
1

Introduction to
Quantum Information Processing
QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Richard Cleve
QNC 3129
cleve@cs.uwaterloo.ca

Lecture 15 (2019)

© Richard Cleve 2020

mailto:cleve@cs.uwaterloo.ca

2

Classical error
correcting codes

© Richard Cleve 2020

Classical error-correcting codes

3

Useful for:
• transmitting information through a noisy communication channel
• storing information in a noisy storage medium

Noisy means the states of bits can change (usually unpredictably)

One simple noise model is the binary symmetric channel,
where each bit flips with probability e (independently)

x1x2 . . . xn
<latexit sha1_base64="Pl7sUk/2cfU8Q+r3XEN4MbgGIkk=">AAACJ3icbZBLTwIxFIU7+EJ8gS7dNBISV5MZQJQdiRuXmMgjAUI65QINnUfaDoKEn+JW469xZ3TpL9HOSAiiJ2ly8t17mvY4AWdSWdaHkdjY3NreSe6m9vYPDo/SmeO69ENBoUZ97oumQyRw5kFNMcWhGQggrsOh4Yyuo3ljDEIy37tT0wA6Lhl4rM8oURp105lJ18aTbh63e76S2mmWtUzLzlsXJWyZhbxtl8rYNq1YS5NFC1W76S+dpaELnqKcSNmyrUB1ZkQoRjnMU+1QQkDoiAygpa1HXJCdWfz0Oc5p0sN9X+jjKRzT1cSMuFJOXUdvukQN5fosgv/NWqHqX3VmzAtCBR6dp3KrQQg5iLG7RqNLAvLga6xpP+RY+TgqDfeYAKr4VBtCBdMfw3RIBKFKV5uKGytHKv0tamnqedMumIXbYrZSXHSXRKfoDJ0jG12iCrpBVVRDFN2jR/SEno0X49V4M95/VhPGInOCfsn4/AayhaYD</latexit>

x0
1x

0
2 . . . x

0
n

<latexit sha1_base64="vhVZr6RsoLp4InD2xo6E4s6iURs=">AAACKnicbZBLTwIxFIU7+EJ84WPnppEQXE1mAFF2JG5cYiKPBMmkUy7a0OlM2o4RCP/FrcZf44649X9oBwnBx0manHz3nqY9fsSZ0o4ztVIrq2vrG+nNzNb2zu5edv+gqcJYUmjQkIey7RMFnAloaKY5tCMJJPA5tPzBZTJvPYBULBQ3ehhBNyB3gvUZJdogL3v06LkF/OgVC/i2F2plrCh42ZxjO27ROatgxy4VXbdSxa7tzLQwOTRX3ct+mjCNAxCacqJUx3Ui3R0TqRnlMMncxgoiQgfkDjrGChKA6o5nr5/gvCE93A+lOULjGV1OjEmg1DDwzWZA9L36PUvgf7NOrPsX3TETUaxB0EkmvxyEmIN8CH7R5JKIjEKDDe3HHOsQJ73hHpNANR8aQ6hk5mOY3hNJqDbtZmaNVRNV/ha1MM2i7Zbs0nU5VyvPu0ujY3SCTpGLzlENXaE6aiCKRugJPaMX69V6s6bW+/dqyppnDtEPWR9f9ZGmlg==</latexit>

e

e

1 – e

1 – e

0 0

1 1
input bit output bit

© Richard Cleve 2020

3-bit repetition code

4

One way of coping with this noisy channel:
• Encode each bit b as bbb
• Decode each received message b1b2b3 as majority(b1,b2,b3)

Can one do better?
For a given error rate e, what’s the “best” that can be done?

Is this useful?

e 3e2 – 2e3 error reduced
by a factor of

0.10 0.009 11

0.01 0.0001 100

0.001 0.000001 1000

E.g., if e = 0.10 and this is applied to n-bit
messages then < 1% of the n bits will be
in error (rather than 10%)

It reduces the effective error probability per data bit to 3e2 – 2e3

… but this is at a cost of tripling the message length (�rate� is 1/3)

why?

Repetition >3 times: a smaller effective error probability; but worse rate

© Richard Cleve 2020

A rough “big picture” view (1)

5

Amazing* fact: For any constant e < 1/2, there is a constant rate sufficient
to attain arbitrarily small error probability of the code

An error-correcting code can be viewed as two mappings:
• Encoding function E : {0,1}n ⟶ {0,1}m

• Decoding function D : {0,1}m ⟶ {0,1}n

Some considerations:
• Error probability of the code: probability that D(χ(E(x1x2…xn))) ≠ x1x2…xn
• Rate of the code: n/m

We assume some error model χ (including e) is given to us by the hardware

* At least it’s amazing the first time you think about it

Message: 0100110101110101 any n-bit string
Encoding: 0110011010100101111101010111010 (m bits) constant expansion

Errors: 0100111010101101101101110110110 constant fraction of the bits
Decoding: 0100110101110101 perfect recovery of n-bit string with probability → 1

© Richard Cleve 2020

A rough “big picture” view (2)

6

For noise level e, can attain arbitrarily high recovery probability with rate
arbitrarily close to R(e) (and exceeding R(e) is provably impossible)

½ e

rate R(") = 1�H(", 1� ")

= 1�
�
�" log(")� (1� ") log(1� ")

�

Rate as a function of noise level e (assume binary symmetric channel)

Question: What about quantum error correcting codes?

R(e)

Some further considerations:
• Block length n

(as the recovery probability ⟶ 1, block length ⟶ ∞)
• Computational efficiency: how difficult it is to compute E and D

(this is tricky, but polynomial-time—and practical—approaches exist)

© Richard Cleve 2020

7

Quantum repetition code?

NOPE

(a|0ñ + b|1ñ)⨂3

data code word
!

a|0ñ + b|1ñ

encoding

!decoding

This would violate the no-cloning theorem, for starters …

noise
error

© Richard Cleve 2020

8

Shor’s 9-qubit code

© Richard Cleve 2020

3-qubit code for one X-error

9

encode decode

Error can be any one of: IÄIÄI XÄIÄI IÄXÄI IÄIÄX

The essential property is that, in each case, the data a|0ñ + b|1ñ is shielded
from (i.e., unaffected by) the error

error

a|0ñ + b|1ñ
|0ñ
|0ñ

a|0ñ + b|1ñ

Corresponding syndrome: |00ñ |11ñ |10ñ |01ñ

|señ
e

The following 3-qubit quantum code protects against up to one error, if the
error can only be a quantum bit-flip (an X operation)

This code leaves them intact: one Z error is equivalent to a Z operation
on the original data

“syndrome” of the error

What about Z errors?

© Richard Cleve 2020

3-qubit code for one Z-error

10

encode decode

Error can be any one of: IÄIÄI ZÄIÄI IÄZÄI IÄIÄZ

error

a|0ñ + b|1ñ
|0ñ
|0ñ

a|0ñ + b|1ñ

|señ
e

Using the fact that HZH = X, one can adapt the previous code to
protect against Z-errors instead of X-errors

This code leaves X-errors intact

Is there a code that protects against errors that are arbitrary one-qubit
unitaries?

H

H

H

H

H

H

© Richard Cleve 2020

Shor’s 9-qubit quantum code

11

encode decode

The �inner� part corrects any single-qubit X-error

The �outer� part corrects any single-qubit Z-error

Since Y = iXZ, single-qubit Y-errors are also corrected

e

error

a|0ñ + b|1ñ
|0ñ
|0ñ
|0ñ
|0ñ
|0ñ
|0ñ
|0ñ
|0ñ

a|0ñ + b|1ñ

|señ
syndrome
of the error

H

H

H

H

H

H

© Richard Cleve 2020

Arbitrary one-qubit errors

12

Suppose that the error is some arbitrary one-qubit unitary operation U

Since there exist scalars l1, l2, l3 and l4, such that

U = l1 I + l2 X + l3 Y + l4 Z

a straightforward calculation shows that, when a U-error occurs on the k th

qubit, the output of the decoding circuit is

(a|0ñ + b|1ñ)(l1 |se1ñ + l2 |se2ñ + l3 |se3ñ + l4 |se4ñ)
where se1, se2, se3 and se4 are the syndromes associated with the four errors
(I, X, Y and Z) on the k th qubit

Hence the code actually protects against any unitary one-qubit error (in fact
the error can be any one-qubit quantum operation)

© Richard Cleve 2020

Summary of 9-qubit code

13

data code word

!

Can recover data from any 1 qubit error:

unknown
position

Moreover, it turns out the data can also be recovered data from any
2 qubit erasure error:

known
position

known
position

!

© Richard Cleve 2020

14

CSS Codes

© Richard Cleve 2020

Introduction to CSS codes

15

CSS codes (named after Calderbank, Shor, and Steane) are quantum
error correcting codes that are constructed from classical error-
correcting codes with certain properties

A classical linear code is one whose codewords (a subset of {0,1}m)
constitute a vector space

In other words, they are closed under linear combinations (here the
underlying field is {0,1} so the arithmetic is mod 2)

© Richard Cleve 2020

Examples of linear codes

16

For m = 7, consider these codes (which are linear):

C2 = {0000000, 1010101, 0110011, 1100110,
0001111, 1011010, 0111100 , 1101001}

C1 = {0000000, 1010101, 0110011, 1100110,
0001111, 1011010, 0111100, 1101001,
1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011 , 0010110}

Note that the minimum Hamming distance between any pair of codewords
is: 4 for C2 and 3 for C1

The minimum distances imply each code can correct one error

basis for space

These two codes will serve as a running example of a CSS code

© Richard Cleve 2020

Orthogonal complement

17

For a linear code C, define its orthogonal complement as
C^ = {w Î {0,1}m : for all v Î C, w×v = 0}

(where w×v = , the �dot product�)

Note that, in the previous example, C2
^ = C1 and C1

^ = C2 €

w jv j
j=1

m

∑ mod2

We will use some of these properties in the CSS construction

C2 = {0000000, 1010101, 0110011, 1100110,
0001111, 1011010, 0111100 , 1101001}

C1 = {0000000, 1010101, 0110011, 1100110,
0001111, 1011010, 0111100, 1101001,
1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011 , 0010110}

© Richard Cleve 2020

Encoding

18

To encode a 3-bit string b = b1b2b3 in C2, one multiplies [b1 b2 b3]
(on the right) by an appropriate 3´7 generator matrix

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

1111000
1100110
1010101

G

Similarly, C1 can encode 4 bits and an appropriate generator matrix for C1 is

Since , |C2| = 8, it can encode 3 bits

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

1111111
1111000
1100110
1010101

(generator for C2)

(generator for C1)

© Richard Cleve 2020

Parity check matrix

19

For any error-vector eÎ{0,1}m, the damaged data is v+e (addition mod 2)

Exercise: determine the parity check matrix for C1 and for C2

For linear codes with maximum distance d, this includes the errors that
are up to bit-flip errorsbd�1

2 c

Every n-dimensional linear code can be alternately specified by its
parity-check matrix M (m by m–n) such that:

v Î {0,1}m is a codeword v if and only if vM = 0

Capability of a code: we are interested in sets of errors e with the property
that each error e in the set can be uniquely identified (hence corrected) by se

Note that (v+e)M = eM, and define the error syndrome of e as se = eM

Error syndrome of an error vector

Exercise: for C1 and for C2 , work out the error syndromes for all e Î {0,1}m,
that correspond to single bit errors

© Richard Cleve 2020

CSS construction

20

Let C2 Ì C1 Ì {0,1}m be two classical linear codes such that:
• The minimum distance of C1 is d
• C2

^ Í C1

Let r = dim(C1) – dim(C2) = log(|C1|/|C2|)

Then the resulting CSS code maps each r-qubit basis state |b1…br ñ to
some �coset state� of the form

1
C2

v+w
v∈C2

∑

where w = w1…wm is a linear function of b1…br chosen so that each value of w
occurs in a unique coset in the quotient space C1/C2

bd�1
2 cThe resulting quantum code can correct up to errors

© Richard Cleve 2020

Example of CSS construction

21

For m = 7, for the C1 and C2 in the previous example we obtain these basis
codewords:

|0Lñ = |0000000ñ + |1010101ñ + |0110011ñ + |1100110ñ
+ |0001111ñ + |1011010ñ + |0111100ñ + |1101001ñ

|1Lñ = |1111111ñ + |0101010ñ + |1001100ñ + |0011001ñ
+ |1110000ñ + |0100101ñ + |1000011ñ + |0010110ñ

There is a quantum circuit that transforms between
(a|0ñ + b|1ñ)|0m-1ñ and a|0Lñ + b|1Lñ

and the linear function mapping b to w can be given as w = b×G

[] [][]11111117654321 bwwwwwww =

G

© Richard Cleve 2020

CSS error correction (1)

22

Using the error-correcting properties of C1, one can construct a quantum
circuit consisting of CNOT gates that computes the syndrome s for any
combination of up to d X-errors in the following sense

Once the syndrome se, has been computed, the X-errors can be
determined and undone

noisy
codeword

|0kñ

noisy
codeword

|señ

What about Z-errors?

The above procedure for correcting X-errors has no effect on any Z-errors
that occur

© Richard Cleve 2020

CSS error correction (2)

23

Note that any Z-error is an X-error in the Hadamard basis

Changing to Hadamard basis is like changing from C2 to C1 since

Note that, since C2
^ Í C1, this is a superposition of elements of C1, so we

can use the error-correcting properties of C1 to correct

Applying HÄn to a superposition of basis codewords yields

Then, applying Hadamards again, restores the codeword with up to
d Z-errors corrected

€

H⊗m v
v∈C2

∑
%

&
' '

(

)
* * = u

u∈C2
⊥

∑ and

€

H⊗m v + w
v∈C2

∑
%

&
' '

(

)
* * = −1()w⋅u u

u∈C2
⊥

∑

€

H⊗m αb
b∈{0,1} r
∑ v + b⋅ G

v∈C2

∑
'

(
))

*

+
, , = αb

b∈{0,1} r
∑ −1()b⋅G⋅u u

u∈C2
⊥

∑ = αb −1()b⋅G⋅u
b∈{0,1} r
∑ u

u∈C2
⊥

∑

© Richard Cleve 2020

CSS error correction (3)

24

The two procedures together correct up to d errors that can each be either
an X-error or a Z-error — and, since Y = iXZ, they can also be Y-errors

From this, a simple linearity argument can be applied to show that the code
corrects up to d arbitrary errors (that is, the error can be any quantum
operation performed on up to d qubits)

Since there exist pretty good classical linear codes that satisfy the properties
needed for the CSS construction, this approach can be used to construct
pretty good quantum codes

In our running example, we obtain a 7-qubit quantum code for 1 qubit,
that protects against one error (beating the Shor 9-qubit code)

© Richard Cleve 2020

Depolarizing channel

For any noise rate e below some constant, there are codes with:
• constant rate r = n/m
• error probability of code ® 0 as n ® ¥

I with probability 1– e (no error)
X with probability e/3 (bit flip)
Z with probability e/3 (phase flip)
Y with probability e/3 (both)

Each qubit incurs the following type of error (0 ≤ e ≤ ¾):

25

Roughly speaking, it’s a quantum analogue of the binary symmetric channel

½ e

rate
classical

binary
symmetric

channel

quantum
depolarizing

channel

½

1

e

rate

© Richard Cleve 2020

26

Brief remarks about
fault-tolerant computing

© Richard Cleve 2020

27

A simple error model

At each qubit there is an ´ error per unit of time, that denotes the
following noise:

|0ñ
|1ñ
|1ñ
|0ñ
|1ñ
|0ñ

1
0
1
0
1
1

´ ´ ´ ´ ´ ´ ´ ´
´ ´ ´ ´ ´ ´ ´ ´
´ ´ ´ ´ ´ ´ ´ ´
´ ´ ´ ´ ´ ´ ´ ´
´ ´ ´ ´ ´ ´ ´ ´
´ ´ ´ ´ ´ ´ ´ ´

I with probability 1–e
X with probability e/3
Y with probability e/3
Z with probability e/3

© Richard Cleve 2020

28

Threshold theorem
If e is very small then this is okay — a computation of size* less than 1/(10e)
will still succeed most of the time

* where size = (# qubits)x(# time steps)

But, for every constant value of e, the size of the maximum computation
possible in this manner is constant

Threshold theorem:
There’s a fixed constant e0 > 0 such that a circuit of any size T can be
translated into a circuit of size O(T logc(T)) that is robust against the error
model with parameter e ≤ e0

(The proof is omitted here)

© Richard Cleve 2020

29

Comments about the threshold theorem
Idea is to use a quantum error-correcting code at the start and then
perform all the gates on the encoded data

At regular intervals, an error-correction procedure is performed, very
carefully, since these operations are also subject to errors!

The 7-qubit CSS code has some nice properties that enable some (not
all) gates to be directly performed on the encoded data: H and CNOT
gates act �transversally� in the sense that:

H

are equivalent to

H
H
H
H
H
H
H

encoded qubit

Also, codes applied recursively become stronger
© Richard Cleve 2020

