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Moore’s Law 

•  Measuring a state (e.g. position) disturbs it 
•  Quantum systems sometimes seem to behave 

as if they are in several states at once 
•  Different evolutions can interfere with each other 

Following trend … will reach atomic scale 

Quantum mechanical effects occur at this scale: 
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Quantum mechanical effects 
Additional nuisances to overcome? 

or 
New types of behavior to make use of? 

[Shor, 1994]: polynomial-time algorithm for  
factoring integers on a quantum computer 

This could be used to break most of the existing 
public-key cryptosystems on the internet, such 
as RSA 
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FINISH 

FINISH 

Schematic of quantum algorithms 

Classical deterministic: 

Classical probabilistic: 

START FINISH 

Quantum: 
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Also with quantum information: 
•  Faster algorithms for several combinatorial search problems 

and for evaluating game trees (polynomial speed-up)  
•  Fast algorithms for simulating quantum mechanical systems  
•  Communication savings in distributed systems 

•  Various notions of “quantum proof systems” 

Quantum information theory: 
generalization of notions in classical 
information theory, such as 
•  entropy 
•  compression 
•  error-correcting codes 
•  correlation è entanglement 

classical  
information 

theory 

quantum 
information 

theory 
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This course covers the basics of 
quantum information processing 
Topics include: 
•  Introduction to the quantum information framework 
•  Quantum algorithms (including Shor’s factoring algorithm 

and Grover’s search algorithm) 
•  Computational complexity theory 
•  Density matrices and quantum operations on them 
•  Distance measures between quantum states 
•  Entropy and noiseless coding 
•  Error-correcting codes and fault-tolerance 
•  Non-locality 
•  Cryptography 
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General course information 
Background: 

•  classical algorithms and complexity 
•  linear algebra 
•  probability theory 

Evaluation: 

•  5 assignments (12% each) 
•  project presentation (40%) 

Recommended texts: 
 

An Introduction to Quantum Computation, P. Kaye, R. Laflamme, M. 
Mosca (Oxford University Press, 2007). Primary reference. 
 

Quantum Computation and Quantum Information, Michael A. Nielsen 
and Isaac L. Chuang (Cambridge University Press, 2000). Secondary 
reference. 
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Basic framework 
of quantum 
information 
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q p 

Types of information 
is quantum information digital or analog? 

digital: 

0 

1 

0 
0 

1 

1 

analog: 

0 

1 

r ∈ [0,1] 

r 

•  Can explicitly extract r 
•  Issue of precision for    
  setting & reading state  
 

•  Precision need not be  
  perfect to be useful 

•  Probabilities p, q ≥ 0,  p + q = 1 
•  Cannot explicitly extract p and q  
  (only statistical inference) 
 

•  In any concrete setting, explicit 
  state is 0 or 1 
•  Issue of precision (imperfect ok) 

probabilistic 
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Quantum (digital) information 

0 

1 

0 
0 

1 

1 
α β 

•  Amplitudes α, β ∈ C, |α|2 + |β|2 = 1 
•  Explicit state is 

•  Cannot explicitly extract α and β  
  (only statistical inference) 
 

•  Issue of precision (imperfect ok) 

⎥
⎦

⎤
⎢
⎣

⎡

β
α
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Dirac bra/ket notation 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

dα

α

α

!

2

1

Ket: |ψ〉 always denotes a column vector, e.g.  

Bracket: 〈φ|ψ〉 denotes 〈φ|⋅|ψ〉, the inner product of 

|φ〉 and |ψ〉 

Bra: 〈ψ| always denotes a row vector that is the conjugate 
transpose of |ψ〉, e.g.  [ α*

1   α*
2   …   α*

d ] 

⎥
⎦

⎤
⎢
⎣

⎡
=
0
1

0 ⎥
⎦

⎤
⎢
⎣

⎡
=
1
0

1Convention: 
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Basic operations on qubits (I) 

⎥
⎦

⎤
⎢
⎣

⎡
==σ

01
10

Xx

⎥
⎦

⎤
⎢
⎣

⎡

−
=

11
11

2
1H ⎥

⎦

⎤
⎢
⎣

⎡

−
==σ

10
01

Zz

⎥
⎦

⎤
⎢
⎣

⎡

θθ

θ−θ

cossin
sincos

Rotation: 

Hadamard: Phase flip: 

NOT (bit flip): 

(0) Initialize qubit to |0〉 or to |1〉 

(1) Apply a unitary operation U  (unitary means U†U = I ) 

Examples: 
conjugate transpose 
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Basic operations on qubits (II) 
(2) Apply a “standard” measurement: 

α|0〉 + β|1〉 
! 2

2

 probwith1
 probwith0
β

α

(*) There exist other quantum operations, but they 
can all be “simulated” by the aforementioned types 

Example: measurement with respect to a different 
orthonormal basis {|ψ〉, |ψ′〉} 

|α| 

|β| 

|0〉 

|1〉 

|ψ〉 

|ψ′〉 

… and the quantum state collapses 
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Distinguishing between two states 

Question 1: can we distinguish between the two cases? 

Let           be in state                               or   

Distinguishing procedure: 
1. apply H 
2. measure 

This works because  H |+〉 = |0〉  and  H |−〉 = |1〉  

Question 2: can we distinguish between |0〉 and |+〉? 

Since they’re not orthogonal, they cannot be perfectly 
distinguished … 

( )10
2

1
+=+ ( )10

2

1
−=−
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n-qubit systems 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

111

110

101

100

011

010

001

000

p
p
p
p
p
p
p
pProbabilistic states: 

1=∑
x

xp

0≥∀ xpx,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

111

110

101

100

011

010

001

000

α
α
α
α
α
α
α
αQuantum states: 

12
=∑

x
xα

Cαx x ∈∀ ,

∑=
x

x xαψ
Dirac notation: |000〉, |001〉, |010〉, …, |111〉 are basis vectors, 
 

so  
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Operations on n-qubit states 

Unitary operations: ⎟
⎠
⎞

⎜
⎝
⎛∑∑

x
x

x
x xαxα U!

… and the quantum state collapses 

∑
x

x xα

Measurements: 

2
111

2
001

2
000

 probwith111

 probwith001
 probwith000

α

α
α

!!!

⎧ 

⎩ 
⎨ !

(U†U = I ) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

111

001

000

α

α
α

!

? 
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Entanglement 

( )( ) 11'10'01'00'1'0'10 βββααβααβαβα +++=++

Product state (tensor/Kronecker product): 

1100
2
1

2
1 +Example of an entangled state: 

… can exhibit interesting “nonlocal” correlations:  
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Structure among subsystems 

V 

U 
W 

qubits: 

#2 

#1 

#4 

#3 

time 

unitary operations measurements 
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Quantum computations 

|0〉 

|1〉 

|1〉 

|0〉 

|1〉 

|0〉 

1 

0 

1 

0 

1 

1 

Quantum circuits: 

“Feasible” if circuit-size scales polynomially 
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Example of a one-qubit gate 
applied to a two-qubit system 

⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100

uu
uu

U

U 

(do nothing) 

The resulting 4x4 matrix is 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⊗

1110

0100

1110

0100

00
00

00
00

uu
uu

uu
uu

UI
|0〉|0〉 → |0〉U|0〉  
|0〉|1〉 → |0〉U|1〉  
|1〉|0〉 → |1〉U|0〉  
|1〉|1〉 → |1〉U|1〉  

Maps basis states as: 
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Controlled-U gates 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1110

0100

00
00

0010
0001

uu
uu

U 

|0〉|0〉 → |0〉|0〉  
|0〉|1〉 → |0〉|1〉  
|1〉|0〉 → |1〉U|0〉  
|1〉|1〉 → |1〉U|1〉  

Maps basis states as: 

Resulting 4x4 matrix is  
controlled-U = 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100

uu
uu

U
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Controlled-NOT (CNOT) 

X 

|a〉 

|b〉 |a⊕b〉 

|a〉 
≡ 

Note: “control” qubit may change on some input states 

|0〉 + |1〉  

|0〉 − |1〉 |0〉 − |1〉 

|0〉 − |1〉 
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Superdense 
coding 
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How much classical information in n qubits? 
   2n-1 complex numbers apparently needed to describe 

an arbitrary n-qubit pure quantum state:                              
   α000|000〉 + α001|001〉 + α010|010〉 + … + α111|111〉  
   Does this mean that an exponential amount of 

classical information is somehow stored in n qubits? 

   Not in an operational sense ... 

   For example, Holevo’s Theorem (from 1973) implies: 
one cannot convey more than n classical bits of 
information in n qubits 
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Holevo’s Theorem 

U |ψ〉 
n qubits 

b1 
b2 
b3 
bn 

Easy case: 

b1b2  ... bn certainly 
cannot convey more 
than n bits! 

Hard case (the general case): 

|ψ〉 
n qubits 

b1 
b2 
b3 
bn 

U 
|0〉 
|0〉 

|0〉 
|0〉 
|0〉 

m qubits 

bn+1 
bn+2 
bn+3 
bn+4 
bn+m 

The difficult proof is beyond 
the scope of this course  
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Superdense coding (prelude) 

By Holevo’s Theorem, this is impossible 

Alice Bob 

ab 

Suppose that Alice wants to convey two classical bits to Bob 
sending just one qubit 

ab 
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Superdense coding 

How can this help? 

Alice Bob 

ab 

In superdense coding, Bob is allowed to send a qubit 
to Alice first 

ab 
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How superdense coding works 
1. Bob creates the state |00〉 + |11〉 and sends the first qubit 

to Alice 

2. Alice:  
⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

X ⎥
⎦

⎤
⎢
⎣

⎡

−
=

10
01

Zif a = 1 then apply X to qubit 
if b = 1 then apply Z to qubit 
send the qubit back to Bob 

ab state 
00 |00〉 + |11〉 
01 |00〉 − |11〉 
10 |01〉 + |10〉 
11 |01〉 − |10〉 

3. Bob measures the two qubits in the Bell basis 

Bell basis 
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Measurement in the Bell basis 

H 

Specifically, Bob applies 

to his two qubits ... 

input output 
|00〉 + |11〉    |00〉 
|01〉 + |10〉    |01〉 
|00〉 − |11〉    |10〉 
|01〉 − |10〉    |11〉  

and then measures them, yielding ab 

This concludes superdense coding 
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Teleportation 
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Recap 

•  n-qubit quantum state: 2n-dimensional unit vector 

•  Unitary op: 2n×2n linear operation U such that U†U = I 
(where U† denotes the conjugate transpose of U )  
 U|0000〉  =  the 1st column of U 
 U|0001〉  =  the 2nd column of U          the columns of U  
  :     :            :     :      :           :                 are orthonormal 
 U|1111〉  =  the (2n)th column of U 

 



34 

Incomplete measurements (I) 
Measurements up until now 
are with respect to orthogonal 
one-dimensional subspaces: 

|0〉 |1〉 

|2〉 

The orthogonal subspaces 
can have other dimensions: 

span of |0〉 and |1〉 

|2〉 

(qutrit) 



35 

Incomplete measurements (II) 

Such a measurement on  α0 |0〉 + α1 |1〉 + α2 |2〉 

results in      α0|0〉 + α1|1〉   with prob |α0|2 + |α1|2  

|2〉           with prob |α2|2 

(renormalized) 
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Measuring the first qubit of a 
two-qubit system 

Result is  0,  α00|00〉 + α01|01〉   with prob |α00|2 + |α01|2 

1,  α10|10〉 + α11|11〉   with prob |α10|2 + |α11|2 

Defined as the incomplete measurement with respect 
to the two dimensional subspaces: 

•  span of |00〉 & |01〉 (all states with first qubit 0), and 
•  span of |10〉 & |11〉 (all states with first qubit 1) 

α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉 
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Easy exercise: show that measuring the first qubit and 
then measuring the second qubit gives the same result 
as measuring both qubits at once 
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Teleportation (prelude) 
Suppose Alice wishes to convey a qubit to Bob by sending 
just classical bits  

α|0〉 + β|1〉 

α|0〉 + β|1〉 

If Alice knows α and β, she can send approximations of them 
―but this still requires infinitely many bits for perfect precision 

Moreover, if Alice does not know α or β, she can at best 
acquire one bit about them by a measurement 
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Teleportation scenario 

α|0〉 + β|1〉 
(1/√2)(|00〉 + |11〉) 

In teleportation, Alice and Bob also start with a Bell state 

and Alice can send two classical bits to Bob 

Note that the initial state of the three qubit system is: 
(1/√2)(α|0〉 + β|1〉)(|00〉 + |11〉)  
= (1/√2)(α|000〉 + α|011〉 + β|100〉 + β|111〉) 
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How teleportation works 

 (α|0〉 + β|1〉)(|00〉 + |11〉)      (omitting the 1/√2 factor) 
 

= α|000〉 + α|011〉 + β|100〉 + β|111〉 
 

= ½(|00〉 + |11〉)(α|0〉 + β|1〉) 
+ ½(|01〉 + |10〉)(α|1〉 + β|0〉)  
+ ½(|00〉 − |11〉)(α|0〉 − β|1〉) 
+ ½(|01〉 − |10〉)(α|1〉 − β|0〉) 

Initial state:  

Protocol: Alice measures her two qubits in the Bell basis 
and sends the result to Bob (who then “corrects” his state) 
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What Alice does specifically 
Alice applies to her two qubits, yielding: 

Then Alice sends her two classical bits to Bob, who then 
adjusts his qubit to be  α|0〉 + β|1〉  whatever case occurs 

    ½|00〉(α|0〉 + β|1〉) 
+ ½|01〉(α|1〉 + β|0〉) 
+ ½|10〉(α|0〉 − β|1〉) 
+ ½|11〉(α|1〉 − β|0〉) 

(00, α|0〉 + β|1〉)   with prob. ¼ 
(01, α|1〉 + β|0〉)   with prob. ¼ 
(10, α|0〉 − β|1〉)   with prob. ¼ 
(11, α|1〉 − β|0〉)   with prob. ¼  

H 
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Bob’s adjustment procedure 

⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

X ⎥
⎦

⎤
⎢
⎣

⎡

−
=

10
01

Z
if b = 1 he applies X to qubit 
if a = 1 he applies Z to qubit  

Bob receives two classical bits a, b from Alice, and:  

00,         α|0〉 + β|1〉 
01,     X(α|1〉 + β|0〉) = α|0〉 + β|1〉 
10,     Z(α|0〉 − β|1〉) = α|0〉 + β|1〉 
11,  ZX(α|1〉 − β|0〉) = α|0〉 + β|1〉  

yielding: 

Note that Bob acquires the correct state in each case 
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Summary of teleportation 

H 

X Z 

α|0〉 + β|1〉 

|00〉 + |11〉 

α|0〉 + β|1〉 
b 
a 

Alice 

Bob 

Quantum circuit exercise: try to work through the 
details of the analysis of this teleportation protocol 
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No-cloning 
theorem 
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Classical information can be copied 

0 

a a 

a 0 

a a 

a 

What about quantum information? 

|ψ〉 

|0〉 

|ψ〉 

|ψ〉 ? 
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works fine for |ψ〉 = |0〉 and |ψ〉 = |1〉 

... but it fails for |ψ〉 = (1/√2)(|0〉 + |1〉) ... 

... where it yields output (1/√2)(|00〉 + |11〉)  
 

instead of |ψ〉|ψ〉 = (1/4)(|00〉 + |01〉 + |10〉 + |11〉)  

Candidate: 
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No-cloning theorem 
Theorem: there is no valid quantum operation that maps 
an arbitrary state |ψ〉 to |ψ〉|ψ〉 

Proof: 
Let |ψ〉 and |ψ′〉 be two input states, 
yielding outputs |ψ〉|ψ〉|g〉 and |ψ′〉|ψ′〉|g′〉 
respectively 

Since U preserves inner products:  
〈ψ|ψ′〉 = 〈ψ|ψ′〉〈ψ|ψ′〉〈g|g′〉 so 
〈ψ|ψ′〉(1− 〈ψ|ψ′〉〈g|g′〉) = 0 so 
|〈ψ|ψ′〉| = 0 or 1 

|ψ〉 

|0〉 

|0〉 

|ψ〉 

|ψ〉 

|g〉 

U 
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Classical computations as circuits 
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Classical (boolean logic) gates 

NOT gate a ¬ a ¬ a ¬ a 

Λ AND gate 
b 
a a Λ b 

a 

b 
a Λ b 

“old” notation “new” notation 

Note: an OR gate can be simulated by one AND gate 
and three NOT gates (since  a V b = ¬(¬a Λ ¬b) ) 
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Models of computation 
Classical 
circuits: 

|0〉 

|1〉 
|1〉 
|0〉 

|1〉 

1 
0 
1 
0 
1

Quantum 
circuits: 

1 
0 

Λ 
Λ 

Λ 

¬ 

¬ 

¬ 

Λ 

Λ 

Λ 

Λ 

Λ 
1 

1 
0 
1 

Λ 

¬ 
0 

1 
1 

1 

0 

¬ 

Λ 

Λ 

¬ 

Λ 
1 

Λ 

data flow 
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Multiplication problem 

•  “Grade school” algorithm costs O(n2)  [scales up polynomially] 
•  Best currently-known classical algorithm costs slightly less 

than O(n log n loglog n)   [to be precise O(n log n 2log* n)] 

•  Best currently-known quantum method: same 

Input: two n-bit numbers (e.g. 101 and 111) 

Output: their product (e.g. 100011) 
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Factoring problem 

•  Trial division costs  ≈ 2n/2 

•  Best currently-known classical algorithm costs  ≈ 2n⅓              

[to be more precise 2O(n⅓log⅔n)  and this scaling is not polynomial]  

•  The presumed hardness of factoring is the basis of the 
security of many cryptosystems (e.g. RSA) 

•  Shors quantum algorithm costs ≈ n2  [less than O(n2 log n loglog n)]  

•  Implementation would break RSA — and many other public-
key cryptosystems 

Input: an n-bit number (e.g. 100011) 
Output: their product (e.g. 101, 111) 
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Simulating classical circuits 
with quantum circuits 
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(Sometimes called a “controlled-controlled-NOT” gate) 

|(a Λ b) ⊕ c 〉 

|b〉 

|a〉 |a〉 

|b〉 

|c〉 

Toffoli gate 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

01000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001

Matrix representation: 

In the computational basis, it 
negates the third qubit iff the 
first two qubits are both |1〉  
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Quantum simulation of classical  
Theorem: a classical circuit of size s can be simulated by a 
quantum circuit of size O(s) 

Idea: using Toffoli gates, one can simulate:  

AND gates 

|a Λ b〉 

|b〉 

|a〉 |a〉 

|b〉 

|0〉 

NOT gates 

|¬a〉 

|1〉 

|1〉 |1〉 

|1〉 

|a〉 

This garbage will have to be reckoned with later on … 
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Simulating probabilistic algorithms 
Since quantum gates can simulate AND and NOT, the 
outstanding issue is how to simulate randomness 

To simulate “coin flips”, 
one can use the circuit: 

It can also be done without intermediate measurements: 

|0〉 H random bit 

|0〉 

|0〉 use in place of coin flip 

isolate this qubit 

H 

Exercise: prove that this works 
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Simulating quantum circuits 
with classical circuits 
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Classical simulation of quantum 
Theorem: a quantum circuit of size s acting on n qubits can 
be simulated by a classical circuit of size O(sn2 2n) = O(2cn) 

Idea: to simulate an n-qubit state, use an array of size 2n 
containing values of all 2n amplitudes within precision 2−n 

α000 

α001 

α010 

α011 

 : 

α111 

Can adjust this state vector whenever a unitary 
operation is performed at cost O(n2 2n) 

From the final amplitudes, can determine how to 
set each output bit 

Exercise: show how to do the simulation using 
only a polynomial amount of space (memory)  
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Some complexity classes 
•  P (polynomial time):  the problems solved by O(nc)-size 

classical circuits [technically, we restrict to decision problems 
and to “uniform circuit families”] 

•  BPP (bounded error probabilistic polynomial time):      
the problems solved by O(nc)-size probabilistic circuits that 
err with probability ≤ ¼ 

•  BQP (bounded error quantum polynomial time):            
the problems solved by O(nc)-size quantum circuits that err 
with probability ≤ ¼ 

•  EXP (exponential time):  
the problems solved by O(2nc )-size circuits 
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Summary of basic containments 

P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP  

P 

BPP 

BQP 

PSPACE 

EXP 

This picture will be fleshed 
out more later on 


