Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 22-23 (2019)

Richard Cleve

QNC 3129

cleve@uwaterloo.ca

Communication complexity

Classical communication complexity

[Yao, 1979]

E.g. equality function: f(x,y) = 1 if x = y, and 0 if $x \neq y$

Question: can the communication be less than *n* bits?

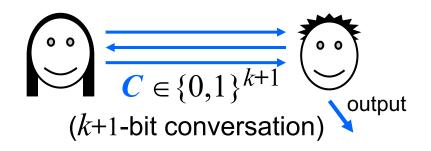
Deterministic cost is n bits (I)

Table of all values of f(x,y):

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

Suppose the communication complexity of f is k

Each input in the domain of f fixes a **conversation** (including output)



Several inputs may lead to the same conversation ...

Definition: A (combinatorial) *rectangle* is $R \subseteq \{0,1\}^n \times \{0,1\}^n$ of the form $R = R_A \times R_R$

Deterministic cost is n bits (II)

Table of all values of f(x,y):

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	~	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

In fact, the inputs leading to C must constitute a rectangle: if (x,y), (x',y') both lead to C then so do (x',y) and (x,y')

Since each conversation has a unique output, f is **constant** on each of these rectangles

Need at least 2^{n+1} rectangles to $\{0,1\}$ -partition this table

Since this implies $\geq 2^{n+1}$ distinct conversations, $k \geq n$

Therefore, the deterministic communication complexity is n

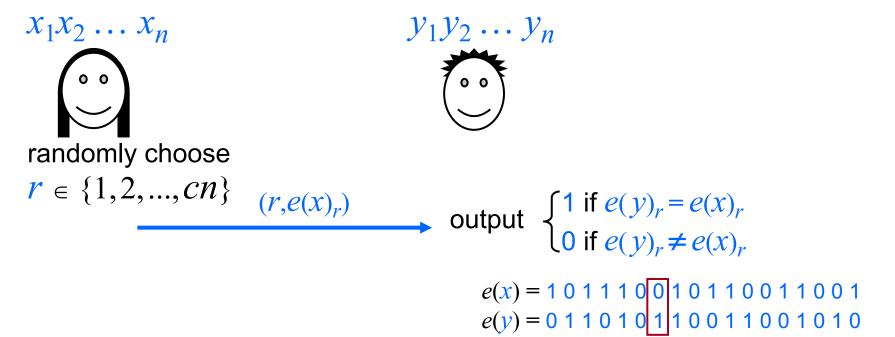
Probabilistic cost is $O(\log n)$ bits

Start with a "good" classical error-correcting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ such that, for all $x \neq y$,

$$\Delta(e(x), e(y)) \ge \delta c n$$

 $\Delta(e(x), e(y)) \ge \delta cn$ (Δ means Hamming distance),

where c, δ are constants

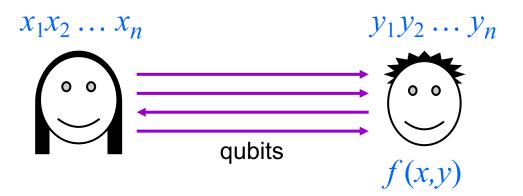


Can repeat to reduce error

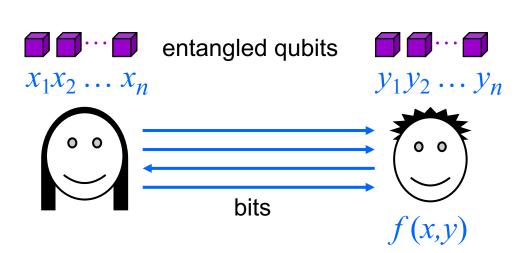
random k

Quantum communication complexity

Qubit communication



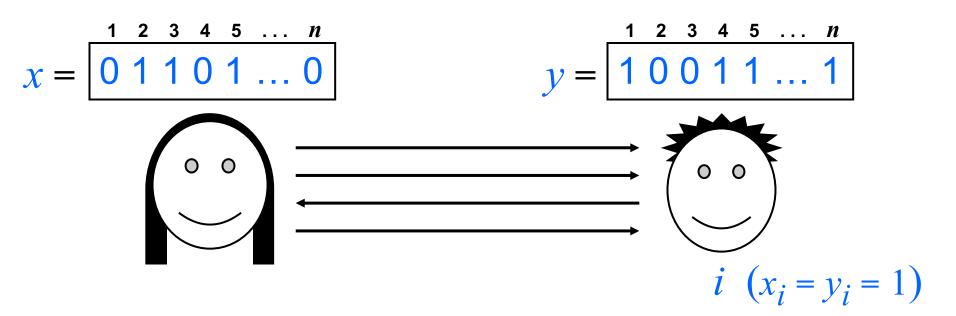
Prior entanglement



Question: can quantum beat classical in either of these this contexts?

Appointment scheduling

(also known as the *Disjointness Problem*)



Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3/4$

For all $\varepsilon > 0$, $O(n^{1/2} \log n)$ qubits sufficient for error prob. $< \varepsilon$

[KS '87] [BCW '98]

Search problem

Given:
$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & ... & n \\ \hline 0 & 0 & 0 & 1 & 0 & ... & 1 \end{bmatrix}$$
 accessible via *queries*

$$\log n \left\{ \begin{array}{c|c} |i\rangle & & |i\rangle \\ 1 \left\{ \begin{array}{c|c} |b\rangle & & |b \oplus x_i\rangle \end{array} \right.$$

Goal: find $i \in \{1, 2, ..., n\}$ such that $x_i = 1$

Classically: $\Omega(n)$ queries are necessary

Quantum mechanically: $O(n^{1/2})$ queries are sufficient

[Grover, 1996]

Alice
$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & n \\ 0 & 1 & 1 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$$

Bob $y = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$ (bitwise AND of x and y)

$$\begin{vmatrix} i \\ 0 \\ b \\ b \end{vmatrix}$$

$$\begin{vmatrix} i \\ b \\ b \end{vmatrix}$$
Bob Alice Bob

Communication per $x \land y$ -query: $2(\log n + 3) = O(\log n)$

Appointment scheduling: epilogue

Bit communication:

Cost: $\theta(n)$

Bit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

[R '02] [AA '03]

Qubit communication:

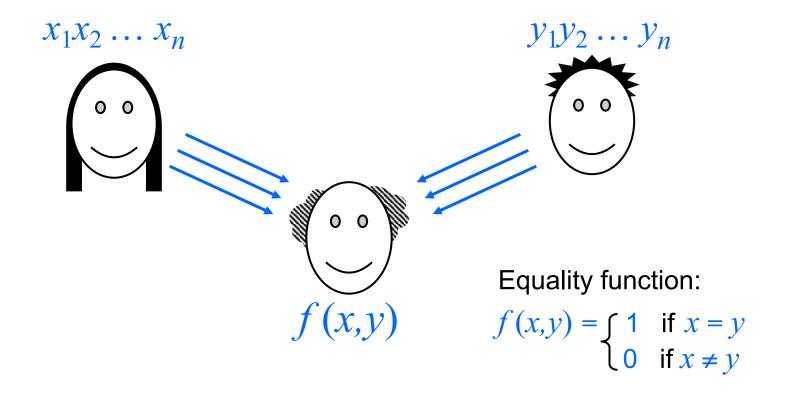
Cost: $\theta(n^{1/2})$ (with refinements)

Qubit communication

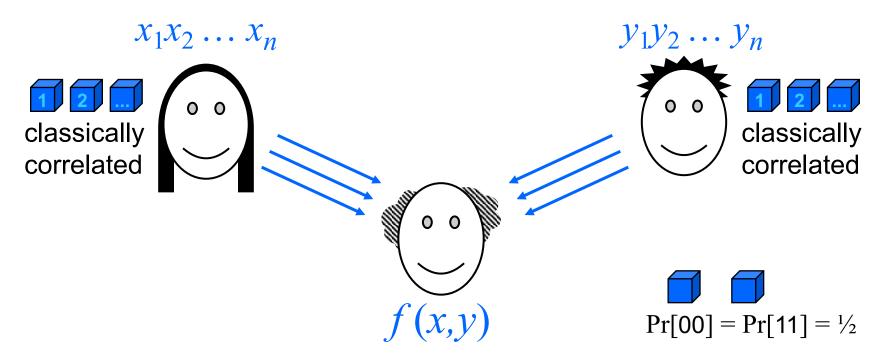
& prior entanglement:

Cost: $\theta(n^{1/2})$

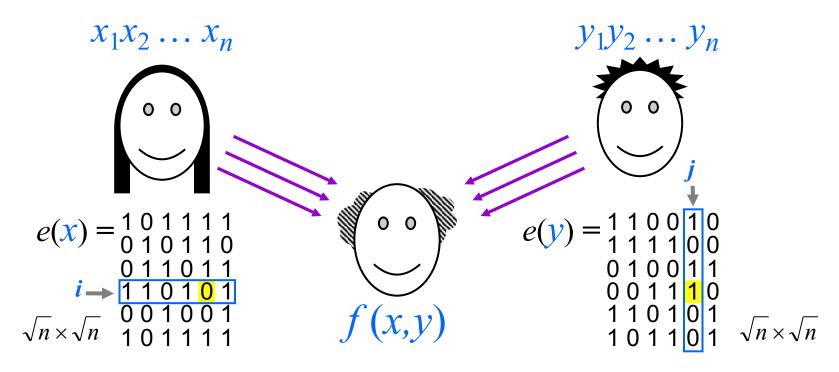
Quantum fingerprinting



Exact protocols: require 2n bits communication



Bounded-error protocols with a shared random key: require only O(1) bits communication



Bounded-error protocols without a shared key:

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$ using "quantum fingerprints"

[A '96] [NS '96] [BCWW '01]

Quantum fingerprints

Question 1: how many orthogonal states in *m* qubits?

Answer: 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many **almost orthogonal*** states in m qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: 2^{2am} , for some constant 0 < a < 1

Construction of almost orthogonal states: start with a special classical error-correcting code, which is a function $e: \{0,1\}^n \to \{0,1\}^{cn}$ such that, for all $x \neq y$,

 $\delta cn \le \Delta(e(x), e(y)) \le (1 - \delta)cn$ (c, δ are constants)

Construction of *almost* orthogonal states

Set
$$|\psi_{x}\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_k} |k\rangle$$
 for each $x \in \{0,1\}^n$ (log(cn) qubits)

Then
$$\langle \psi_x | \psi_y \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_k} |k\rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$$

Since $\delta cn \le \Delta(e(x), e(y)) \le (1 - \delta)cn$, we have $|\langle \psi_x | \psi_y \rangle| \le 1 - 2\delta$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \ldots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2\delta)^r \leq \varepsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states (as opposed to n qubits!)

What are these almost orthogonal states good for?

Question 3: can they be used to somehow store n bits using only $O(\log n)$ qubits?

Answer: No—recall that Holevo's theorem forbids this

Here's what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases:

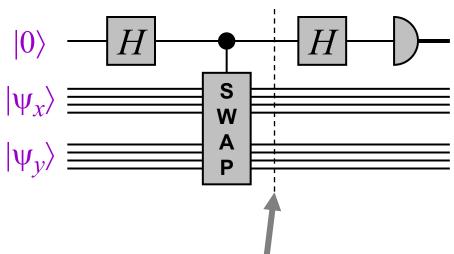
- they're both the same state
- they're almost orthogonal

Question 4: How?

Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$ for all $x \ne y$

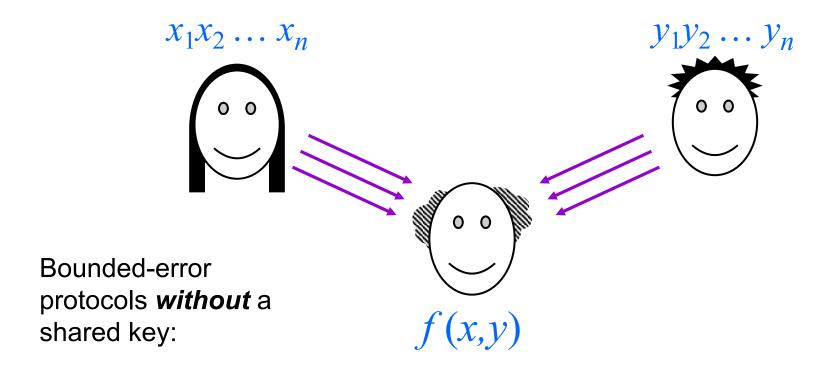
Given $|\psi_x\rangle|\psi_y\rangle$, one can check if x=y or $x\neq y$ as follows:



Intuition:
$$|0\rangle|\psi_{x}\rangle|\psi_{y}\rangle + |1\rangle|\psi_{y}\rangle|\psi_{x}\rangle$$

if
$$x = y$$
, $Pr[output = 0] = 1$
if $x \neq y$, $Pr[output = 0] = (1 + \varepsilon^2)/2$

Note: error probability can be reduced to $((1+\epsilon^2)/2)^r$

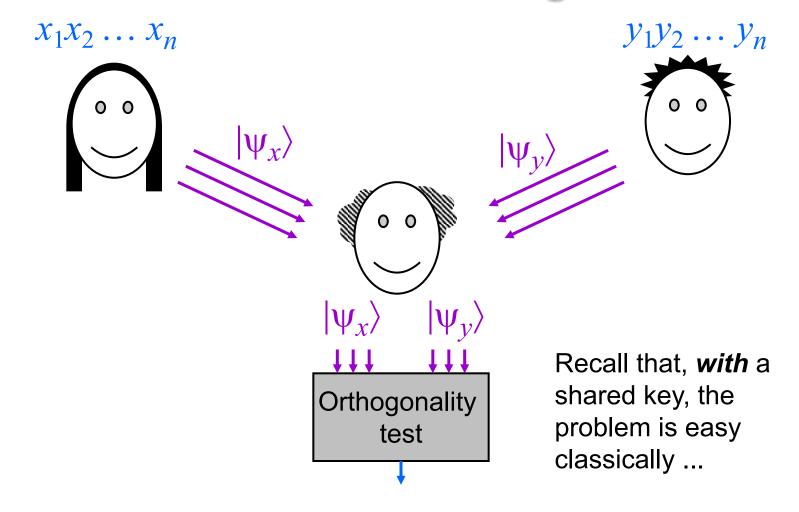


Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

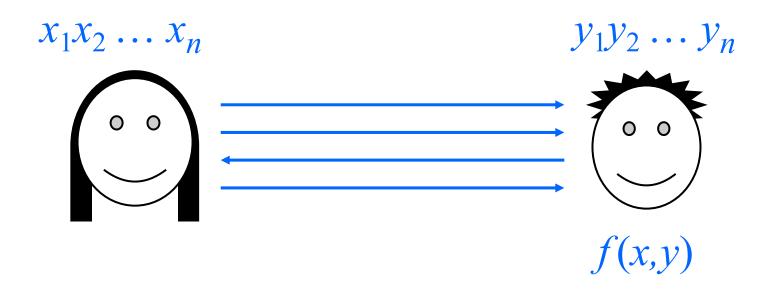
Quantum protocol for equality in simultaneous message model



This quantum protocol only requires $\theta(\log n)$ qubits

Inner product

Inner product function

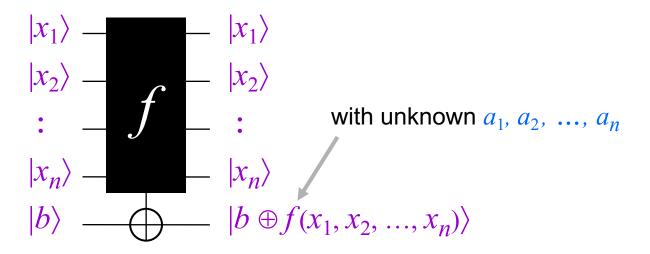


$$f(x,y) = x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$$

Aside: Bernstein-Vazirani problem I

Let
$$f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$$

Given:



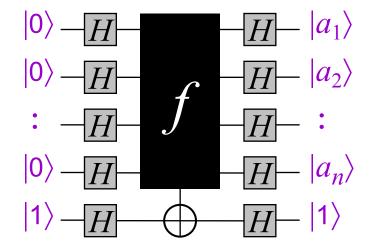
Goal: determine $a_1, a_2, ..., a_n$

Classically, *n* queries are necessary

Aside: Bernstein-Vazirani problem II

Let
$$f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$$

Given:



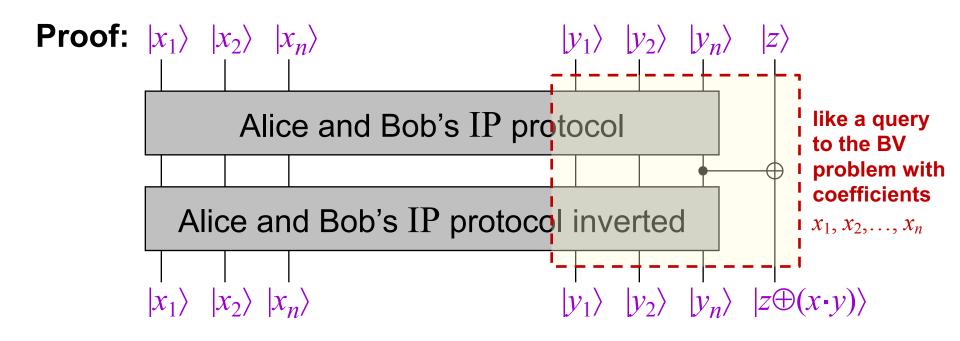
Goal: determine $a_1, a_2, ..., a_n$

Classically, *n* queries are necessary

Quantum mechanically, 1 query is sufficient

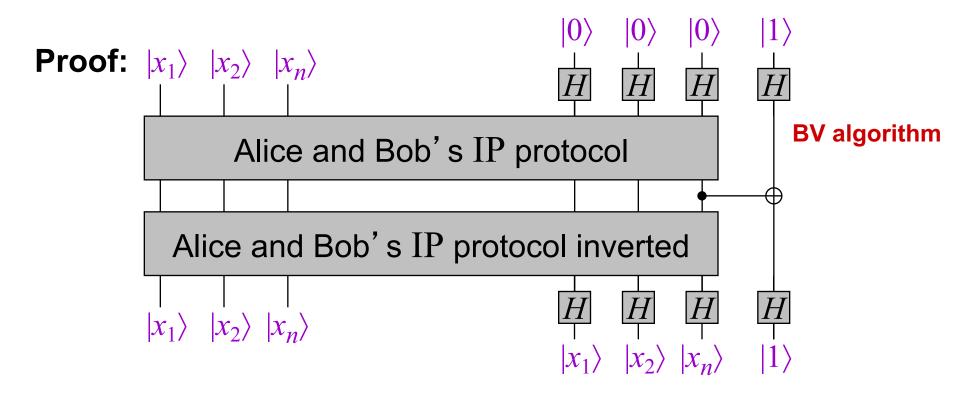
Lower bound for inner product I

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$$



Lower bound for inner product II

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$$



Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo's Theorem)