Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 16 (2019)

Richard Cleve

QNC 3129

cleve@uwaterloo.ca

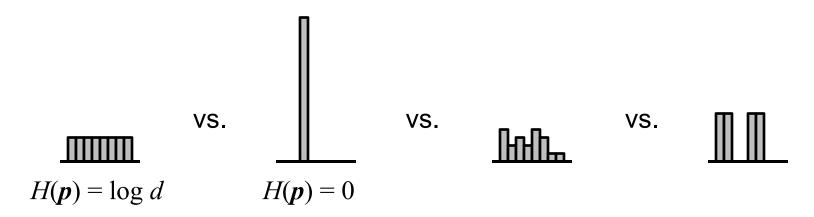
Entropy and compression

Shannon entropy

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$

Then the (Shannon) **entropy** of
$$p$$
 is $H(p_1,...,p_d) = -\sum_{j=1}^d p_j \log p_j$

Intuitively, this turns out to be a good measure of how much "randomness" (or "uncertainty") is there is in p:



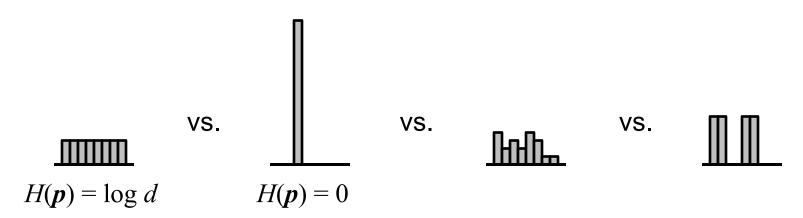
We'll see that, operationally, H(p) is the number of bits needed to store the outcome (in a sense that will be made formal)

Shannon entropy Then the (Shannon) entropy of p is $H(p_1, ..., p_d) =$

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$

Then the (Shannon) **entropy** of p is $H(p_1, ..., p_d) = \sum_{i=1}^d p_i \log p_i$

Intuitively, this turns out to be a good measure of how much "randomness" (or "uncertainty") is there is in p:



We'll see that, operationally, H(p) is the number of bits needed to store the outcome (in a certain sense)

Von Neumann entropy

For a density matrix ρ , it turns out that $S(\rho) = -\operatorname{Tr}\rho \log \rho$ is a good quantum analogue of entropy

Note: $S(\rho) = H(p_1,...,p_d)$, where $p_1,...,p_d$ are the eigenvalues of ρ (with multiplicity)

Operationally, $S(\rho)$ is the number of *qubits* needed to store ρ (in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to the case of large blocks of n independent instances of data:

- probability distribution $oldsymbol{p}^{\otimes n}$ in the classical case, and
- quantum state $ho^{\otimes n}$ in the quantum case

Classical compression (1)

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$ where n independent instances are sampled:

 $(j_1,...,j_n) \in \{1,...,d\}^n$ (d^n possibilities, $n \log d$ bits to specify one)

Theorem* (Shannon data compression): for all $\varepsilon > 0$, for sufficiently large n, there is a scheme that compresses the specification to $n(H(p) + \varepsilon)$ bits while introducing an error with probability at most ε

Example: an *n*-bit binary string with each bit distributed as Pr[0] = 0.9 and Pr[1] = 0.1 can be compressed to $\approx 0.47n$ bits

Intuitively, there is a subset $T \subseteq \{1,...,d\}^n$, called the "typical sequences", that has size $2^{n(H(p)+\epsilon)}$ and probability $1-\epsilon$ of occurring

Note that, in the above example, $|T| \ll 2^n$ even though $\Pr[T] \ge 1 - \varepsilon$

^{* &}quot;Plain vanilla" version that ignores, for example, the tradeoffs between n and ε

Classical compression (2)

A nice way to prove the theorem, is based on two cleverly defined random variables ...

Define the random variable $f:\{1,...,d\} \to \mathbb{R}$ as $f(j) = -\log p_j$

Note that
$$E[f] = \sum_{j=1}^{d} p_j f(j) = -\sum_{j=1}^{d} p_j \log p_j = H(p_1, ..., p_d)$$

Define
$$g:\{1,...,d\}^n \to \mathbb{R}$$
 as $g(j_1,...,j_n) = \frac{f(j_1) + \dots + f(j_n)}{n}$

Thus
$$E[g] = H(p_1, ..., p_d)$$

Also,
$$g(j_1, ..., j_n) = -\frac{1}{n} \log(p_{j_1} ... p_{j_n}) = -\frac{1}{n} \log(\Pr[(j_1, ..., j_n)])$$

which implies
$$Pr[(j_1,...,j_n)] = 2^{-ng(j_1,...,j_n)}$$

Classical compression (3)

By standard results in statistics*, as $n \to \infty$, the observed value of $g(j_1,...,j_n)$ approaches its expected value, H(p), in this sense:

 $\Pr[|g(j_1,...,j_n) - H(p)| \le \varepsilon] \ge 1 - \varepsilon$ for all $\varepsilon > 0$, for sufficiently large n [recall that $g(j_1,...,j_n)$ is an average of independent f(j)]

Define
$$(j_1,...,j_n) \in \{1,...,d\}^n$$
 to be ε -typical if $|g(j_1,...,j_n)-H(p)| \le \varepsilon$

Then, the above implies, for all $\varepsilon > 0$, for sufficiently large n,

$$\Pr[(j_1,...,j_n) \text{ is } \epsilon\text{-typical}] \geq 1-\epsilon$$

We can also bound the *number of* these ε -typical sequences:

- •By definition, each such sequence has probability $\geq 2^{-n(H(p) + \varepsilon)}$
- •Therefore, there can be at most $2^{n(H(p)+\varepsilon)}$ such sequences (otherwise, the sum of probabilities would exceed 1)

^{*} The weak law of large numbers

Classical compression (4)

In summary, the compression procedure is as follows:

The input data is $(j_1,...,j_n) \in \{1,...,d\}^n$, each independently sampled according the probability distribution $\mathbf{p} = (p_1,...,p_d)$

The compression procedure is to leave $(j_1,...,j_n)$ intact if it is ε -typical and otherwise change it to some fixed ε -typical sequence, say, some $(j_k,...,j_k)$ (which will result in an error)

Since there are at most $2^{n(H(p)+\varepsilon)}$ ε -typical sequences, the data can then be converted into $n(H(p)+\varepsilon)$ bits

The error probability is at most ϵ , the probability of an input that is not typical arising

Quantum compression (1)

The scenario: n independent instances of a d-dimensional state are randomly generated according some distribution:

$$\left\{ egin{array}{ll} |\phi_1
angle & \mathsf{prob.} \ p_1\ dots & dots\ |\phi_r
angle & \mathsf{prob.} \ p_r \end{array}
ight.$$

```
Example: \begin{cases} |0\rangle & \text{prob. } \frac{1}{2} \\ |+\rangle & \text{prob. } \frac{1}{2} \end{cases}
```

Goal: to "compress" this into as few qubits as possible so that the original state can be reconstructed "with small error"

What's a good formal definition of error in a quantum compression scheme?

Define a quantum compression scheme to be ϵ -**good** if no procedure can distinguish between these two states a)the state resulting from compressing and then uncompressing the data b)the original state with probability more than $\frac{1}{2} + \frac{1}{4} \epsilon$

Quantum compression (2)

Define
$$\rho = \sum_{i=1}^{r} p_i |\varphi_i\rangle\langle\varphi_i|$$

Theorem (Schumacher data compression): for all $\varepsilon > 0$, for sufficiently large n, there is a scheme that compresses the data to $n(S(\rho) + \varepsilon)$ qubits, that is $\sqrt{2\varepsilon}$ -good

For the aforementioned example, $\approx 0.6n$ qubits suffices

$$\begin{cases} |0\rangle & \text{prob. } \frac{1}{2} \\ |+\rangle & \text{prob. } \frac{1}{2} \end{cases}$$

The compression method:

Express
$$\rho$$
 in its eigenbasis as $\rho = \sum_{j=1}^{d} q_j |\psi_j\rangle\langle\psi_j|$

With respect to this basis, we will define an ε -typical subspace of dimension $2^{n(S(\rho)+\varepsilon)}=2^{n(H(q)+\varepsilon)}$

Quantum compression (3)

The ε -typical subspace is that spanned by $|\psi_{j_1},...,\psi_{j_n}\rangle$ where $(j_1,...,j_n)$ is ε -typical with respect to $(q_1,...,q_d)$

Define: Π_{typ} as the projector into the ϵ -typical subspace

By the same argument as in the classical case, the subspace has dimension $\leq 2^{n(S(\rho)+\epsilon)}$ and $\text{Tr}(\Pi_{\text{typ}}\rho^{\otimes n}) \geq 1-\epsilon$

Why? Because
$$\rho$$
 is the density matrix of $\begin{cases} |\psi_1\rangle & \text{prob. } q_1 \\ \vdots & \vdots & \vdots \\ |\psi_d\rangle & \text{prob. } q_d \end{cases}$ "eigenstate" mixture

and
$$\operatorname{Tr}\left(\Pi_{\operatorname{typ}}\rho^{\otimes n}\right) = \operatorname{Tr}\left(\Pi_{\operatorname{typ}}\sum_{j_{1}\dots j_{n}}q_{j_{1}}\dots q_{j_{n}}|\psi_{j_{1}}\dots\psi_{j_{n}}\rangle\langle\psi_{j_{1}}\dots\psi_{j_{n}}|\right)$$

$$= \sum_{j_{1}\dots j_{n}}q_{j_{1}}\dots q_{j_{n}}\langle\psi_{j_{1}}\dots\psi_{j_{n}}|\Pi_{\operatorname{typ}}|\psi_{j_{1}}\dots\psi_{j_{n}}\rangle$$

$$= \sum_{j_{1}\dots j_{n}}q_{j_{1}}\dots q_{j_{n}}\chi_{[j_{1}\dots j_{n} \text{ is typical}]} \geq 1-\varepsilon$$

Quantum compression (4)

We would now be done if our actual mixture was an eigenstate mixture

actual mixture:

$$\left\{ egin{array}{ll} | \mathsf{\phi}_1
angle & \mathsf{prob.} \ p_1 \ dots & dots \ | \mathsf{\phi}_r
angle & \mathsf{prob.} \ p_r \end{array}
ight.$$

eigenstate mixture:

$$\begin{cases} |\psi_1\rangle & \text{prob. } q_1 \\ \vdots & \vdots \\ |\psi_r\rangle & \text{prob. } q_r \end{cases}$$

Calculation of the "expected fidelity" for our actual mixture:

$$\begin{split} \sum_{I} p_{I} \langle \phi_{I} | \Pi_{\text{typ}} | \phi_{I} \rangle &= \sum_{I} p_{I} \text{Tr} \big(\Pi_{\text{typ}} | \phi_{I} \rangle \langle \phi_{I} | \big) \\ &= \text{Tr} \Big(\sum_{I} p_{I} \Pi_{\text{typ}} | \phi_{I} \rangle \langle \phi_{I} | \Big) \\ &= \text{Tr} \left(\Pi_{\text{typ}} \rho^{\otimes n} \right) \\ &= 1 - \varepsilon \end{split}$$
 Abbreviations used
$$I = i_{1} i_{2} \dots i_{n} \\ p_{I} = p_{i_{1}} p_{i_{2}} \dots p_{i_{n}} \\ | \phi_{I} \rangle &= | \phi_{i_{1}} \phi_{i_{2}} \dots \phi_{i_{n}} \rangle \end{split}$$

Abbreviations used
$$I=i_1i_2\dots i_n$$
 $p_I=p_{i_1}p_{i_2}\dots p_{i_n}$

Does this mean that the scheme is ε' -good for some ε' ?

Quantum compression (5)

The *true data* is of the form $(I,|\phi_I\rangle)$ where the I is generated with probability p_I

The *approximate data* is of the form $\left(I, \frac{1}{\gamma_I} \Pi_{\text{typ}} | \phi_I \right)$ where I is generated with probability p_I $\gamma_I = \sqrt{\langle \phi_I | \Pi_{\text{typ}} | \phi_I \rangle} \text{ is a normalization factor }$

Above two states at least as hard to distinguish as these two purifications:

$$|\Phi\rangle = \sum_{I} \sqrt{p_I} |I\rangle \otimes |\phi_I\rangle$$
 $|\Phi'\rangle = \sum_{I} \sqrt{p_I} |I\rangle \otimes \frac{1}{\gamma_I} \Pi_{\text{typ}} |\phi_I\rangle$

$$\text{Fidelity: } \langle \Phi | \Phi' \rangle = \sum_I p_I \tfrac{1}{\gamma_I} \langle \phi_I | \Pi_{\scriptscriptstyle \text{typ}} | \phi_I \rangle \geq \sum_I p_I \langle \phi_I | \Pi_{\scriptscriptstyle \text{typ}} | \phi_I \rangle \geq 1 - \varepsilon$$

Trace distance: $\| |\Phi\rangle - |\Phi'\rangle \|_{\mathrm{tr}} \leq \sqrt{2\varepsilon}$

Therefore the scheme is $pprox \sqrt{2\varepsilon}$ -good