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More state distinguishing problems

Which of these states are distinguishable? Divide them into
equivalence classes:

1. 10)+1) 5.{ 0) with prob. ¥z
0) + |1) with prob. 72

2.-[0) = 1[1)
3. ] |0) with prob. 7 6. (0) W?th prob. V4
{|1> with prob. V% ) 1) with prob. Y

0)+ 1) with prob. V4
0)— 1) with prob. V4

'd

4.{ 0) + 1) with prob. %2

0) = 1) with prob. %2 7 16 first qubit of [01) — [10)

Answers later on ...
This is a probabilistic mixed state ]
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Density matrix formalism



Density matrices (1)

Until now, we’ ve represented quantum states as vectors
(e.g. |v), and all such states are called pure states)

An alternative way of representing quantum states is in terms
of density matrices (a.k.a. density operators)

The density matrix of a pure state [y) is the matrix p = [y) (/|

Example: the density matrix of a|0) + B|1) is

2

. e [l o
p_LJ[a B] _OC*B ‘B‘z_
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Density matrices (2)

How do quantum operations work using density matrices?

Effect of a unitary operation on a density matrix:
applying U to p yields U,OUJr

(this is because the modified state is U|\|/>(\V|UT)

Effect of a measurement on a density matrix:
measuring state p with respect to the basis |,), |p,),..., |0,
yields the k" outcome with probability (¢,|o|®,)

(thiS is because (@] 0|0 = (@ W) {W|oy) = |<(Pk|\|f>|2 )

—and the state collapses to |p,) (/] 6
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Density matrices (3)

A probability distribution on pure states is called a mixed state:
( (li)s p1)s (lwa)s pa)s --os (W), Pd))

The density g1atrix associated with such a mixed state is:
EDWABIA
k=1
Example: the density matrix for ((|0), 2 ), (|1), ¥2)) is:
1[1 0] 1fo o] _1[1 0
210 0| 2/0 1| 2[0 1
Question: what is the density matrix of
((0) +[1), %), (10) = [1), %)) 7
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Density matrices (4)

How do quantum operations work for these mixed states?

Effect of a unitary operation on a density matrix:
applying U to p still yields U,OUT

This is because the modified state is:

d d
S pRU ) (U = U(Zwkxm) Ut = uput
k=1 k=1

Effect of a measurement on a density matrix:
measuring state p with respect to the basis |,), |p,),..., |0,
still yields the k™ outcome with probability (¢, o|¢,)
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Recap: density matrices

Quantum operations in terms of density matrices:

* Applying U to p yields U,OUJr

» Measuring state o with respect to the basis |@,), |,),..., [0,),
yields: k" outcome with probability (¢,|0|®,)
—and causes the state to collapse to |@,) (@]

Since these are expressible in terms of density matrices alone
(independent of any specific probabilistic mixtures), states with
iIdentical density matrices are operationally indistinguishable
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Return to state distinguishing

problems ...



State distinguishing problems (1)

The density matrix of the mixed state

(v, p1)s (w2, p2), -, (Iwa), Pd Is: Zpkmk (V|

Examples (from earlier in lecture):

1
1. & 2.10) +[1) and —|0) — [1) both have p = 5 E ﬂ
3. [ |0) with prob. % )
_|1) with prob.

4.(0y+ 1) with prob. ¥
|0y —|1) with prob. %% >p:1 1 0
2

6.(0) with prob. Y 01
1) with prob. 74
0)+ 1) with prob. V4
0)— 1) with prob. 72 1
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State distinguishing problems (2)

Examples (continued):

5. { 0) with prob. ¥
0) + |1) with prob. 72

o 1j1 o 1i(1/2 1/2| [3/4 1/2
s P =5 {0 0} T3 {1/2 1/2} - [1/2 1/4}
7. The first qubit of |01) — [10) ...? (later)

12
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Characterizing density matrices

Three properties of p:
° Trp= 1 (TrM=MH +M22+ +Mdd)
« p=p' (i.e. pis Hermitian)

d
P = zpk‘WkXWk ‘
k=1

« (p|p|@) =0, for all states |) (i.e. p is positive semidefinite)

Moreover, for any matrix p satisfying the above properties,
there exists a probabilistic mixture whose density matrix is p

Exercise: show this
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Taxonomy of various

normal matrices




Normal matrices
Definition: A matrix M is normal if MM = MM’

Theorem: M is normal iff there exists a unitary U such that
M =U'DU, where D is diagonal (i.e. unitarily diagonalizable)

',11 0O --- 0
Do 0 4 - 0
0 0 - Ay

Examples of abnormal matrices: :
: eigenvectors:

1 1] is noteven I 1] isdiagonalizable, :
0 1| diagonalizable |y 5| butnot unitarily - A

15
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Unitary and Hermitian matrices

Normal: 4 0 - 0| with respect to some
|0 % - 0| orthonormal basis
0 0 - 4,

Unitary: MM = I which implies |1, |2 = 1, for all k
Hermitian: M = M" which implies 2, € R for all k

Question: which matrices are both unitary and Hermitian?

Answer: reflections (A, € {+1, -1}, for all k)
16
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Positive semidefinite

Positive semidefinite: Hermitian and 1, > 0, for all £

Theorem: M is positive semidefinite iff M is Hermitian and,
for all [@), (¢|M]p) =0

(Positive definite: ), > 0, for all k)
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Projectors and density matrices

Projector: Hermitian and M?2= M, which implies that M is
positive semidefinite and A, € {0,1}, for all &

d
Density matrix: positive semidefinite and Tr M=1, so > 4, =1
k=1

Question: which matrices are both projectors and density
matrices?

Answer: rank-1 projectors (A, =1 if £ =J; otherwise 1,=0)

18
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Taxonomy of normal matrices
e positive

matrix
rank one
projector

19
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Bloch sphere for qubits



Bloch sphere for qubits (1)

Consider the set of all 2x2 density matrices p

They have a nice representation in terms of the Pauli matrices:

0 1 1 0 0 —i
Gx:X: GZ:Z: @) :Y:
1 0 0 -1 g i 0

Note that these matrices—combined with /—form a basis for
the vector space of all 2x2 matrices

We will express density matrices o in this basis

Note: coefficient of / must be Y2, since X, Y, Z are traceless

21
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We will express p =

First consider the case of pure states [\y) (v
loss of generality,

p:

Bloch sphere for qubits (2)

cos’6

e'*?cosfsind

[+c X+c Y+cZ

. where, without

y) = cos(0)[0) + €*%sin(0)|1) (6, ¢ € [0,])

e

—12¢

sin’@

cosfsind

1+cos(20) e sin(260)

esin(20) 1-cos(26)

Therefore ¢, = c0s(20), ¢, = c0s(2¢)sIn(20), ¢, = sin(2¢)sin(26)

These are polar coordinates of a unit vector (¢, ,c,.c,) € R3

© Richard Cleve

2020
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Bloch sphere for qubits (3)

+) = [0) +1)

=10y - 1)

+i) = |0) + i[1)
2 Ly =10y - i)

Note that orthogonal corresponds to antipodal here

Pure states are on the surface, and mixed states are inside

(being weighted averages of pure states)
23
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Distinguishing mixed states
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Distinguishing mixed states (1)

What' s the best distinguishing strategy between these two
mixed states?

{|O> with prob. % {|O> with prob. %

0) +|1) with prob. 72 1) with prob. V2
[3/4 172 11 o

el 1/4 P2=%10 1

§1)

0, also arises from this
orthogonal mixture:

... as does p, from:

{|¢O> with prob. cos?(/8) {|¢O> with prob. ¥
[b,) with prob. sin?(7/8) &) with prob. 72

25
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Distinguishing mixed states (2)

We’ ve effectively found an orthonormal basis |¢,), [d;) in
which both density matrices are diagonal:

1)

.| cos’(n/8) 0 W 21{1 O} L )
& 0 sin’(n/8) L2001
Do)

Rotating (¢), |¢,) to |0), |1) the scenario can now
be examined using classical probability theory: |

Distinguish between two classical coins, whose probabilities
of “heads” are cos?(n/8) and V% respectively (details: exercise)

Question: what do we do if we aren’t so lucky to get two
density matrices that are simultaneously diagonalizable?

26
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general quantum operations

more commonly known as

quantum channels
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General quantum operations (1)

Also known as:
(11 ””
quantum channels
“completely positive trace preserving maps”,
“admissible operations”

LetA,, 4,, ..., A,, be matrices satisfying » A/A =1
=

Then the mapping pH— ZAij;.' IS a general quantum op
j=1

Note: 4,, 4,, ..., A,, do not have to be square matrices

Example 1 (unitary op): applying U to o yields U,OUT

28
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General quantum operations (2)

Example 2 (decoherence): let A,=|0)(0
This quantum op maps o to |0)(0|0|0){0

For [y) = |0) + A1),

ap B

and A,=|1){1]
+ 1)1l 1)1

2
4

0

0

Al

‘2

Corresponds to measuring p “without looking at the outcome”

After looking at the outcome, p becomes{

© Richard Cleve 2020

10)(0] with prob. |¢?
[1)(1| with prob. |2
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General quantum operations (3)

Example 3

1 0 0 O

0O 100
0O 010

}and A1=I®<1|={O 0 0 1

Let A,= I®(0] = {

* Any state of the form p®o (product state) becomes p

1 0
+ State (4[00)+]|11))(5(00]+-5(11]) becomes %{o J

It's the same density matrix as for (%, |0)), (%, [1)))

« Corresponds to “discarding the second register”

The operation is called the partial trace Tr, p
30

© Richard Cleve 2020



