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More state distinguishing problems
Which of these states are distinguishable? Divide them into 
equivalence classes:

1.   |0ñ + |1ñ

2. −|0ñ − |1ñ

3.   |0ñ with prob. ½ 
|1ñ with prob. ½

4.   |0ñ + |1ñ with prob. ½ 
|0ñ − |1ñ with prob. ½

5.   |0ñ with prob. ½ 
|0ñ + |1ñ with prob. ½

6.   |0ñ with prob. ¼  
|1ñ with prob. ¼ 
|0ñ + |1ñ with prob. ¼ 
|0ñ − |1ñ with prob. ¼ 

7. The first qubit of |01ñ − |10ñ

This is a probabilistic mixed state
Answers later on ...
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Density matrix formalism
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Density matrices (1)
Until now, we�ve represented quantum states as vectors
(e.g. |ψñ, and all such states are called pure states)

An alternative way of representing quantum states is in terms 
of density matrices (a.k.a. density operators)

The density matrix of a pure state |ψñ is the matrix r = |ψñáψ|

Example: the density matrix of a|0ñ + b|1ñ is 
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Density matrices (2)

Effect of a unitary operation on a density matrix: 
applying  U to  r yields UrU†

Effect of a measurement on a density matrix: 
measuring state r with respect to the basis |j1ñ, |j2ñ,..., |jdñ,
yields the k th outcome with probability ájk|r|jkñ

How do quantum operations work using density matrices?

(this is because the modified state is U|ψñáψ|U† )

(this is because ájk|r|jkñ = ájk|ψñáψ|jkñ = |ájk|ψñ|2 )
—and the state collapses to |jkñájk|
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Density matrices (3)
A probability distribution on pure states is called a mixed state:
( (|ψ1ñ, p1), (|ψ2ñ, p2), …, (|ψdñ, pd))
The density matrix associated with such a mixed state is:
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Example: the density matrix for ((|0ñ, ½ ), (|1ñ, ½ )) is: 
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Question: what is the density matrix of
((|0ñ + |1ñ, ½ ), (|0ñ − |1ñ, ½ )) ?
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Density matrices (4)

Effect of a unitary operation on a density matrix: 
applying  U to  r still yields UrU†

How do quantum operations work for these mixed states?

This is because the modified state is:

Effect of a measurement on a density matrix: 
measuring state r with respect to the basis |j1ñ, |j2ñ,..., |jdñ,
still yields the k th outcome with probability ájk|r|jkñ

Why?

dX

k=1

pkU | kih k|U † = U

 
dX

k=1

pk| kih k|
!
U† = U⇢U †
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Recap: density matrices

• Applying  U to  r yields UrU†

• Measuring state r with respect to the basis |j1ñ, |j2ñ,..., |jdñ,
yields: k th outcome with probability ájk|r|jkñ
—and causes the state to collapse to |jkñájk|

Quantum operations in terms of density matrices:

Since these are expressible in terms of density matrices alone 
(independent of any specific probabilistic mixtures), states with 
identical density matrices are operationally indistinguishable
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Return to state distinguishing 
problems …
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State distinguishing problems (1)
The density matrix of the mixed state
((|ψ1ñ, p1), (|ψ2ñ, p2), …,(|ψdñ, pd)) is:

1. & 2. |0ñ + |1ñ and −|0ñ − |1ñ both have

3.   |0ñ with prob. ½ 
|1ñ with prob. ½

4.   |0ñ + |1ñ with prob. ½ 
|0ñ − |1ñ with prob. ½

6.   |0ñ with prob. ¼  
|1ñ with prob. ¼ 
|0ñ + |1ñ with prob. ¼ 
|0ñ − |1ñ with prob. ¼ 

Examples (from earlier in lecture):
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State distinguishing problems (2)

5.   |0ñ with prob. ½ 
|0ñ + |1ñ with prob. ½

7. The first qubit of |01ñ − |10ñ

Examples (continued):
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...? (later)

⇢ =
1

2


1 0
0 0

�
+

1

2


1/2 1/2
1/2 1/2

�
=


3/4 1/2
1/2 1/4

�

© Richard Cleve 2020



13

Characterizing density matrices

Three properties of r :
• Trr = 1 (TrM = M11 + M22 + ... + Mdd )
• r =r† (i.e. r is Hermitian)
• áj|r|jñ ³ 0, for all states |jñ (i.e. r is positive semidefinite)
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Moreover, for any matrix r satisfying the above properties, 
there exists a probabilistic mixture whose density matrix is r

Exercise: show this
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Taxonomy of various 
normal matrices
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Normal matrices
Definition: A matrix M is normal if M†M = MM†

Theorem: M is normal iff there exists a unitary U such that 
M = U†DU, where D is diagonal (i.e. unitarily diagonalizable)

Examples of abnormal matrices: 
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Unitary and Hermitian matrices
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1 with respect to some
orthonormal basis

Normal:

Unitary: M†M = I which implies |lk |2 = 1, for all k

Hermitian: M = M† which implies lk ∈ ℝ for all k

Question: which matrices are both unitary and Hermitian?

Answer: reflections (lk Î {+1, –1}, for all k)
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Positive semidefinite

Positive semidefinite: Hermitian and lk ³ 0, for all k

Theorem: M is positive semidefinite iff M is Hermitian and, 
for all |jñ, áj|M |jñ ³ 0

(Positive definite: lk > 0, for all k)
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Projectors and density matrices

Projector: Hermitian and M2 = M, which implies that M is 
positive semidefinite and lk ∈ {0,1}, for all k

Density matrix: positive semidefinite and TrM =1, so 1
1

=å
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kλ

Question: which matrices are both projectors and density 
matrices?

Answer: rank-1 projectors (lk = 1 if k = j; otherwise lk = 0)
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Taxonomy of normal matrices

normal

unitary Hermitian

Reflection*
*through hyperplane

positive 
semidefinite

projector density
matrix

rank one
projector
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Bloch sphere for qubits
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Bloch sphere for qubits (1)
Consider the set of all 2x2 density matrices r

Note: coefficient of  I must be ½, since X, Y, Z are traceless

They have a nice representation in terms of the Pauli matrices:
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Note that these matrices—combined with I—form a basis for 
the vector space of all 2x2 matrices

We will express density matrices  r in this basis
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Bloch sphere for qubits (2)

2
ZcYcXcI

ρ zyx +++
=We will express

First consider the case of pure states |yñáy|, where, without 
loss of generality,  |yñ = cos(q)|0ñ + e2ifsin(q)|1ñ (q, f Î [0,π])
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Therefore cz = cos(2q), cx = cos(2f)sin(2q), cy = sin(2f)sin(2q)

These are polar coordinates of a unit vector (cx , cy , cz) Î ℝ3
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Bloch sphere for qubits (3)

|+ñ

|0ñ

|1ñ

|–ñ

|+iñ

–|iñ
|+iñ = |0ñ + i|1ñ
|–iñ = |0ñ – i|1ñ

|–ñ = |0ñ – |1ñ
|+ñ = |0ñ +|1ñ

Pure states are on the surface, and mixed states are inside 
(being weighted averages of pure states)

Note that orthogonal corresponds to antipodal here
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Distinguishing mixed states
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Distinguishing mixed states (1)
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|0ñ with prob. ½ 
|0ñ + |1ñ with prob. ½

|0ñ with prob. ½ 
|1ñ with prob. ½
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|f0ñ with prob. cos2(p/8)
|f1ñ with prob. sin2(p/8)

|0ñ

|+ñ

|f0ñ

|f1ñ

|f0ñ with prob. ½ 
|f1ñ with prob. ½ 

What�s the best distinguishing strategy between these two 
mixed states? 

r1 also arises from this 
orthogonal mixture: … as does r2 from:
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Distinguishing mixed states (2)
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We�ve effectively found an orthonormal basis |f0ñ, |f1ñ in 
which both density matrices are diagonal:

Rotating |f0ñ, |f1ñ to |0ñ, |1ñ the scenario can now 
be examined using classical probability theory:

Question: what do we do if we aren’t so lucky to get two 
density matrices that are simultaneously diagonalizable?

Distinguish between two classical coins, whose probabilities 
of �heads� are cos2(p/8) and ½ respectively (details: exercise)

|0ñ

|+ñ

|f0ñ

|f1ñ |1ñ
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general quantum operations
more commonly known as

quantum channels
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General quantum operations (1)

Example 1 (unitary op): applying  U to  r yields UrU†

Also known as: 
�quantum channels�
�completely positive trace preserving maps�,
�admissible operations�

Let A1, A2 , …, Am be matrices satisfying 

Then the mapping is a general quantum op

Note: A1, A2 , …, Am do not have to be square matrices
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General quantum operations (2)
Example 2 (decoherence): let A0 = |0ñá0| and A1 = |1ñá1|

This quantum op maps r to |0ñá0|r|0ñá0| + |1ñá1|r|1ñá1|

Corresponds to measuring r �without looking at the outcome�
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!For |ψñ = a|0ñ + b|1ñ,

After looking at the outcome, r becomes   |0ñá0| with prob. |a|2
|1ñá1| with prob. |b|2
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General quantum operations (3)
Example 3

Let A0 = IÄá0| and A1 = IÄá1|ú
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• Any state of the form  rÄs (product state) becomes  r

• State becomes1
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It’s the same density matrix as for ((½, |0ñ), (½, |1ñ))
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The operation is called the partial trace Tr2 r

• Corresponds to “discarding the second register”
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