem, any classical algorithm requires 2 queries. For the 1-out-of-4

search problem, any classical algorithm requires 3 queries. And, for the constant-

vs-balanced problem, any classical algorithm requires exponentially many queries to

solve the problem perfectly; however, there is a probabilistic classical algorithm that

makes only a constant number of queries and solves the problem with bounded error

probability.

Along this line of thought, the following question seems natural: Is there a black-

box problem for which the quantum-vs-classical query cost separation is stronger?

For example, for which even probabilistic classical algorithms with bounded-error

probability require exponentially more queries than a quantum algorithm?

We’ll address this question in the next section.

6 Simon’s problem

We are going to investigate a black-box problem called Simon’s Problem. For this

problem, there is an exponential difference between the probabilistic classical query

cost and the quantum cost. Also the quantum algorithm for this problem introduces

some powerful algorithmic techniques in a simple form. Simon’s Problem is a slightly

more complicated black-box problem than those that we’ve seen up to now, involving

functions from n bits to n bits.

It is interesting for two reasons:

30

1. It improves on the progression of black-box problems where quantum algorithms

outperform classical algorithms. The quantum algorithm requires exponentially

fewer queries than even probabilistic classical algorithms that can err with con-

stant probability, say 1
4
.

2. The quantum algorithm for Simon’s problem introduces a technique that tran-

scends the black-box model. When looked at the right way, the ideas intro-

duced in Simon’s algorithm lead naturally to Shor’s algorithm for the discrete

log problem—which is not a black-box problem! Shor discovered his algorithms

(for discrete log and factoring) soon after seeing Simon’s algorithm, and in his

paper, he acknowledges that he was inspired by Simon’s algorithm.

6.1 Definition of Simon’s Problem

The problem concerns functions f : {0, 1}n → {0, 1}n that are 2-to-1 functions, which

means that, for every point in the range, there are exactly two pre-images. In other

words, for every value that the function attains, there are exactly two points, a and b,

in the domain that both map to that value. We call such a pair of points a colliding

pair. If a 6= b and f(a) = f(b) then a and b are a colliding pair.

Now, there’s a special property that some 2-to-1 functions have, that we’ll call the

Simon property.

Definition 6.1. A 2-to-1 function f : {0, 1}n → {0, 1}n has the Simon property if

there exists r ∈ {0, 1} such that: For every colliding pair, (a, b), the a⊕ b = r.

For a, b ∈ {0, 1}n, a⊕ b denotes their bit-wise XOR. That is, you take the XOR of

the first bit of a with the first bit of b, and then you take the XOR of the second bit

of a with the second bit of b, and so on.

Let’s look at an example. Here’s a 2-to-1 function f : {0, 1}3 → {0, 1}3.

31

a f(a)

000 011

001 101

010 000

011 010

100 101

101 011

110 010

111 000

Figure 43: Example of function satisfying the Simon property for n = 3.

I’ve color coded the colliding pairs. For example, if you look at the two green points

in the domain, 000 and 101, you can see that f maps both of these points to 011

(and those are the only points that are mapped to 011). So the two green points

are a colliding pair. Also, the two red points 011 and 100 are a colliding pair, both

mapping to 010. And there is a blue colliding pair and a purple colliding pair.

OK, so this f is a 2-to-1 function. But it also has the additional Simon property.

If you take any colliding pair (a, b) and then a ⊕ b is always the same 3-bit string.

Can you see what that string r is in this example?

Did you get r = 101? If you pick any color and take the bit wise XOR of the two

strings of that color you’ll get 101. For example, for the red pair, 011⊕ 110 = 101.

Note that, for an arbitrary 2-to-1 function, the bit-wise XORs can be different for

different colliding pairs. So the 2-to-1 functions that satisfy the Simon property are

special ones, for which these bit-wise XORs are always the same.

Now we can define Simon’s problem.

Definition 6.2. You are given a black box for f : {0, 1}n → {0, 1}n which is a 2-to-1

function that has the Simon property, but you are given no other information about f .

You don’t know what the colliding pairs are and you don’t know the value of r. Your

goal is to find the value of r. In the example, it would be 101. For a general function

f : {0, 1}n → {0, 1}n, r could potentially be any non-zero n-bit string.

6.2 Classical query cost of Simon’s problem

Let’s try to think about how hard this black-box problem is. In the example, we could

find r by taking the bit-wise XOR of any colliding pair. So, once we have a colliding

32

pair, it’s easy to find r. Therefore, one way to solve this is to find a colliding pair.

But notice that any two distinct n-bit strings could be a colliding pair for some r. So

if we make a query at some point a, we learn the value of f(a), but we have no idea

for which b 6= a, you get a colliding pair.

Here’s an example of a classical algorithm for Simon’s problem. If we a have a

budget of m queries, query f at m random points in {0, 1}n and then check if there’s

a collision among them. If any two are a colliding pair then their bit-wise XOR is the

answer r. If there are no collisions then the algorithm is out of luck; in that case it

fails to find r.

How large should m be set to so that the probability of a collision is at least 3
4
?

There are 2n points in the domain, and each pair of queries will collide with probability
1
2n

. Since there are around m2 pairs, the expected number of collisions is roughly m2

times 1
2n

. Setting m ≈
√

2n suffices to make this expectation a constant7.

So there’s a classical algorithm that solves this with O
(√

2n
)

queries. It’s better

than querying f everyhere, which would cost 2n queries. But the square root just

amounts to a reduction by a factor of 2 in the exponent. It’s still exponentially many

queries. What’s interesting is that the above is essentially the best possible classical

algorithm.

Theorem 6.1. Any classical algorithm the solves Simon’s problem with worst-case

success probability at least 3
4

must make Ω
(√

2n
)

queries.

How do we know this? We cannot deduce this simply based in the fact that this is the

best algorithm that we could come up with. How can we be sure that there isn’t some

clever trick that we haven’t discovered? Also, notice that f is not an arbitrary 2-to-1

function. It is a 2-to-1 with the Simon property, which is a very special structure.

So it’s conceivable that a classical algorithm can somehow take advantage of that

structure to find a collision in an unusual way.

Theorem 6.1 is true, but it requires a proof. The proof is not as trivial as the

argument that two queries are needed for Deutsch’s problem, or that 3 queries are

needed for the 1-out-of-4 search problem. It requires a more careful argument. If

you’re interested in seeing the proof, it is in the next subsection 6.2.1. The proof isn’t

particularly hard, but it requires some set-up. Feel free to skip past subsection 6.2.1

on a first reading.

7You may recognize in this analysis the so-called “birthday paradox”, where you consider what

the chances are that there are two people in a group of (say) 23 people who have the same birthday.

It’s 50%, assuming that people’s birthdays are uniformly distributed.

33

6.2.1 Proof of classical lower bound for Simon’s problem (Theorem 6.1)

In this section, we prove Theorem 6.1. The proof uses some standard techniques

that arise in computational complexity; however, this account assumes no prior back-

ground in the area.

The first part of the proof is to “play the adversary” by coming up with a way of

generating an instance of f that will be hard for any algorithm. Note that picking

some fixed f will not work very well. A fixed f has a fixed r associated with it and

the first two queries of the algorithm could be 0n and r, which would reveal r to the

algorithm after only two queries. Rather, we shall randomly generate instances of f .

First, we pick r at random, uniformly from {0, 1}n−0n. Picking r does not fully spec-

ify f but it partitions {0, 1}n into 2n−1 colliding pairs of the form {x, x⊕r}, for which

f(x) = f(x⊕r) will occur. Let us also specify a representative element form each col-

liding pair, say, the smallest element of {x, x⊕r} in the lexicographic order. Let T be

the set of all such representatives: T = {s : s = min{x, x⊕ r} for some x ∈ {0, 1}n}.
Then we can define f in terms of a random one-to-one function φ : T → {0, 1}n uni-

formly over all the 2n(2n − 1)(2n − 2) · · · (2n − 2n−1 + 1) possibilities. The definition

of f can then be taken as

f(x) =

{
φ(x) if x ∈ T
φ(x⊕ r) if x 6∈ T .

We shall prove that no classical probabilistic algorithm can succeed with probability
3
4

on such instances unless it makes a very large number of queries.

The next part of the proof is to show that, with respect to the above distribution

among inputs, we need only consider deterministic algorithms (by which we mean

ones that make no probabilistic choices). The idea is that any probabilistic algo-

rithm is just a probability distribution over all the deterministic algorithms, so its

success probability p is the average of the success probabilities of all the deterministic

algorithms (where the average is weighted by the probabilities). At least one deter-

ministic algorithm must have success probability ≥ p (otherwise the average would

be less than p). Therefore (because we have a fixed probability distribution of the

input instances), we need only consider deterministic algorithms.

Next, consider some deterministic algorithm and the first query that it makes:

(x1, y1) ∈ {0, 1}n × {0, 1}n, where x1 is the input to the query and y1 is the output

of the query. The result of this will just be a uniformly random element of {0, 1}n,

independent of r. Therefore the first query by itself contains absolutely no information

about r.

34

Now consider the second query (x2, y2) (without loss of generality, we can assume

that the inputs to all queries are different; otherwise, the redundant queries could be

eliminated from the algorithm). There are two possibilities: x1⊕x2 = r (collision) or

x1⊕x2 6= r (no collision). In the first case, we will have y1 = y2 and so the algorithm

can deduce that r = x1⊕x2. But the first case arises with probability only 1
2n−1 . With

probability 1 − 1
2n−1 , we are in the second case, and all that the algorithm deduces

about r is that r 6= x1 ⊕ x2 (it has ruled out just one possibility among 2n − 1).

We continue our analysis of the process by induction on the number of queries.

Suppose that k − 1 queries, (x1, y1), . . . , (xk−1, yk−1) have been made without any

collisions so far. (No collision so far means that, for all 1 ≤ i < j ≤ k − 1, yi 6= yj.)

Then all that has been deduced about r is that it is not xi⊕xj for all 1 ≤ i < j ≤ k−1.

In other words, up to (k− 1)(k− 2)/2 possibilities for r have been eliminated. When

the next query (xk, yk) is made, the number of potential collisions arising from it are

at most k − 1 (there are k − 1 previously made queries to collide with). Therefore,

the probability of a collision at query k is at most

k − 1

2n − 1− (k − 1)(k − 2)/2
≤ 2k

2n+1 − k2
. (14)

Since the collision probability bound in Eq. (14) holds all k, the probability of a

collision occurring somewhere among m queries is at most the sum of the right side

of Eq. (14) with k varying from 1 to m:

m∑
k=1

2k

2n+1 − k2
≤

m∑
k=1

2m

2n+1 −m2
≤ 2m2

2n+1 −m2
. (15)

If this quantity is to be at least 3
4

then

2m2

2n+1 −m2
≥ 3

4
. (16)

It is an easy exercise to solve for m in the above inequality, yielding

m ≥
√

6
11

2n, (17)

which gives the desired bound.

Actually, there is a slight technicality remaining. We have shown that
√

(6/11)2n

queries are necessary to attain a collision with probability 3
4
; whereas the algorithm is

not technically required to make queries that include a collision. Rather, the algorithm

35

is just required to deduce r, and it is conceivable that an algorithm could deduce r

some other way without a collision occurring. But any algorithm that deduces r can

be modified so that it makes one additional query that collides with a previous one.

Hence, we have a slightly smaller lower bound of
√

(6/11)2n − 1, but this is still

Ω(
√

2n).

6.3 Quantum algorithm for Simon’s problem

Before showing you the algorithm for Simon’s problem, I’d like to show you a partic-

ularly useful way of viewing the multi-qubit Hadamard transform H ⊗H ⊗ · · · ⊗H
and the structure of {0, 1}n.

6.3.1 Understanding H ⊗H ⊗ · · · ⊗H

To start with, let’s look at how H ⊗H ⊗ · · · ⊗H = H⊗n (a Hadamard transform on

each of n qubits) affects the computational basis states.

First, for the state |00 . . . 0〉 = |0n〉,

H⊗n |0n〉 = 1√
2n

∑
b∈{0,1}n

|b〉 . (18)

It turns out that there’s this nice expression for applying H⊗n to any computa-

tional basis state |a〉 (a ∈ {0, 1}n). It’s a uniform superposition of the computational

basis states, but with certain phases.

Theorem 6.2. For all a ∈ {0, 1}n,

H⊗n |a〉 = 1√
2n

∑
b∈{0,1}n

(−1)a·b |b〉 , (19)

where a · b = a1b1 + a2b2 + · · ·+ anbn mod 2.

For example,

H ⊗H =
1√
4

00 01 10 11


+1 +1 +1 +1 00

+1 −1 +1 −1 01

+1 +1 −1 −1 10

+1 −1 −1 +1 11

(20)

Note that, for each a, b ∈ {0, 1}2, the sign of entry (a, b) is (−1)a·b.

36

Proof of Theorem 6.2. The proof is this simple calculation

H⊗n |a〉 =
(
H |a1〉

)
⊗ · · · ⊗

(
H |an〉

)
(21)

=
(

1√
2
|0〉+ 1√

2
(−1)a1 |1〉

)
⊗ · · · ⊗

(
1√
2
|0〉+ 1√

2
(−1)an |1〉

)
(22)

=

(
1√
2

∑
b1∈{0,1}

(−1)a1b1 |b1〉
)
⊗ · · · ⊗

(
1√
2

∑
bn∈{0,1}

(−1)anbn |bn〉
)

(23)

= 1√
2n

∑
b∈{0,1}n

(−1)a1b1 · · · (−1)anbn |b〉 (24)

= 1√
2n

∑
b∈{0,1}n

(−1)a1b1+···+anbn |b〉 . (25)

So we have a nice expression for applying H⊗n on computational basis states. In

particular, notice how an expression that looks like a dot-product of two n-bit strings

(in modulo 2 arithmetic) arises.

6.3.2 Viewing {0, 1}n as a discrete vector space

Now let’s think about the set {0, 1}n. It’s often useful to associate these strings with

mathematical structures, such as the integers {0, 1, 2, . . . , 2n − 1}.
But we can also think of the set {0, 1}n as an n-dimensional vector space, where

the components of each vector are 0 and 1, and the arithmetic is modulo 2 (which

is equivalent to using ⊕ for addition and ∧ for multiplication). This is different

from a vector space over the field R or C. But the set {0, 1}, with addition and

multiplication modulo 2 (which we’ll denoted as Z2), is a field, meaning that it shares

some key structural properties that the real and complex numbers have (I won’t go

into the details of these properties here). It’s perfectly valid to have a vector space

over a finite field like Z2. The linear algebra notions of subspace, dimension and linear

independence, make perfect sense over such vector spaces.

And this brings us to that dot-product expression that arose in the n-fold tensor

product of the Hadamard. For vector spaces over R and C, the dot-product8 is an

inner product, and has useful properties. Two vectors are orthogonal if and only if

their inner product is zero.

8In the case of field C we need to take complex conjugates one of the vectors in the dot product.

37

Technically, the dot-product in our finite field Z2 scenario is not an inner product.

An inner product has the property that, for any vector v, it hold that v · v = 0 if and

only if v = 0 (the zero vector). In our finite field vector space, there are non-zero

binary strings whose inner products with themselves are 0. Can you think of one?

Any binary string with an even number of 1s has dot product 0 with itself.

Nevertheless, this dot product does have some nice properties. For example, the

space can be decomposed into “orthogonal” subspaces whose dimensions add up to

n. Two spaces are deemed “orthogonal” if every point in one has dot-product 0 with

every point in the other.

Here is a schematic picture of a decomposition of {0, 1}3 decomposed into a 1-

dimensional space and an orthogonal 2-dimensional space.

Figure 44: Schematic picture of {0, 1}3 decomposed into two orthogonal subspaces.

Of course the picture is really for vector spaces over the field R, not the finite field Z2.

So it should just be seen as an intuitive guide, rather than a literal depiction.

o A word of caution: for n-qubit systems, there are two spaces in play. One space

is the n-dimensional discrete vector space {0, 1}n which is over the finite field Z2.

This is associated with the labels of the computational basis states. The other

space is the 2n-dimensional space over C, spanned by the 2n computational basis

states (technically, a Hilbert space). Do not conflate these different spaces! For

example, 00 . . . 0 is the zero vector in the finite vector space. But |00 . . . 0〉 lives

in the Hilbert space, and it’s definitely not the zero vector. It’s a quantum state,

which is a vector of length is one.

6.3.3 Simon’s algorithm

Applying definition 4.1, the f -queries look like this.

38

Figure 45: f -query for Simon’s Problem.

The f -query acts on 2n qubits and, in the computational basis, f of the first n bits

is XORed onto the last n bits. With queries like this, it’s not so clear how we can

“query in the phase”, as we did for all the quantum algorithms in section 5.

We’ll start out differently, with all the n target qubits just in state |0〉. But we

will put the inputs to f into a uniform superposition of all the n-bit strings. And

then we’ll perform an f -query.

Figure 46: Beginning of Simon’s algorithm.

What’s the output state of this circuit? The state right after the query is

1√
2n

∑
a∈{0,1}n

|a〉 |f(a)〉 . (26)

Let’s consider this state. It’s sometimes said that what makes quantum computers so

powerful is that they can actually perform several computations at the same time. But

this view is misleading. The state was obtained by making just one single query, and

it appears to contain information about all of the values of the function f . However,

it’s not possible to extract more than one value of the function from this state. In

particular, if we measure this state in the computational basis then what we end up

with is just one pair (a, f(a)), where a is sampled from the uniform distribution. And

you don’t need any quantum devices to generate such a sample. You could just flip

a coin n times to create a random a and then perform one query to get f(a).

39

So how should we think about quantum algorithms? With a state like that in

Eq. (26), rather than measuring in the computational basis, we can instead—via a

unitary operation—measure with respect to another basis. In some cases, for a well-

chosen basis, we can acquire information about some global property of f (instead of

the value of f at some specific point).

Let’s try to find a useful measurement basis for the case where f satisfies the Simon

property. The inputs to the function partition into colliding pairs. It helps to look

at our example in figure 43 again for reference. It’s reproduced here for convenience.

a f(a)

000 011

001 101

010 000

011 010

100 101

101 011

110 010

111 000

Figure 47: Copy of figure 43: A function satisfying the Simon property.

Let’s define a set T so as to consist of one element from each colliding pair. In the

example, we take one of the two green points, one of the two blue points, one of the

two purple points and one of the two red points. Which one we choose won’t matter;

what’s important is that there exists such a set T . In the example, we could set

T = {000, 100, 010, 011}.
Notice that, for each element a ∈ T , the other element of the colliding pair is a⊕r.

We don’t know what r is (that’s what we’re trying to find by the algorithm). But we

know that f satisfies the Simon property and that there exists an associated r. (In

the example, r = 101.)

Therefore, if we combine the elements of T with the elements of the set T ⊕r then

we get all of {0, 1}n. This enables us to rewrite the state in Eq. (26) as

1√
2n

∑
a∈T

(
|a〉 |f(a)〉+ |a⊕ r〉 |f(a⊕ r)〉

)
, (27)

where we are only summing over the elements of T , but, for each a ∈ T , we include

two terms: one for a and one for a⊕ r.

40

Now, since f satisfies the Simon property with the associated r, for each a, we

have that f(a) = f(a⊕ r). That’s exactly what the Simon property says. So we can

write the expression in Eq. (27) as

1√
2n

∑
a∈T

(
|a〉+ |a⊕ r〉

)
|f(a)〉 . (28)

Suppose that we now measure the last n qubits in the computational basis. Then the

state of the last n qubits collapses to some value f(a) and the residual state of the

first n qubits is a uniform superposition of the pre-images of that value. That is, the

state of the first n qubits becomes

1√
2
|a〉+ 1√

2
|a⊕ r〉 . (29)

for a random a ∈ {0, 1}n. What can we do with this state? If we could somehow

extract both a and a ⊕ r from this state then we could deduce the value of r (by

taking their XOR, a ⊕ (a ⊕ r) = r). But we can only measure the state once, after

which its state collapses.

If we measure in the computational basis, then we just get either a or a ⊕ r,

neither of which is sufficient to learn anything about the value of r. We can think

of measuring in the computational basis this way: we first randomly choose a color

(that’s what happens when we measure the last n qubits), and then we randomly

choose one of the two elements of that color (that’s what happens when we measure

the first n qubits). So the net effect of all this is to get just a random n-bit string,

which is devoid of any information about the structure of f . So, if we want make

progress than we should definitely not measure the first n qubits in the computational

basis.

Something quite remarkable happens if we apply a Hadamard transform to each

of the n qubits before measuring in the computational basis. We can calculate the

state resulting from the Hadamard transform using Theorem 6.2 as

H⊗n
(

1√
2
|a〉+ 1√

2
|a⊕ r〉

)
= 1√

2n+1

(∑
b∈{0,1}n

(−1)a·b |b〉+
∑

b∈{0,1}n
(−1)(a⊕r)·b |b〉

)
(30)

= 1√
2n+1

(∑
b∈{0,1}n

(−1)a·b +
∑

b∈{0,1}n
(−1)a·b(−1)r·b |b〉

)
(31)

= 1√
2n+1

(∑
b∈{0,1}n

(−1)a·b
(
1 + (−1)r·b

)
|b〉
)
. (32)

41

Why is this interesting? Let’s think about what happens if we measure this state in

the computational basis. Notice that, for each b ∈ {0, 1}n,

(
1 + (−1)r·b

)
=

{
2 if r · b = 0

0 if r · b = 1.
(33)

Therefore, the probability of each b ∈ {0, 1}n occurring as the outcome is{
1

2n−1 if r · b = 0

0 if r · b = 1.
(34)

In other words, the outcome of the measurement is a uniformly distributed random

b in the orthogonal complement of r (that is, for which r · b = 0).

Figure 48: Schematic illustration of r ∈ {0, 1}n and its orthogonal complement.

This b does not produce enough information for us to deduce r, but it reveals partial

information about r. Namely that the bits of r satisfy the linear equation

b1r1 + b2r2 + · · ·+ bnrn ≡ 0 (mod 2). (35)

And we can acquire more information about r by repeating the procedure.

Figure 49: Each execution of this procedure yields a random b ∈ {0, 1}n such that r · b = 0.

Each execution of the procedure produces an independent random b ∈ {0, 1}n that

is orthogonal to r (in the sense that r · b = 0). Suppose that we repeat the process

42

n− 1 times (so the number of f -queries is n− 1). Then, combining the resulting b’s,

we obtain a system of n− 1 linear equations (in mod 2 arithmetic)
b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn−1,1 bn−1,2 · · · bn−1,n



r1
r2
...

rn

 =


0

0
...

0

 . (36)

If the n−1 × n matrix has rank n−1 then there is a unique nonzero r solution to

the system, which can be easily found by Guassian elimination. What’s the proba-

bility that this matrix has full rank? It turns out that this probability is a constant

independent of n.

Exercise 6.1. Show that, if each of the rows of an n−1×n matrix is an independent

sample form the set of b ∈ {0, 1}n such that b · r = 0, then the probability that the

matrix has rank n− 1 is at least 1
4
.

So we now have a quantum algorithm that makes n− 1 queries in all and succeeds in

finding r with probability at least 1
4
. This fails with probability at most 3

4
. It’s easy

to reduce the failure probability to (3
4
)5 < 1

4
by repeating the entire procedure five

times.

In conclusion, Ω(
√

2n) queries are necessary for any classical algorithm to attain

success probability 3
4
, whereas order O(n) queries are sufficient for a quantum algo-

rithm to attain success probability 3
4
.

6.4 Significance of Simon’s problem

Now, what should we make of Simon’s problem and Simon’s algorithm?

It’s a black-box problem that was specially designed to be very hard for proba-

bilistic classical algorithms and easy for quantum algorithms—thereby improving on

previous classical vs quantum query cost separations.

classical classical

problem quantum deterministic probabilistic

Deutsch 1 2 2

1-out-of-4 search 1 3 3

Const. vs. balanced 1 2n−1 + 1 O(1)

Simon O(n2) Ω(2n/2) Ω(2n/2)

Figure 50: Summary of query costs for problems considered so far.

43

But Simon’s problem doesn’t immediately look like a problem that one would care

about in the real world. When Simon’s work first came out, people were wondering

what to make of it. Although it provided a very strong classical vs. quantum query

cost separation, it looked like a contrived problem. Moreover, a contrived black-box

problem, which is not even a conventional computing problem, involving input data.

This may be one’s first impression, but there’s actually more to it than that. Look

again at the Simon property: for all a, f(a) = f(a⊕r). This is kind of like a periodicity

property of a function, which would be written as: for all a, f(a) = f(a + r). And

periodic functions arise naturally in many contexts. We’ll soon see that variations of

Simon’s problem in this direction are very fruitful.

44

	Classical and quantum algorithms as circuits
	Classical logic gates
	Computing the majority of a string of bits
	Classical algorithms as logic circuits
	Multiplication problem and factoring problem
	Quantum algorithms as quantum circuits

	Simulations between quantum and classical
	The Toffoli gate
	Quantum circuits simulating classical circuits
	Classical circuits simulating quantum circuits

	A brief look at computational complexity classes
	The black-box model
	Classical black-box queries
	Quantum black-box queries

	Simple quantum algorithms in black-box model
	Deutsch's problem
	One-out-of-four search
	Constant vs. balanced
	Probabilistic vs. quantum query complexity

	Simon's problem
	Definition of Simon's Problem
	Classical query cost of Simon's problem
	Proof of classical lower bound for Simon's problem

	Quantum algorithm for Simon's problem
	Understanding TEXT
	Viewing TEXT as a discrete vector space
	Simon's algorithm

	Significance of Simon's problem

