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Simple quantum algorithms 
in the query scenario 
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Query scenario 
Input: a function f, given as 
a black box (a.k.a. oracle) f x f (x) 

Goal: determine some information about  f  making as few 
queries to  f  (and other operations) as possible 

Example: polynomial interpolation 

Let:  f (x) = c0 + c1x + c2 x2 + ... + cd xd 

Goal: determine c0 , c1 , c2 , ... , cd 

Question: How many f-queries does one 
require for this? 

Answer: d +1 
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Deutsch’s problem 
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Deutsch’s problem 
Let  f : {0,1} à {0,1} f 
There are four possibilities: 

 x f1(x) 
 0 
 1 

  0 
  0 

 x f2(x) 
 0 
 1 

  1 
  1 

 x f3(x) 
 0 
 1 

  0 
  1 

 x f4(x) 
 0 
 1 

  1 
  0 

Goal: determine whether or not  f(0) = f(1)  (i.e. f(0) ⊕ f(1))  

Any classical method requires two queries 

What about a quantum method? 
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Reversible black box for f 

Uf 

a 

 b 

a 

b ⊕ f(a) 

f alternate 
notation: 

A classical algorithm: 
(still requires 2 queries) 

f f 0 

0 

1 

f(0) ⊕ f(1) 

2 queries + 1 auxiliary operation 
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Quantum algorithm for Deutsch  

H f 

H 

H 

|1〉 

|0〉 f(0) ⊕ f(1) 

1 query + 4 auxiliary operations ⎥
⎦

⎤
⎢
⎣

⎡

−
=

11
11

2
1H

How does this algorithm work? 

Each of the three H operations can be seen as playing 
a different role ... 

1 

2 3 
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Quantum algorithm (1)  
H f 

H 

H 

|1〉 

|0〉 

1. Creates the state |0〉 – |1〉, which is an eigenvector of 

1 

2 3 

NOT with eigenvalue  –1  
   I     with eigenvalue  +1 

This causes f  to induce a phase shift of (–1) f(x) to |x〉 

f 

|0〉 – |1〉 

|x〉 (–1) f(x)|x〉 

|0〉 – |1〉 
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Quantum algorithm (2)  
2. Causes  f  to be queried in superposition (at |0〉 + |1〉) 
 

f 

|0〉 – |1〉 

|0〉 (–1) f(0)|0〉 + (–1) f(1)|1〉 

|0〉 – |1〉 

H 

 x f1(x) 
 0 
 1 

  0 
  0 

 x f2(x) 
 0 
 1 

  1 
  1 

 x f3(x) 
 0 
 1 

  0 
  1 

 x f4(x) 
 0 
 1 

  1 
  0 

±(|0〉 + |1〉) ±(|0〉 – |1〉) 
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Quantum algorithm (3)  
3. Distinguishes between  ±(|0〉 + |1〉)  and  ±(|0〉 – |1〉) 

H 

±(|0〉 + |1〉)                 ±|0〉  

±(|0〉 – |1〉)                 ±|1〉  

H 
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Summary of  Deutsch’s algorithm  

H f 

H 

H 

|1〉 

|0〉 f(0) ⊕ f(1) 

1 

2 3 

constructs eigenvector so f-queries 
induce phases: |x〉 à (–1) f(x)|x〉 

produces superpositions 
of inputs to f :  |0〉 + |1〉  
 

extracts phase differences from 
 

 (–1) f(0)|0〉 + (–1) f(1)|1〉 

Makes only one query, whereas two are needed classically  
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One-out-of-four search 
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One-out-of-four search 
Let  f : {0,1}2 à {0,1} have the property that there is exactly 
one x ∈ {0,1}2  for which f (x) = 1 

Four possibilities:  x f00(x) 
00 
01 
10 
11 

   1 
   0 
   0 
   0 

Goal: find x ∈ {0,1}2  for which f (x) = 1  

 x f01(x) 
00 
01 
10 
11 

   0 
   1 
   0 
   0 

 x f10(x) 
00 
01 
10 
11 

   0 
   0 
   1 
   0 

 x f11(x) 
00 
01 
10 
11 

   0 
   0 
   0 
   1 

What is the minimum number of queries classically? ____ 

Quantumly? ____ 
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Quantum algorithm (I) 

f 
|x1〉 
|x2〉 
|y〉 

|x2〉 
|x1〉 

|y ⊕ f(x1,x2)〉 

((–1) f(00)|00〉 + (–1) f(01)|01〉 + (–1) f(10)|10〉 + (–1) f(11)|11〉)(|0〉 – |1〉) 
Output state of query? 

Black box for 1-4 search: 

Start by creating phases in superposition of all inputs to f: 

Input state to query? f H 
H 

H |1〉 

|0〉 
|0〉 (|00〉 + |01〉 + |10〉 + |11〉)(|0〉 – |1〉) 
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Quantum algorithm (II) 

Output state of the first two qubits in the four cases: 

f H 
H 

H |1〉 

|0〉 
|0〉 

Case of f00? 
|ψ01〉 = +  |00〉 – |01〉 + |10〉 + |11〉 
|ψ10〉 = +  |00〉 + |01〉 – |10〉 + |11〉 
|ψ11〉 = +  |00〉 + |01〉 + |10〉 – |11〉 

What noteworthy property do these states have? 

U 

Challenge Exercise: simulate the above U in terms of H, 
CNOT and NOT gates 

|ψ00〉 = –  |00〉 + |01〉 + |10〉 + |11〉 
Case of f01? 
Case of f10? 
Case of f11? 

Orthogonal! 

ß  Apply the U that maps  
ß  |ψ00〉, |ψ01〉, |ψ10〉, |ψ11〉  to  
ß  |00〉, |01〉, |10〉, |11〉  (resp.) 
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one-out-of-N search? 

Natural question: what about search problems in spaces 
larger than four (and without uniqueness conditions)? 

For spaces of size eight (say), the previous method breaks 
down—the state vectors will not be orthogonal 

Later on, we’ll see how to search a space of size N with 
O(√N ) queries ... 
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Constant vs. balanced 
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Constant vs. balanced 
Let  f : {0,1}n à {0,1} be either constant or balanced, where 
 

•  constant means f (x) = 0 for all x, or f (x) = 1 for all x 
•  balanced means Σx  f (x) =  2n−1  

Goal: determine whether  f  is constant or balanced 

How many queries are there needed classically? ____ 

Quantumly? ____ 

Example: if  f (0000) = f (0001) = f (0010) = ... = f (0111) = 0 
then it still could be either 

[Deutsch & Jozsa, 1992] 
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Quantum algorithm 

f 
H 
H 

H |1〉 

|0〉 
|0〉 

H |0〉 

Constant case: |ψ〉 = ± Σx |x〉        Why? 
 

How to distinguish between the cases? What is H⊗n|ψ〉? 

Last step of the algorithm: if the measured result is 000 then 
output “constant”, otherwise output “balanced”   

|ψ〉 

Constant case: H⊗n|ψ〉 = ± |00...0〉 
Balanced case: H⊗n |ψ〉 is orthogonal to |0...00〉 

H 
f 

H 
H 

H |1〉 

|0〉 
|0〉 

H |0〉 
H 
H 

 

Balanced case: |ψ〉 is orthogonal to  ± Σx |x〉      Why? 
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Probabilistic classical algorithm 
solving constant vs balanced 

But here’s a classical procedure that makes only 2 queries 
and performs fairly well probabilistically: 

1.   pick  x1, x2 ∈{0,1}n randomly 
2.   if  f(x1) ≠ f(x2)  then output balanced else output constant 

What happens if  f  is constant? 

Succeeds with probability ½  

By repeating the above procedure k times: 
2k queries and one-sided error probability (½)k 

Therefore, for large n, << 2n queries are likely sufficient 

The algorithm always succeeds 

What happens if  f  is balanced? 
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H⊗H⊗ ... ⊗H 
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About  H⊗H⊗ ... ⊗H = H 
⊗n 

{ }
yxH

n,y
/n

yxn ∑ −=
∈

⋅⊗

10
2 )1(

2
1Theorem: for  x ∈ {0,1}n, 

Thus,  H 
⊗n|x1 ... xn〉 = (Σy1 (–1)x1y1|y1〉) ... (Σyn (–1)xnyn|yn〉)  

Pf: For all x ∈ {0,1}n,  H |x〉 = |0〉 + (–1) x|1〉 = Σy (–1)xy|y〉  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−+

−−++

−+−+

++++

=⊗

1111
1111
1111
1111

2
1HHExample: 

where x · y = x1 y1 ⊕ ... ⊕ xn yn 

= Σy (–1) x1y1 ⊕ ... ⊕ xnyn|y1 ... yn〉    █  
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Simon’s problem 



25 

Quantum vs. classical separations 

black-box problem quantum classical 
constant vs. balanced 1 (query) 2 (queries) 
1-out-of-4 search 1 3 
constant vs. balanced 1 ½ 2n + 1 
Simon’s problem 

(only for exact) 

(probabilistic) 
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Simon’s problem 
Let  f : {0,1}n à {0,1}n have the property that there exists 
an r ∈ {0,1}n such that f (x) = f (y) iff  x⊕y = r or x = y 

  x f (x) 
000 
001 
010 
011 
100 
101 
110 
111 

011 
101 
000 
010 
101 
011 
010 
000 

Example: 
What is  r  is this case? ________ 

Answer: r = 101  
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A classical algorithm for Simon 
Search for a collision, an x ≠ y such that  f (x) = f (y)  

A hard case is where r is chosen randomly from {0,1}n– {0n} 
and then the “table” for f is filled out randomly subject to the 
structure implied by r 

1. Choose x1,  x2 ,..., xk ∈ {0,1}n randomly (independently)  

2. For all i ≠ j, if f (xi) = f (xj) then output xi⊕xj and halt 

How big does k have to be for the probability of a collision 
to be a constant, such as ¾? 

Answer: order 2n/2   (each (xi , xj) collides with prob. O(2 
–

 
n))  
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Classical lower bound 

Theorem: any classical algorithm solving Simon’s 
problem must make  Ω(2n/2)  queries 

Proof is omitted here—note that the performance analysis 
of the previous algorithm does not imply the theorem 
 
… how can we know that there isn’t a different algorithm 
that performs better? 
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A quantum algorithm for Simon I 

|x2〉 
|xn〉 

|x1〉 
f 

|y2〉 
|yn〉 

|y1〉 

|x2〉 
|xn〉 

|x1〉 

  | y ⊕ f (x)〉  

Queries: Not clear what eigenvector 
of target registers is ... 

Proposed start of quantum 
algorithm: query all values 
of  f  in superposition 

f 
H 
H 

|0〉 

|0〉 
|0〉 

H |0〉 

|0〉 
|0〉 

What is the output state of 
this circuit? 

? 
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A quantum algorithm for Simon II 
Answer: the output state is  

{ }
∑
∈ n,x

xfx
10

)(

)()( rxfrxxfx
Tx

⊕⊕+∑
∈

Let T ⊆ {0,1}n  be such that one element from 
each matched pair is in T  (assume r ≠ 00...0) 

  x f (x) 
000 
001 
010 
011 
100 
101 
110 
111 

011 
101 
000 
010 
101 
011 
010 
000 

Example: could take T = {000, 001, 011, 111} 

Then the output state can be written as: 

( )∑
∈

⊕+=
Tx

xfrxx )(
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A quantum algorithm for Simon III 
Measuring the second register yields  |x〉 + |x ⊕ r〉  in the first 
register, for a random  x ∈ T 

How can we use this to obtain some information about r ? 

Try applying H 
⊗n to the state, yielding: 

{ } { }
yy

n,yn,y

yrxyx ∑ −+∑ −
∈∈

•⊕•

1010

)()1()1(

{ }
y

n,y

yryx∑ −+−=
∈

⎟
⎠
⎞⎜

⎝
⎛ ••

10

)1(1)1(
(1/2)n–1  if r · y  = 0 
0            if r · y  ≠ 0  
 

Measuring this state yields  y  with prob.   
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A quantum algorithm for Simon IV 
Executing this algorithm  k = O(n)  times 
yields random y1,  y2 ,..., yk ∈ {0,1}n such 
that r · y1 = r · y2 = ... = r · yn = 0  

f 
H 
H 

|0〉 

|0〉 
|0〉 

H |0〉 

|0〉 
|0〉 

H 
H 
H 

This is a system of  k  linear equations: 
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With high probability, there is a unique non-zero solution 
that is  r  (which can be efficiently found by linear algebra)  

How does this help? 
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Conclusion of  Simon’s algorithm 

•  Any classical algorithm has to query the black box Ω(2n/2 ) 
times, even to succeed with probability ¾ 

•  There is a quantum algorithm that queries the black box 
only O(n) times, performs only O(n 

3) auxiliary operations 
(for the Hadamards, measurements, and linear algebra), 
and succeeds with probability ¾ 


