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Recap from last class ...






About HX®H® ... ®H = H®"

Theorem: for x € {0,1}", H®n‘x> = 2,11/2 ﬁ;(_ l)x.y‘y>

1)

wherex-y=x,y;®..®x,y,
+1 +1 +1 +1]

Example: H®H-L*' -1+ -
21+1 +1 -1 -1

_+1 -1 -1 +1_

Pf: Forallx € {0,1}", Hx)=[0)+ (1) ¥1) =2 (-1)*[y)
Thus, H®"x, ...x,) = (Zy1 (—1)xLylb/1>) (Zyn (_l)xnynb/n»

_ Zy (=1)*1e..e xnynb/l yn> l



Simon’s problem



Quantum vs. classical separations

black-box problem |quantum |classical

constant vs. balanced |1 (query) |2 (queries)

1-out-of-4 search 1 3

constant vs. balanced |1 22"+ 1 (only for exact)

Simon’ s problem (probabilistic)




Simon’s problem

Let /: {0,1}"" > {0,1}" have the property that there exists
anr & {01} such that f(x) =f(v) iff x®y=rorx=y

Example: | x |f(x)
000 | 011 What is 7 is this case?

001 | 101
010 (000
011 | 010
100 | 101
101 | 011
110 | 010
111 | 000

Answer: 7 =101




A classical algorithm for Simon

Search for a collision, an x # y such that f(x) =f(y)
1. Choose x,, x,,...,x; € {0,1}" randomly (independently)
2. Forall i #j,if f(x;) = f(x;) then output x,@x; and halt

A hard case is where 7 is chosen randomly from {0,1}"— {0"}
and then the “table” for f is filled out randomly subject to the

structure implied by r

How big does & have to be for the probability of a collision
to be a constant, such as %47

Answer: order 2% (each (x;, X;) collides with prob. O(27"))
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Classical lower bound

Theorem: any classical algorithm solving Simon’ s
problem must make Q(2%?) queries

Proof is omitted here—note that the performance analysis
of the previous algorithm does not imply the theorem

... how can we know that there isn’ t a different algorithm
that performs better?



A quantum algorithm for Simon |

. X) Xy) i
Queries: ) X,) Not clear what eigenvector
’ N of target registers is ...

X,) ,

Vi) T

V) T Y y@f(x))

V) T C
Proposed start of quantum 0) —H )
algorithm: query all values 0y —H
of f in superposition 0) —H

oD
\V

What is the output state of 0)
this circuit? 0)
0)

an
V

o
VYV
N—
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A quantum algorithm for Simon I

Answer: the output state is ‘ ‘ f (x)
0,1}"

x |f(x)
Let 7C {0,1}" be such that one element from 000 | 011
each matched pairis in ' (assume r # 00...0) 001|101
Example: could take 7' = {000, 001, 011, 111} (010000
Then the output stat be written as: 0111010
en the output state can be written as: 100 | 101
Y [ @)+ x@r)| fx D)) 101011
XET 110|010
= > () +|x@n) r) gl o0

x&l’ 1



A quantum algorithm for Simon Il

Measuring the second register yields |x) + [x®r) in the first
register, forarandom x & T

How can we use this to obtain some information about »?

Try applying H®" to the state, yielding:

S S

}n

= 3 (=)™ (14 (=1 y)
ﬁ%}” ( ) (172"t ifr-y =0

Measuring this state yields y with prob. {0 if 7y #0
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A quantum algorithm for Simon IV

Executing this algorithm k= O(n) times 0)—H —D—
yields random y,, y,,..., ¥, € {0,1}" such 0)— —D—

0)—l —D—
thatr-y, =r-y,=...=r-y, =0 0) N—
How does this help? 8; DD:

This is a system of & linear equations:

Vn Y o Ym|[n] [0
Yoo Voo 7 Jan (|12 | 0
Vi Yk 7 Y ||| |0

With high probability, there is a unique non-zero solution
that is » (which can be efficiently found by linear algebra) 13



Conclusion of Simon’s algorithm

. Any classical algorithm has to query the black box Q(2"%)
times, even to succeed with probability 74

* There is a quantum algorithm that queries the black box
only O(n) times, performs only O(n?) auxiliary operations
(for the Hadamards, measurements, and linear algebra),
and succeeds with probability %

14



Discrete log problem



Discrete logarithm problem (DLP)

Input: p (prime), g (generator of Z%)), a € Z%,

Output: r € Z,  such that g" mod p = a

Example: p=7, Z*;={1,2,3,4,5, 6} = {39, 32, 31,34 35, 33}
(hence 3 is a generator of Z*,)

For a = 6, since 33= 6, the output should be =3

Note: No efficient classical algorithm for DLP is known
(and cryptosystems exist whose security is predicated on
the computational difficulty of DLP)

Efficient quantum algorithm for DLP?

(Hint: it can be made to look like Simon’ s problem!) o



DLP similar to Simon’s problem

Clever idea (of Shor): define f:Z,,xZ,,> Z*,as [
(x,,x,) =g”a*mod p (can be efficiently computed)

Whenis f(x,,x,)=f(v,,v,)?

We know a =g’” for somer,so f(x,,x,) =g* "™ modp

Thus, f(x,.x,) =f(,,y,) iff x;-rx,=y,-ry, (modp-1)
iff (X1, ,)(1,-7) = (v}, ) (1,-7)  (mod p- 1)

iff ((x), x,)- (1, 1,))(1,-7) =0 (mod p- 1) (-
iff (x,, X,)- (v, 3,) = k(7, 1) (mod p- 1) 1)

Recall Simon’s property: f(x) = f(y) iff x-y = k7 (mod 2) Zp1XZp1 47
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Recap from last class ...
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Discrete logarithm problem (DLP)

Input: p (prime), g (generator of Z%)), a € Z%,

Output: r € Z,  such that g" mod p = a

Example: p=7, Z*;={1,2,3,4,5, 6} = {39, 32, 31,34 35, 33}
(hence 3 is a generator of Z*,)

For a = 6, since 33= 6, the output should be =3

Note: No efficient classical algorithm for DLP is known
(and cryptosystems exist whose security is predicated on
the computational difficulty of DLP)

Efficient quantum algorithm for DLP?

(Hint: it can be made to look like Simon’ s problem!) -



DLP similar to Simon’s problem

Clever idea (of Shor): define f:Z,,xZ,,> Z*,as [
(x,,x,) =g”a*mod p (can be efficiently computed)

Whenis f(x,,x,)=f(v,,v,)?

We know a =g’” for somer,so f(x,,x,) =g* "™ modp

Thus, f(x,,x,)=f(,,y,) iff x-rx,=y,—ry, (modp —1)
iff (X1, %) (1,-7) = (v, 2)(1,—7) (mod p —1)

iff ((x), x,)- (1, 1,))(1,—7) =0 (mod p — 1) (1.4)
iff (), X,)- (v}, ¥,) = k(r, 1) (modp —1) 1)

Recall Simon’s property: fix) =f(y) iff x — y=kr (mod2) |%*%1 21




Simon'’s problem modulo m
The function arising in DLP can be abstracted to the following
Given: f:Z,xZ, > T with the property that:

J e, 0) =fy,) i (0, x0)- (01, 3,) = k(ry, 1) (mod m)

where (7, r,) is the hidden data

Goal: determine (74, )

The reversible query box for fis: |y) —

(Each “wire” denotes several qubit wires,
enough to represent elements of Z,))

Note: in DLP case, (r,, r,) = (7, 1)

|x2> _f o ‘x2>
V) & b+ (x,5,))

It's not a “black” box, because we can simulate it by 1- and
2-qubit gates (and this can be done efficiently) ...

22




Digression:

on simulating black boxes

23



How not to simulate a black box

Given an explicit function, such as f (x) = g*1a™ mod p, over
some finite domain, simulate f-queries over that domain

Easy to compute mapping |x)[»)|00...0) > [x)[y®f(x))|g(x)),
where the third register is “work space” with accumulated

“garbage” (e.g., two such bits arise when a Toffoli gate is
used to simulate an AND gate)

This works fine — as long as f is not queried in superposition

If / is queried in superposition then the resulting state can be
Zx a, POp@f(x))|g(x)) can we just discard the third register?

No ... there could be entanglement ... Ny



How to simulate a black box

Simulate the mapping [x)[))|00...0) = [x)|y®f(x))|00...0),
(i.e., clean up the “garbage”)

To do this, use an additional register, and:

1. compute [|x)[1)|00...0)/00...0) = [x))|f(x))|g(x))
(ignoring the 2" register in this step)

2. compute [x)[V)|f(0)|g(x)) > )@ (x))[f(x))|g(x))
(using CNOT gates between the 2" and 3 registers)

3. compute [x)[y®f (x))|f(x))|g(x)) = |x)[y®f(x))|00...0)|00...0)
(by reversing the procedure in step 1)

Total cost: around twice the classical cost of computing f,
plus n auxiliary gates o



Simon'’s problem modulo m

So now we have an efficient way of implementing the
reversible black box for f

|x1> — — |x))
) —— — )

b’) y +f (xl,x2)>

Each “wire” denotes several qubits,
to represent an element of Z,,

N

What is a quantum algorithm for this problem? To get one,
must go beyond the Hadamard transform, which has been
our main tool so far, to ...

26



Quantum Fourier transform (QFT)

27



Quantum Fourier transform

1 1 1 1 1
1 w w* W’ ™!
F 1 1 (1)2 0)4 0)6 wZ(m—l)
m ~Nm| 1 W’ w° W’ @ "
_ _ _ _ 2
1 60m 1 a)2(m 1) a)3(m 1) . a)(m 1)

where @ = e2™™ (for n qubits, m = 2")
This is unitary and F, = H, the Hadamard transform

This generalization of H is an important component of
several interesting quantum algorithms ...

28



Quantum algorithm for Simon mod m

J(x1,x) =f L, y)iff (x,,x,) = (v, ¥,) = k(r, 1) (mod m)

0)—
oi ? f § El:}the result is a random (s, ,,) such that
0) © (Sl 952)'(7', 1) =0 (mod m) Assignment #3

if gcd(s,, m)=1 then §, has an inverse mod m, and 7 can be

computed as » =— s, /s, mod m
(The details follow from the extended Euclidean algorithm)

Moreover, the probability that ged(s, m) =1 occurs is not
too small (if it fails the algorithm can be run again)

29



Quantum algorithm for Simon mod m

Steps that have been shown to be efficiently implementable
(i.e., in terms of a number of 1- and 2-qubit/bit gates that
scales polynomially with respect to the number of bits of m):
* Implementation of reversible gate for f

» The classical post-processing at the end

What's missing? The implementation of the QFT / modulo m
(for DLP, we would need to do this form =p — 1)

WEe'll just show how to implement the QFT for m = 2"

Shor did thus too, and showed that if the modulus is within

a factor of 2 from p — 1, by using careful error-analysis, this
was good enough, though the calculations and analysis

become more complicated (we omit the details of this) "



Computing the QFT

form=2"



Computing the QFT for m =2" (1)

Quantum circuit for F’;,:

—Héi@,} -

Gates: —# =f[1 _H g

For F,n costs O(n?) gates

J9P.JO 9SI9ADI

32



Computing the QFT for m =2" (2)

One way on seeing why this circuit works is to first note that
Fonla,a,...a)

— (|O> + eZTEi(O.an)| 1 >) o (|O> + eZJIi(O.Clz...Cln)| 1 >) (|O> + e2ni(0.a1a2...an)| 1 >)

It can then be checked that the circuit produces these states
(with qubits in reverse order) for all computational basis

states |a,a,...a,)

Exercise: (a) prove the above equation from the definition of
the QFT; (b) confirm that the circuit produces these states

33
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Continuing with the

QFT form=2"




Quantum Fourier transform

1 1 1 1 1
1 w w* W’ ™!
F 1 1 (1)2 0)4 0)6 wZ(m—l)
m ~Nm| 1 W’ w° W’ @ "
_ _ _ _ 2
1 60m 1 a)2(m 1) a)3(m 1) . a)(m 1)

where @ = e2™™ (for n qubits, m = 2")
This is unitary and F, = H, the Hadamard transform

This generalization of H is an important component of
several interesting quantum algorithms ...
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Computing the QFT for m =2" (1)

Quantum circuit for F’;,:

—Héi@,} -

Gates: —# =f[1 _H g

For F,n costs O(n?) gates

J9P.JO 9SI9ADI
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Computing the QFT for m =2" (2)

One way on seeing why this circuit works is to first note that
Fonla,a,...a)

— (|O> + eZTEi(O.an)| 1 >) o (|O> + eZJIi(O.Clz...Cln)| 1 >) (|O> + e2ni(0.a1a2...an)| 1 >)

It can then be checked that the circuit produces these states
(with qubits in reverse order) for all computational basis

states |a,a,...a,)

Exercise: (a) prove the above equation from the definition of
the QFT; (b) confirm that the circuit produces these states

38




Hidden Subgroup Problem framework

39



Hidden subgroup problem (1)

Let G be a known group and A be an unknown subgroup of G

Let /: G > T have the property f(x)=f(y)iffx—-yeH
(i.e., xand y are in the same right coset of H)

Problem: given a black-box for computing f, determine H

Example 1: G =(Z,)" (the additive group) and H = {0,7}

Example 2: G =(Z, ) and
H=1{0,),1),Q2r2),...(p—-2rp-2)}

Example 3: G =Z and H =rZ (Shor’s factoring algorithm
was originally approached this way. A complication that arises

is that Z is infinite. We'll use a different approach) 10



Hidden subgroup problem (2)

Example 4: G = §, (the symmetric group, consisting
of all permutations on 7 objects—which is not abelian)
and H is any subgroup of G

A quantum algorithm for this instance of HSP would
lead to an efficient quantum algorithm for the graph
Isomorphism problem ...

Y

... alas no efficient quantum has been found for this
instance of HSP, despite significant effort by many people
41



Eigenvalue estimation problem

(a.k.a. phase estimation)

Note: this will lead to a factoring algorithm similar to Shor’s

42



A simplified example

U is an unknown unitary operation on n qubits

) is an eigenvector of U, with eigenvalue A= +1 or -1

Input: a black-box for a controlled-U

and a copy of the state )

} n qubits

Exercise: solve this making a single query to the controlled-U

Output: the eigenvalue A

43



Generalized controlled-U gates

a) T a) .
by — [/ U“b) 0 U

] 0 0 0
a)) a)) 0O U O 0
a,) ' 4, 0 0 U 0
|b:l>:U:}Ua1---am|b> I . :
b)—~ — oo o0 - U

Example: [1101)[0101) = [1101)U"%"|0101)




Eigenvalue estimation problem

U is a unitary operation on n qubits

) is an eigenvector of U, with eigenvalue 2™
0<p<1)

bit
}mqu ®  anda copy of [ )

} n qubits

Input: black-box for

Output: ¢ (m-bit approximation)

45



Algorithm for eigenvalue estimation (1)

1 27-1

-S|

Starts off as: 0)
) x=0

0)
) P)
00 ... O)p)

0)

T[] [

a)b) > la)UT|b)

> (10) + 1) (10) + 1)) ... (|0) + 1) )
= (]000) +|001) + [010) + [011) + ...+ |[111)) )

= ([0)+ 1)+ 2) +|3) + ...+ [2"-1)) )

> ((0)+€>#[1)-+(€T)2[2) +(€2T4P|3) .. +(€2W4P"1|27-1)) o)




Algorithm for eigenvalue estimation (2)

0)— X3 o
o S e |
0) —H ) ==

)Tl )

Recall that FM ‘alaz . .am> — E (e2ni(0.a1a2...am))x

x)

x=0
1 | 1 .. 1 1 |Therefore, when
1 R A o ¢ =0.a,a,...a,,
F _ 1 1 w2 W w° 2M-1) . )
M Tl o0 o o® .. ow| |applying the inverse
L 5 P of F,,yields ¢ (digits)
1 ™MD 2D 3y a)—(M—l)2

47



Algorithm for eigenvalue estimation (3)

FA; B } a,a,...a,)

)

If $ =0.0,a,...a,,then the above procedure yields |a1a2...am>
(from which ¢ can be deduced exactly)

But what ¢ if is not of this nice form?

Example: ¢ =% =0.0101010101010101...

48



Algorithm for eigenvalue estimation (4)

What if ¢ is not of the nice form ¢ =0.a4,a,...a,,?
Example: ¢ =% =0.0101010101010101...

Let’ s calculate what the previously-described procedure does:

Let a/2™ =0.a,a,...a, be an m-bit approximation of ¢,
in the sense that ¢ =a/2" + & , where |8] < 1/27*1

2( 2m¢)x‘ Zlm ZEOI 220 _2m'xy/2me2ﬂi¢x y>
y=0 x=
_ L 2" ] 2518‘2’””/2'" ezm(zimw)x‘ y>
2" Lt &
What is the . izm O

amplitude of > E E p2rila=y)x/2" j2miox >

a,a,...a,)? y=0 x=0 49




Algorithm for eigenvalue estimation (5)

-12" -
State iS: E E 2Jtl a-— y x/2m 270X > geometric
~ ~ series!
. 2" _ (eZJrié )2m

1

- 1 1
The amplitude of forv=ais— ) ™" = .
p I.y> y 2 ; 2m 1 _ 6271’15

Numerator: Denominator:

lower bounded by upper bounded by 2n8

282m(2/7) > 482"

Therefore, the absolute value of the amplitude of |y) is at least
the quotient of (1/2™)(numerator/denominator), which is 2/x 0



Algorithm for eigenvalue estimation (6)

Therefore, the probability of measuring an mi-bit approximation
of ¢ is always at least 4/1t> = 0.4

For example, when ¢ =% =0.01010101010101... , the outcome
probabilities look roughly like this:

A

7
e R e e T BT e Ty
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1000 1101 1110 1111

(l) 51



