Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 4 (2014)

Richard Cleve

QNC 3129 cleve@uwaterloo.ca

Simple quantum algorithms in the query scenario

Query scenario

Input: a function *f*, given as a black box (a.k.a. oracle)

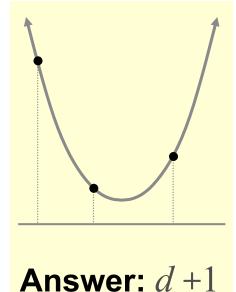
Goal: determine some information about f making as few queries to f (and other operations) as possible

Example: polynomial interpolation

Let: $f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_d x^d$

Goal: determine c_0 , c_1 , c_2 , ..., c_d

Question: How many *f*-queries does one require for this?

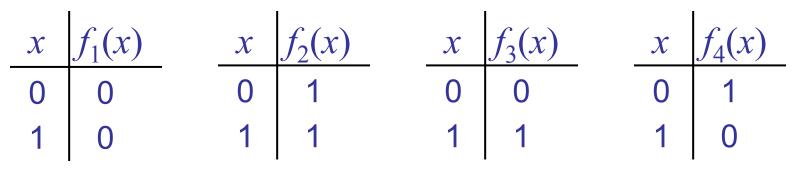


Deutsch's problem

Deutsch's problem

Let $f: \{0,1\} \rightarrow \{0,1\}$

There are *four* possibilities:

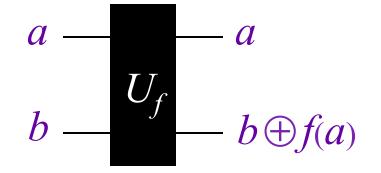


Goal: determine whether or not f(0) = f(1) (i.e. $f(0) \oplus f(1)$)

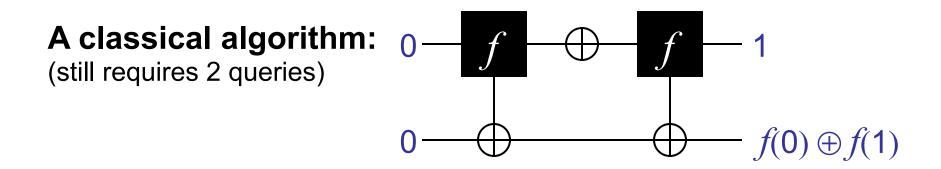
Any classical method requires *two* queries

What about a quantum method?

Reversible black box for f

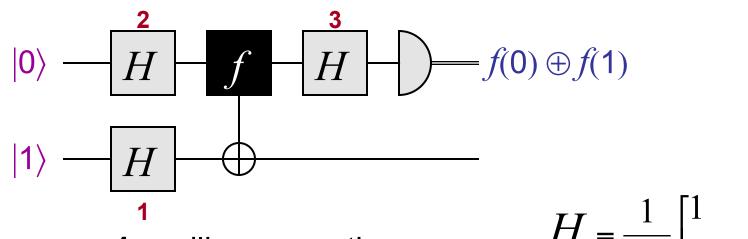


alternate ______f



2 queries + 1 auxiliary operation

Quantum algorithm for Deutsch

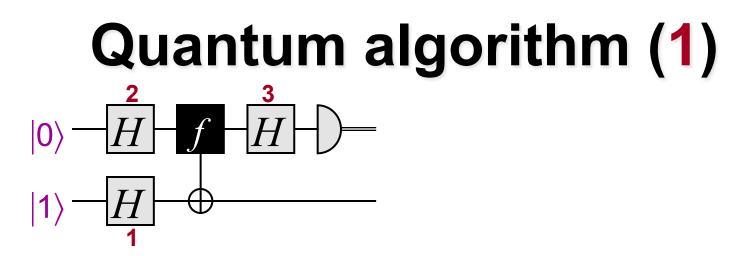


1 query + 4 auxiliary operations

 $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

How does this algorithm work?

Each of the three H operations can be seen as playing a different role ...



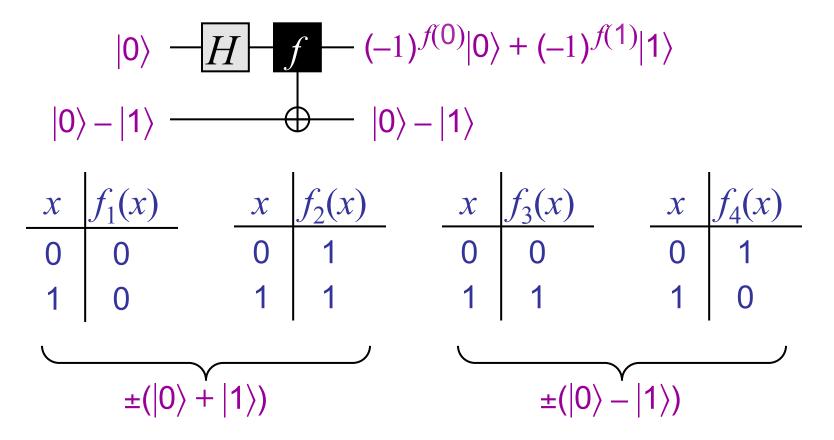
1. Creates the state $|0\rangle - |1\rangle$, which is an eigenvector of $\begin{cases}
NOT & \text{with eigenvalue } -1 \\
I & \text{with eigenvalue } +1
\end{cases}$

This causes f to induce a **phase shift** of $(-1)^{f(x)}$ to $|x\rangle$

$$|x\rangle - f - (-1)^{f(x)}|x\rangle$$
$$|0\rangle - |1\rangle - 0 - |1\rangle$$

Quantum algorithm (2)

2. Causes f to be queried **in superposition** (at $|0\rangle + |1\rangle$)



Quantum algorithm (3)

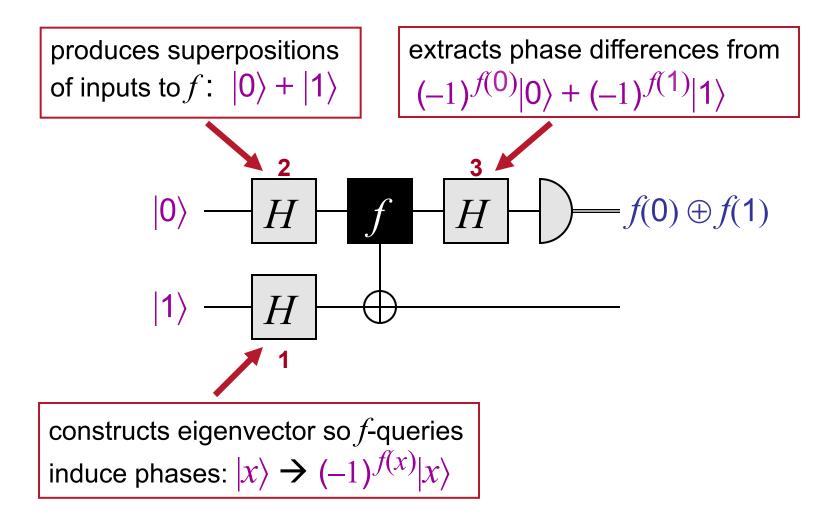
3. Distinguishes between $\pm (|0\rangle + |1\rangle)$ and $\pm (|0\rangle - |1\rangle)$

$$\pm (|0\rangle + |1\rangle) \xleftarrow{H} \pm |0\rangle$$

$$\pm (|0\rangle - |1\rangle) \xleftarrow{H} \pm |1\rangle$$

Summary of Deutsch's algorithm

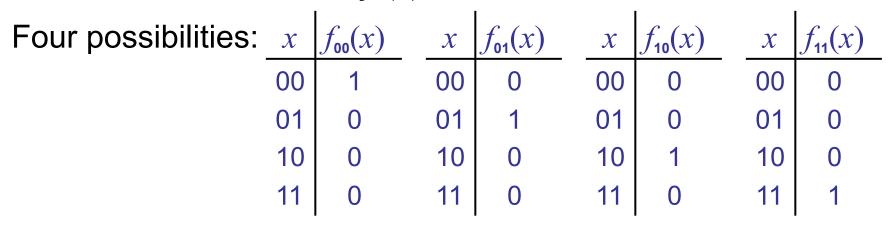
Makes only one query, whereas two are needed classically



One-out-of-four search

One-out-of-four search

Let $f: \{0,1\}^2 \rightarrow \{0,1\}$ have the property that there is exactly one $x \in \{0,1\}^2$ for which f(x) = 1



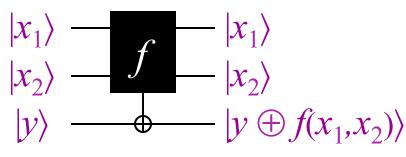
Goal: find $x \in \{0,1\}^2$ for which f(x) = 1

What is the minimum number of queries *classically?*

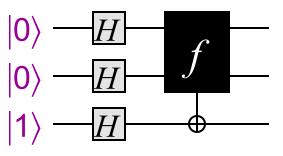
Quantumly? _

Quantum algorithm (I)

Black box for 1-4 search:

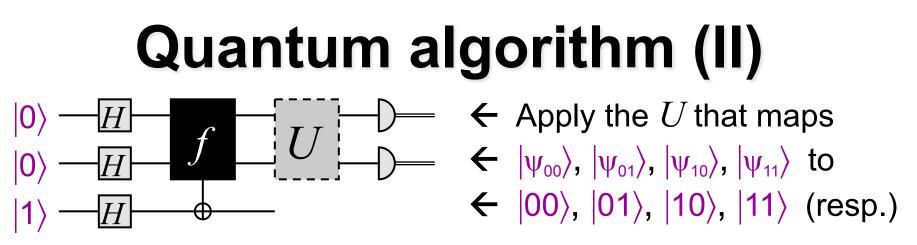


Start by creating phases in superposition of all inputs to f:



Input state to query? $(|00\rangle + |01\rangle + |10\rangle + |11\rangle)(|0\rangle - |1\rangle)$

Output state of query? $((-1)^{f(00)}|00\rangle + (-1)^{f(01)}|01\rangle + (-1)^{f(10)}|10\rangle + (-1)^{f(11)}|11\rangle)(|0\rangle - |1\rangle)$



Output state of the first two qubits in the four cases:

Case of f_{00} ? $|\psi_{00}\rangle = -|00\rangle + |01\rangle + |10\rangle + |11\rangle$ Case of f_{01} ? $|\psi_{01}\rangle = + |00\rangle - |01\rangle + |10\rangle + |11\rangle$ Case of f_{10} ? $|\psi_{10}\rangle = + |00\rangle + |01\rangle - |10\rangle + |11\rangle$ Case of f_{11} ? $|\psi_{11}\rangle = + |00\rangle + |01\rangle + |10\rangle - |11\rangle$

What noteworthy property do these states have? Orthogonal!

Challenge Exercise: simulate the above U in terms of H, CNOT and NOT gates

one-out-of-N search?

Natural question: what about search problems in spaces larger than *four* (and without uniqueness conditions)?

For spaces of size *eight* (say), the previous method breaks down—the state vectors will not be orthogonal

Later on, we'll see how to search a space of size N with $O(\sqrt{N})$ queries ...

Constant vs. balanced

Constant vs. balanced

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be either constant or balanced, where

- **constant** means f(x) = 0 for all x, or f(x) = 1 for all x
- **balanced** means $\Sigma_x f(x) = 2^{n-1}$

Goal: determine whether f is constant or balanced

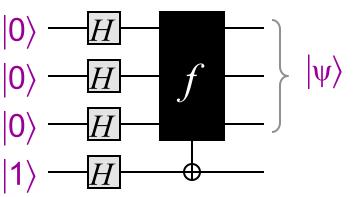
How many queries are there needed *classically?*

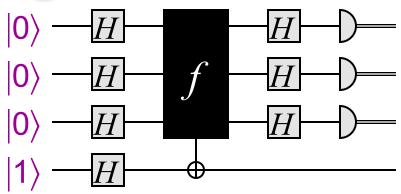
Example: if f(0000) = f(0001) = f(0010) = ... = f(0111) = 0then it still could be either

Quantumly?

[Deutsch & Jozsa, 1992]

Quantum algorithm





Constant case: $|\psi\rangle = \pm \sum_{\chi} |\chi\rangle$ *Why?* Balanced case: $|\psi\rangle$ is *orthogonal* to $\pm \sum_{\chi} |\chi\rangle$ *Why?* How to distinguish between the cases? What is $H^{\otimes n}|\psi\rangle$? Constant case: $H^{\otimes n}|\psi\rangle = \pm |00...0\rangle$ Balanced case: $H^{\otimes n}|\psi\rangle$ is orthogonal to $|0...00\rangle$

Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced" 19

Probabilistic *classical* algorithm solving constant vs balanced

But here's a classical procedure that makes only **2** queries and performs fairly well probabilistically:

- 1. pick $x_1, x_2 \in \{0,1\}^n$ randomly
- 2. **<u>if</u>** $f(x_1) \neq f(x_2)$ **<u>then</u>** output balanced **<u>else</u>** output constant

What happens if f is constant? The algorithm always succeeds What happens if f is balanced? Succeeds with probability $\frac{1}{2}$

By repeating the above procedure k times: 2k queries and one-sided error probability $(\frac{1}{2})^k$

Therefore, for large n, $<< 2^n$ queries are likely sufficient

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 5 (2014)

Richard Cleve

QNC 3129 cleve@uwaterloo.ca

About $H \otimes H \otimes ... \otimes H = H^{\otimes n}$

Theorem: for $x \in \{0,1\}^n$, $H^{\otimes n} | x \rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} | y \rangle$ where $x \cdot y = x_1 y_1 \oplus ... \oplus x_n y_n$

Example:
$$H \otimes H = \frac{1}{2} \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$$

Pf: For all $x \in \{0,1\}^n$, $H|x\rangle = |0\rangle + (-1)^x |1\rangle = \sum_y (-1)^{xy} |y\rangle$ Thus, $H^{\otimes n}|x_1 \dots x_n\rangle = \left(\sum_{y_1} (-1)^{x_1y_1} |y_1\rangle\right) \dots \left(\sum_{y_n} (-1)^{x_ny_n} |y_n\rangle\right)$ $= \sum_y (-1)^{x_1y_1 \oplus \dots \oplus x_ny_n} |y_1 \dots y_n\rangle$

Simon's problem

Quantum vs. classical separations

black-box problem	quantum	classical	
constant vs. balanced	1 (query)	2 (queries)	
1-out-of-4 search	1	3	
constant vs. balanced	1	¹ / ₂ 2 ⁿ + 1	(only for exact)
Simon' s problem			(probabilistic)

Simon's problem

Let $f: \{0,1\}^n \rightarrow \{0,1\}^n$ have the property that there exists an $r \in \{0,1\}^n$ such that f(x) = f(y) iff $x \oplus y = r$ or x = y

Example:

x	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is r is this case?

Answer: *r* = 101

A classical algorithm for Simon

Search for a *collision*, an $x \neq y$ such that f(x) = f(y)

1. Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ randomly (independently)

2. For all $i \neq j$, if $f(x_i) = f(x_j)$ then output $x_i \oplus x_j$ and halt

A hard case is where *r* is chosen randomly from $\{0,1\}^n - \{0^n\}$ and then the "table" for f is filled out randomly subject to the structure implied by *r*

How big does k have to be for the probability of a collision to be a constant, such as $\frac{3}{4}$?

Answer: order $2^{n/2}$ (each (x_i, x_j) collides with prob. $O(2^{-n})$)

Classical lower bound

Theorem: *any* classical algorithm solving Simon's problem must make $\Omega(2^{n/2})$ queries

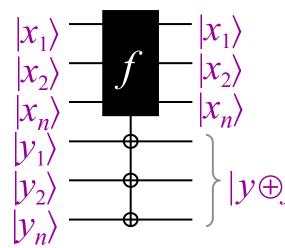
Proof is omitted here—note that the performance analysis of the previous algorithm does *not* imply the theorem

... how can we know that there isn't a *different* algorithm that performs better?

A quantum algorithm for Simon I

 $(x)\rangle$

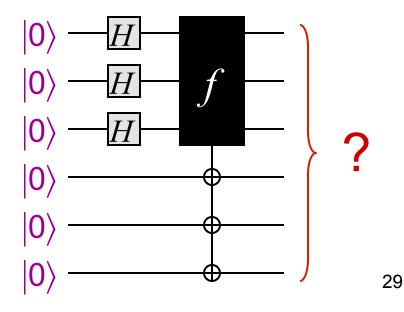
Queries:



Not clear what *eigenvector* of target registers is ...

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?



A quantum algorithm for Simon II

Answer: the output state is

$$\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$$

Let $T \subseteq \{0,1\}^n$ be such that **one** element from each matched pair is in T (assume $r \neq 00...0$)

Example: could take $T = \{000, 001, 011, 111\}$

Then the output state can be written as:

$$\sum_{x \in T} |x\rangle |f(x)\rangle + |x \oplus r\rangle |f(x \oplus r)\rangle$$

$$= \sum_{x \in T} \left(\left| x \right\rangle + \left| x \oplus r \right\rangle \right) \left| f(x) \right\rangle$$

X	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle + |x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain some information about r?

Try applying $H^{\otimes n}$ to the state, yielding:

$$\sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} |y\rangle + \sum_{y \in \{0,1\}^n} (-1)^{(x \oplus r) \bullet y} |y\rangle$$

$$= \sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} (1 + (-1)^{r \bullet y}) |y\rangle$$

Measuring this state yields y with prob. $\begin{cases} (1/2)^{n-1} & \text{if } r \cdot y = 0 \\ 0 & \text{if } r \cdot y \neq 0 \end{cases}$

A quantum algorithm for Simon IV

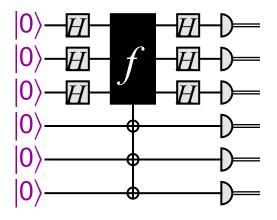
Executing this algorithm k = O(n) times yields random $y_1, y_2, ..., y_k \in \{0,1\}^n$ such that $r \cdot y_1 = r \cdot y_2 = ... = r \cdot y_n = 0$

How does this help?

This is a system of k linear equations:

$$\begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \cdots & y_{kn} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra) ³²



Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box Ω(2^{n/2}) times, even to succeed with probability ³/₄
- There is a quantum algorithm that queries the black box only O(n) times, performs only O(n³) auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability ³/₄