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Continuation of: 
Eigenvalue estimation problem 
(a.k.a. phase estimation) 
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Generalized controlled-U gates 
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Eigenvalue estimation problem 
U is a unitary operation on n qubits 

|ψ〉 is an eigenvector of U, with eigenvalue e2πiφ 

(0 ≤ φ < 1) 

Output: φ  (m-bit approximation) 

Input: black-box for 

U n qubits 

m qubits 
and a copy of |ψ〉  
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Algorithm for eigenvalue estimation (1) 

U |ψ〉 

H 
H 
H 

|0〉 
|0〉 
|0〉 

Starts off as: 

à (|0〉 + |1〉) (|0〉 + |1〉) … (|0〉 + |1〉) |ψ〉 

=  (|000〉 + |001〉 + |010〉 + |011〉 + … + |111〉) |ψ〉 

=  (|0〉 + |1〉 + |2〉 + |3〉 + … + |2m - 1〉) |ψ〉 

|00 … 0〉|ψ〉 

à (|0〉 + e2πiφ|1〉 + (e2πiφ)2|2〉 + (e2πiφ)3|3〉 + … + (e2πiφ)2m–1|2m–1〉) |ψ〉 
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Algorithm for eigenvalue estimation (2) 

U |ψ〉 

H 
H 
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|0〉 

|ψ〉 
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… Therefore, when  

   φ = 0.a1a2…am  
applying the inverse 
of FM yields φ (digits) 

FM a1a2…am = e2πi(0.a1a2…am )( )
x
x

x=0

2m−1

∑Recall that  



7 

Algorithm for eigenvalue estimation (3) 

If φ = 0.a1a2…am then the above procedure yields |a1a2…am〉 
(from which φ can be deduced exactly) 

But what φ if is not of this nice form? 

Example: φ = ⅓ = 0.0101010101010101… 

U |ψ〉 

H 
H 
H 

|0〉 
|0〉 
|0〉 

|ψ〉 
FM   

|a1a2…am〉 
–1 
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Algorithm for eigenvalue estimation (4) 
What if φ is not of the nice form φ = 0.a1a2…am? 
Example: φ = ⅓ = 0.0101010101010101… 

Let’s calculate what the previously-described procedure does: 
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Let a / 2m = 0.a1a2…am be an m-bit approximation of φ, 
in the sense that φ = a / 2m + δ , where |δ| ≤ 1 / 2m+1  
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What is the 
amplitude of 
|a1a2…am〉 ?  
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Algorithm for eigenvalue estimation (5) 
geometric 

series! 

The amplitude of |y〉 , for y = a is ∑
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Numerator: 
1 
e2πiδ 

lower bounded by 
2πδ2m(2/π) > 4δ2m 

Denominator: 
1 

e2πiδ2m 

upper bounded by 2πδ 

Therefore, the absolute value of the amplitude of |y〉 is at least 
the quotient of (1/2m)(numerator/denominator), which is 2/π 
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Algorithm for eigenvalue estimation (6) 
Therefore, the probability of measuring an m-bit approximation 
of φ is always at least 4/π2 ≈ 0.4 

For example, when φ = ⅓ = 0.01010101010101… , the outcome 
probabilities look roughly like this: 

4  
π2 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1000 1101 1110 1111 

φ 
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Order-finding via 
eigenvalue estimation 
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Order-finding problem 
Let m be an n-bit integer 

Def: Zm
* = {x ∈ {1,2,…, m –1} : gcd(x,m ) = 1}  (a group)  

Def: ordm (a) is the minimum r > 0 such that ar = 1 (mod m ) 

Order-finding problem: given a and m, find ordm (a) 

Example: Z21
* = {1,2,4,5,8,10,11,13,16,17,19,20} 

The powers of 10 are: 1, 10, 16, 13, 4, 19, 1, 10, 16, … 
Therefore, ord21 (10) = 6  

Note: no classical polynomial-time algorithm is known 
for this problem (turns out that it’s as hard as factoring) 
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Order-finding algorithm (1) 
Define: U (an operation on m qubits) as: U|y〉 = |a y mod M 〉  

Define: ψ1 = e−2πi 1/r( ) j

j=0

r−1

∑ a jmodm

Then U ψ1 = e−2πi 1/r( ) j

j=0

r−1

∑ a j+1modm

= e2πi 1/r( )e−2πi 1/r( ) j+1( )

j=0

r−1

∑ a j+1modm

( )
1

/12 ψπ rie=
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Order-finding algorithm (2) 

U n qubits 

2n qubits corresponds to the mapping: 
|x〉|y〉 à |x〉|ax

 y mod m 〉  

Moreover, this mapping can 
be implemented with roughly 
O(n2) gates 

The phase estimation algorithm yields a 2n-bit estimate of 1/r 
From this, a good estimate of r can be calculated by taking 
the reciprocal, and rounding off to the nearest integer 

Problem: how do we construct state |ψ1〉 to begin with? 

Exercise: why are 2n bits necessary and sufficient for this? 



15 

Bypassing the need for |ψ1〉  (1) 
ψ1 = e−2πi 1/r( ) j

j=0

r−1

∑ a jmodmLet 

ψ2 = e−2πi 2/r( ) j

j=0

r−1

∑ a jmodm

ψk = e−2πi k/r( ) j

j=0

r−1

∑ a jmodm

ψr = e−2πi r/r( ) j

j=0

r−1

∑ a jmodm





Any one of these could be used in the previous procedure, 
to yield an estimate of k/r, from which r can be extracted 

What if k is chosen randomly and kept secret?  
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Bypassing the need for |ψ1〉  (2) 

Note: If k and r have a common factor, it is impossible 
because, for example, 2/3 and 17/51 are indistinguishable 

What if k is chosen randomly and kept secret?  

Can still uniquely determine k and r, from a 2n-bit estimate 
of k/r, provided they have no common factors, using the 
continued fractions algorithm* 

* For a discussion of the continued fractions algorithm, please see  
  Appendix A4.4 in [Nielsen & Chuang] 

So this is fine as long as k and r  are relatively prime … 
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To be continued 
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Contunuation of: 
Order-finding via 
eigenvalue estimation 
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Order-finding problem 
Let m be an n-bit integer 

Def: Zm
* = {x ∈ {1,2,…, m –1} : gcd(x,m ) = 1}  (a group)  

Def: ordm (a) is the minimum r > 0 such that ar = 1 (mod m ) 

Order-finding problem: given a and m, find ordm (a) 

Example: Z21
* = {1,2,4,5,8,10,11,13,16,17,19,20} 

The powers of 10 are: 1, 10, 16, 13, 4, 19, 1, 10, 16, … 
Therefore, ord21 (10) = 6  

Note: no classical polynomial-time algorithm is known 
for this problem (turns out that it’s as hard as factoring) 
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Order-finding algorithm (1) 
Define: U (an operation on m qubits) as: U|y〉 = |a y mod M 〉  

Define: ψ1 = e−2πi 1/r( ) j

j=0

r−1

∑ a jmodm

Then U ψ1 = e−2πi 1/r( ) j

j=0

r−1

∑ a j+1modm

= e2πi 1/r( )e−2πi 1/r( ) j+1( )

j=0

r−1

∑ a j+1modm

( )
1

/12 ψπ rie=



22 

Order-finding algorithm (2) 

U n qubits 

2n qubits corresponds to the mapping: 
|x〉|y〉 à |x〉|ax

 y mod m 〉  

Moreover, this mapping can 
be implemented with roughly 
O(n2) gates 

The phase estimation algorithm yields a 2n-bit estimate of 1/r 
From this, a good estimate of r can be calculated by taking 
the reciprocal, and rounding off to the nearest integer 

Problem: how do we construct state |ψ1〉 to begin with? 

Exercise: why are 2n bits necessary and sufficient for this? 
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Bypassing the need for |ψ1〉  (1) 
ψ1 = e−2πi 1/r( ) j

j=0

r−1

∑ a jmodmLet 

ψ2 = e−2πi 2/r( ) j

j=0

r−1

∑ a jmodm

ψk = e−2πi k/r( ) j

j=0

r−1

∑ a jmodm

ψr = e−2πi r/r( ) j

j=0

r−1

∑ a jmodm





Any one of these could be used in the previous procedure, 
to yield an estimate of k/r, from which r can be extracted 

What if k is chosen randomly and kept secret?  
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Bypassing the need for |ψ1〉  (2) 

Note: If k and r have a common factor, it is impossible 
because, for example, 2/3 and 17/51 are indistinguishable 

What if k is chosen randomly and kept secret?  

Can still uniquely determine k and r, from a 2n-bit estimate 
of k/r, provided they have no common factors, using the 
continued fractions algorithm* 

* For a discussion of the continued fractions algorithm, please see  
  Appendix A4.4 in [Nielsen & Chuang] 

So this is fine as long as k and r  are relatively prime … 
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Bypassing the need for |ψ1〉  (3) 

Recall that k is randomly chosen from {1,…,r} 

What is the probability that k and r  are relatively prime?  

Therefore, the success probability is at least Ω(1/ log n)  

The probability that this occurs is φ(r)/ r, where φ is Euler’s 
totient function 

It is known that φ(r) = Ω(r/ loglogr), which implies that the 
above probability is at least Ω(1/ loglog r) = Ω(1/ log n) 

Is this good enough? Yes, because it means that the success 
probability can be amplified to any constant < 1 by repeating 
O(log n) times (so still polynomial in n) 

But we’d still need to generate a random |ψk〉 here … 
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Bypassing the need for |ψ1〉  (4) 
Returning to the phase estimation problem, suppose that  
|ψ1〉 and |ψ2〉 have respective eigenvalues e2πiφ1 and e2πiφ2,  
and that α1|ψ1〉 + α2|ψ2〉 is used in place of an eigenvector: 

U α1|ψ1〉 + α2|ψ2〉 

H 
H 
H 

|0〉 
|0〉 
|0〉 

F†
M 

What will the outcome be? 
It will be an estimate of    φ1 with probability |α1 |2 

        φ2 with probability |α2 |2 

Showing this is left as an exercise; related questions in Assignment #3 
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Bypassing the need for |ψ1〉  (5) 
Along similar lines, the state  

1
r

ψk
k=1

r

∑ =
1
r

e−2πi k/r( ) j

j=0

r−1

∑ a jmodm
k=1

r

∑ = 1

Is it hard to construct the state                  ? ∑
=

r

k
kr 1

1
ψ

yields results equivalent to choosing a |ψk〉 at random 

In fact, this is something that is easy, since  

This is how the previous requirement for |ψ1〉  is bypassed 

€ 

1
r

ψk
k=1

r

∑
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Quantum algorithm for order-finding 

Ua,m 

H 
H 
H 

|0〉 
|0〉 
|0〉 
|0〉 
|0〉 
|1〉 

H 
H -4 

-4 -8 H 

measure these qubits and 
apply continued fractions 
algorithm to determine a 
quotient, whose 
denominator divides r 

Ua,m |y〉 = |a y mod m 〉 

inverse QFT 

For constant success probability, repeat O( log n) times and 
take the smallest resulting r such that  ar = 1 (mod m ) 

Number of gates for Ω(1/ log n) success probability is: 
O(n2 log n loglog n) 
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Reduction from factoring 
to order-finding 
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The integer factorization problem 

Input: m (n-bit integer; we can assume it is composite) 
 

Output: p, q (each greater than 1) such that pq = m  

Note 2: given any efficient algorithm for the above, we can 
recursively apply it to fully factor m into primes* efficiently 

* A polynomial-time classical algorithm for primality testing exists 

Note 1: no efficient (polynomial-time) classical algorithm 
is known for this problem 
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Factoring prime-powers 
There is a straightforward classical algorithm for factoring 
numbers of the form m = pk, for some prime p 

What is this algorithm? 

Therefore, the interesting remaining case is where m has 
at least two distinct prime factors 
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Proposed quantum algorithm (repeatedly do): 
 

1.  randomly choose a ∈ {2, 3, …, m–1}  
2.  compute g = gcd(a,m ) 
3.   if g > 1 then  

  output g, m/g 
  else 
  compute r = ordm(a)  (quantum part) 
  if r is even then 

   compute x = a 
r/2 –1 mod m 

   compute h = gcd(x,m ) 
   if h > 1 then output h, m/h 

Numbers other than prime-powers 

so  m | (a 
r/2+1)(a 

r/2-1) 

we have  m | a 
r–1  

thus, either m | a 
r/2 +1 

or  gcd(a 
r/2 +1,m ) 

is a nontrivial factor of m 

It can be shown that at least half of the a ∈ {2, 3, …, m–1} are have order 
even and result in gcd(a 

r/2 +1,m ) being  a nontrivial factor of m 

Analysis: 
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New topic: 
Density matrices and 

operations on them 
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More state distinguishing  
problems 
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More state distinguishing problems 
Which of these states are distinguishable? Divide them into 
equivalence classes: 

1.   |0〉 + |1〉  

2. −|0〉 − |1〉  

3.   |0〉 with prob. ½  
       |1〉 with prob. ½  

4.   |0〉 + |1〉  with prob. ½  
       |0〉 − |1〉   with prob. ½  

5.   |0〉          with prob. ½  
       |0〉 + |1〉   with prob. ½  

6.   |0〉          with prob. ¼   
      |1〉          with prob. ¼  
       |0〉 + |1〉   with prob. ¼  
             |0〉 − |1〉   with prob. ¼   

7. The first qubit of |01〉 − |10〉  

This is a probabilistic mixed state 
Answers later on ... 
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Density matrix formalism 
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Density matrices (1) 
Until now, we’ve represented quantum states as vectors 
(e.g. |ψ〉, and all such states are called pure states) 

An alternative way of representing quantum states is in terms 
of density matrices (a.k.a. density operators) 

The density matrix of a pure state |ψ〉 is the matrix ρ = |ψ〉 〈ψ|  

Example: the density matrix of α|0〉 + β|1〉 is  

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

∗

∗
∗∗

2

2

ββα
αβα

βα
β
α

ρ
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Density matrices (2) 

Effect of a unitary operation on a density matrix: 
applying  U  to  ρ  yields  Uρ U†

 

Effect of a measurement on a density matrix:  
measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,  
yields the k 

th outcome with probability 〈ϕk|ρ |ϕk〉 

How do quantum operations work using density matrices? 

(this is because the modified state is  U|ψ〉 〈ψ|U† )  

(this is because 〈ϕk|ρ |ϕk〉 = 〈ϕk|ψ〉 〈ψ|ϕk〉 = |〈ϕk|ψ〉|2 ) 

—and the state collapses to |ϕk〉 〈ϕk| 
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Density matrices (3) 
A probability distribution on pure states is called a mixed state: 
( (|ψ1〉,  p1), (|ψ2〉,  p2), …, (|ψd〉,  pd))  
The density matrix associated with such a mixed state is: 

∑
=

=
d

k
kkkp

1

ψψρ

Example: the density matrix for ((|0〉, ½ ), (|1〉, ½ )) is:   

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡

10
01

2
1

10
00

2
1

00
01

2
1

Question: what is the density matrix of  
((|0〉 + |1〉, ½ ), (|0〉 − |1〉, ½ )) ?  
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Density matrices (4) 

Effect of a unitary operation on a density matrix: 
applying  U  to  ρ  still yields  Uρ U†

 

How do quantum operations work for these mixed states? 

This is because the modified state is: 
tt

d

k
kkk

t
d

k
kkk UUUpUUUp ρψψψψ

11
=⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

==

Effect of a measurement on a density matrix:  
measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉,  
still yields the k 

th outcome with probability 〈ϕk|ρ |ϕk〉 

Why? 
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Recap: density matrices 

•  Applying  U  to  ρ  yields  Uρ U†
 

•  Measuring state ρ with respect to the basis |ϕ1〉, |ϕ2〉,..., |ϕd〉, 
    yields: k 

th outcome with probability 〈ϕk|ρ |ϕk〉 
  —and causes the state to collapse to |ϕk〉 〈ϕk| 

Quantum operations in terms of density matrices: 

Since these are expressible in terms of density matrices alone  
(independent of any specific probabilistic mixtures), states with 
identical density matrices are operationally indistinguishable 
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Return to state distinguishing  
problems … 
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State distinguishing problems (1) 
The density matrix of the mixed state 
((|ψ1〉,  p1), (|ψ2〉, p2), …,(|ψd〉, pd)) is: ∑

=

=
d

k
kkk ψψpρ

1

1. & 2. |0〉 + |1〉 and −|0〉 − |1〉 both have  

3.   |0〉 with prob. ½  
      |1〉 with prob. ½  

4.   |0〉 + |1〉  with prob. ½  
       |0〉 − |1〉   with prob. ½  

6.   |0〉          with prob. ¼   
      |1〉          with prob. ¼  
       |0〉 + |1〉   with prob. ¼  
             |0〉 − |1〉   with prob. ¼   

Examples (from earlier in lecture): 

⎥
⎦

⎤
⎢
⎣

⎡
=

11
11

2
1ρ

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

2
1ρ
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State distinguishing problems (2) 

5.   |0〉          with prob. ½  
       |0〉 + |1〉   with prob. ½  

7. The first qubit of |01〉 − |10〉 

Examples (continued): 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
=

4/12/1
2/14/3

2/12/1
2/12/1

2
1

00
01

2
1

ρhas: 

...? (later) 
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Characterizing density matrices 
Three properties of ρ : 
•  Trρ = 1 (Tr M = M11 + M22 + ... + Mdd )  

•  ρ =ρ† (i.e. ρ is Hermitian) 
•  〈ϕ|ρ |ϕ〉 ≥ 0, for all states |ϕ〉 (i.e. ρ is positive semidefinite) 

∑
=

=
d

k
kkk ψψpρ

1

Moreover, for any matrix ρ satisfying the above properties, 
there exists a probabilistic mixture whose density matrix is ρ 

Exercise: show this 
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Taxonomy of various 
normal matrices 
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Normal matrices 
Definition: A matrix M is normal if M†M = MM† 

Theorem: M is normal iff there exists a unitary U such that  
M = U†DU, where D is diagonal (i.e. unitarily diagonalizable) 

Examples of abnormal matrices:  

⎥
⎦

⎤
⎢
⎣

⎡

10
11 is not even 

diagonalizable ⎥
⎦

⎤
⎢
⎣

⎡

20
11 is diagonalizable, 

but not unitarily 

eigenvectors: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

dλ

λ
λ

D







00

00
00

2

1
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Unitary and Hermitian matrices 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

dλ

λ
λ

M







00

00
00

2

1 with respect to some 
orthonormal basis 

Normal: 

Unitary: M†M = I which implies |λk |2 = 1, for all k 

Hermitian: M = M† which implies λk ∈ R, for all k 

Question: which matrices are both unitary and Hermitian? 

Answer: reflections (λk ∈ {+1,-1}, for all k) 
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Positive semidefinite 
Positive semidefinite: Hermitian and λk ≥ 0, for all k 

Theorem: M is positive semidefinite iff M is Hermitian and, 
for all |ϕ〉, 〈ϕ| M |ϕ〉 ≥ 0 

(Positive definite: λk > 0, for all k) 
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Projectors and density matrices 
Projector: Hermitian and M 

2 = M, which implies that M is 
positive semidefinite and λk ∈ {0,1}, for all k 

Density matrix: positive semidefinite and Tr M = 1, so  1
1

=∑
=

d

k
kλ

Question: which matrices are both projectors and density 
matrices? 

Answer: rank-1 projectors (λk = 1 if k = j; otherwise λk = 0) 
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Taxonomy of normal matrices 
normal 

unitary Hermitian 

reflection 
positive  

semidefinite 
 

projector density 
matrix 

rank one 
projector 
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Bloch sphere for qubits 
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Bloch sphere for qubits (1) 
Consider the set of all 2x2 density matrices ρ 

Note that the coefficient of  I  is ½, since X, Y, Y are traceless 

They have a nice representation in terms of the Pauli matrices: 

⎥
⎦

⎤
⎢
⎣

⎡
==

01
10

σ Xx ⎥
⎦

⎤
⎢
⎣

⎡ −
==

0
0

σ
i

i
Yy⎥

⎦

⎤
⎢
⎣

⎡

−
==

10
01

σ Zz

Note that these matrices—combined with I—form a basis for 
the vector space of all 2x2 matrices 

We will express density matrices  ρ  in this basis 
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Bloch sphere for qubits (2) 

2
ZcYcXcI

ρ zyx +++
=We will express 

First consider the case of pure states |ψ〉 〈ψ|, where, without 
loss of generality,  |ψ〉 = cos(θ)|0〉 + e2iφsin(θ)|1〉   (θ, φ ∈ R) 

( ) ( )
( ) ( ) ⎥⎦

⎤
⎢
⎣

⎡

−

+
=⎥

⎦

⎤
⎢
⎣

⎡
=

−−

θθe
θeθ

θθθe
θθeθ

ρ φi

φi

φi

φi

2cos12sin
2sin2cos1

2
1

sinsincos
sincoscos

2

2

22

22

Therefore cz = cos(2θ), cx = cos(2φ)sin(2θ), cy = sin(2φ)sin(2θ) 

These are polar coordinates of a unit vector (cx , cy , cz) ∈ R3 
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Bloch sphere for qubits (3) 

|+〉 

|0〉 

|1〉 

|–〉 

|+i〉 

–|i〉 
|+i〉 = |0〉 + i|1〉 
|–i〉 = |0〉 – i|1〉 

|–〉 = |0〉 – |1〉 
|+〉 = |0〉 +|1〉 

Pure states are on the surface, and mixed states are inside 
(being weighted averages of pure states) 

Note that orthogonal corresponds to antipodal here 
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Distinguishing mixed states 
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Distinguishing mixed states (1) 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

2
1

2ρ

      |0〉          with prob. ½  
       |0〉 + |1〉   with prob. ½  

      |0〉  with prob. ½  
      |1〉  with prob. ½  

⎥
⎦

⎤
⎢
⎣

⎡
=

4121
2143

1 //
//

ρ

      |φ0〉   with prob. cos2(π/8)  
      |φ1〉   with prob. sin2(π/8)  

|0〉 

|+〉 

|φ0〉 

|φ1〉 

      |φ0〉  with prob. ½  
      |φ1〉  with prob. ½  

What’s the best distinguishing strategy between these two 
mixed states?  

ρ1 also arises from this 
orthogonal mixture: … as does ρ2 from: 
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Distinguishing mixed states (2) 

( )
( )⎥⎦

⎤
⎢
⎣

⎡
=ʹ′

8πsin0
08πcos

2

2

2 /
/

ρ

|0〉 

|+〉 

|φ0〉 

|φ1〉 

⎥
⎦

⎤
⎢
⎣

⎡
=ʹ′

10
01

2
1

1ρ

We’ve effectively found an orthonormal basis |φ0〉, |φ1〉 in 
which both density matrices are diagonal: 

Rotating |φ0〉, |φ1〉 to |0〉, |1〉 the scenario can now 
be examined using classical probability theory: 

Question: what do we do if we aren’t so lucky to get two 
density matrices that are simultaneously diagonalizable? 

Distinguish between two classical coins, whose probabilities 
of “heads” are cos2(π/8) and ½ respectively (details: exercise) 

|1〉 
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General quantum 
operations 
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General quantum operations (1) 

Example 1 (unitary op): applying  U  to  ρ  yields  Uρ U†  

Also known as:  
“quantum channels” 
“completely positive trace preserving maps”, 
“admissible operations”  
 
 
 

Let A1, A2 , …, Am be matrices satisfying  

Then the mapping is a general quantum op 

Note: A1, A2 , …, Am do not have to be square matrices 

∑
=

=
m

j
jj IAA

1

t

∑
=

m

j
jj AρAρ

1

t
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General quantum operations (2) 
Example 2 (decoherence): let A0 = |0〉〈0| and  A1 = |1〉〈1|  

This quantum op maps ρ  to |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1| 

Corresponds to measuring ρ “without looking at the outcome” 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∗

∗

2

2

2

2

0
0
β

α
ββα
αβα

For |ψ〉 = α|0〉 + β|1〉, 

After looking at the outcome, ρ  becomes   |0〉〈0|  with prob. |α|2 
                                                                     |1〉〈1|  with prob. |β|2 
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General quantum operations (3) 
Example 3 (discarding the second of two qubits):  
 
Let A0 = I⊗〈0|                       and  A1 = I⊗〈1| ⎥

⎦

⎤
⎢
⎣

⎡
=

0100
0001

⎥
⎦

⎤
⎢
⎣

⎡
=

1000
0010

States of the form  ρ ⊗σ  (product states) become  ρ 

State                                                 becomes ( ) ( )11001100
2
1

2
1

2
1

2
1 +⊗+

Note 1: it’s the same density matrix as for ((½ , |0〉), (½ , |1〉)) 

⎥
⎦

⎤
⎢
⎣

⎡

10
01

2
1

Note 2: the operation is called the partial trace Tr2 ρ 



More about the partial trace 

If the 2nd register is discarded, state of the 1st register remains σ 

Two quantum registers                    in states σ and µ (resp.) are 
independent  when the combined system is in state ρ  = σ ⊗µ  

In general, the state of a two-register system may not be of the 
form σ ⊗µ (it may contain entanglement or correlations) 

The partial trace Tr2 ρ , can also be characterized as the 
unique linear operator satisfying the identity  Tr2(σ ⊗µ) = σ  

For d-dimensional registers, Tr2  is defined with respect to the 
operators Ak = I⊗〈φk| , where |φ0〉, |φ1〉, …, |φd-1〉 can be any 
orthonormal basis 

The partial trace Tr2  gives the effective state of the first register 
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Partial trace continued 

⎥
⎦

⎤
⎢
⎣

⎡

++

++
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1111101001110010

1101100001010000

1111101101110011

1110101001100010

1101100101010001

1100100001000000

2Tr
,,,,

,,,,

,,,,

,,,,

,,,,

,,,,

ρρρρ
ρρρρ

ρρρρ
ρρρρ
ρρρρ
ρρρρ

For 2-qubit systems, the partial trace is explicitly 

⎥
⎦

⎤
⎢
⎣

⎡

++

++
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1111010110110001

1110010010100000

1111101101110011

1110101001100010

1101100101010001

1100100001000000

1Tr
,,,,

,,,,

,,,,

,,,,

,,,,

,,,,

ρρρρ
ρρρρ

ρρρρ
ρρρρ
ρρρρ
ρρρρ

and 
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General quantum operations (4) 
Example 4 (adding an extra qubit):  
 

                                 Just one operator A0 = I⊗|0〉 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00
10
00
01

States of the form  ρ   become  ρ ⊗|0〉〈0| 

More generally, to add a register in state |φ〉, use the  
operator A0 = I⊗|φ〉 
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POVM measurements  

(POVM = Positive Operator Valued Measure) 
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POVM measurements (1) 
 
 
 

Let A1, A2 , …, Am be matrices satisfying  IAA j

m

j
j =∑

=1

t

Corresponding POVM measurement is a stochastic operation 
on ρ that, with probability                     , produces outcome: 
 

      j   (classical information) 

( )tjj AρATr

( )t
t

jj

jj

AρA
AρA

Tr
(the collapsed quantum state) 

Example 1: Aj = |φj〉〈φj| (orthogonal projectors)   

This reduces to our previously defined measurements … 
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POVM measurements (2) 

Moreover,  

( )tjj AρATr

( ) jj

j

jjjj

jj

jj φφ
ψφ

φφψψφφ
AρA
AρA

== 2Tr t

t

When Aj = |φj〉〈φj| are orthogonal projectors and ρ  = |ψ〉〈ψ|, 

= Tr|φj〉〈φj|ψ〉〈ψ|φj〉〈φj|  

= 〈φj|ψ〉〈ψ|φj〉〈φj|φj〉  
= |〈φj|ψ〉|

2 


