Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lectures 6-8 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Recap from last class ...

About $H \otimes H \otimes ... \otimes H = H^{\otimes n}$

Theorem: for $x \in \{0,1\}^n$, $H^{\otimes n} |x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$ where $x \cdot y = x_1 y_1 \oplus ... \oplus x_n y_n$

Example:
$$H \otimes H = \frac{1}{2} \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$$

Pf: For all $x \in \{0,1\}^n$, $H|x\rangle = |0\rangle + (-1)^x |1\rangle = \sum_y (-1)^{xy} |y\rangle$ Thus, $H^{\otimes n}|x_1 \dots x_n\rangle = \left(\sum_{y_1} (-1)^{x_1y_1} |y_1\rangle\right) \dots \left(\sum_{y_n} (-1)^{x_ny_n} |y_n\rangle\right)$ $= \sum_y (-1)^{x_1y_1 \oplus \dots \oplus x_ny_n} |y_1 \dots y_n\rangle$

Simon's problem

Quantum vs. classical separations

black-box problem	quantum	classical	
constant vs. balanced	1 (query)	2 (queries)	
1-out-of-4 search	1	3	
constant vs. balanced	1	¹ / ₂ 2 ⁿ + 1	(only for exact)
Simon' s problem			(probabilistic)

Simon's problem

Let $f: \{0,1\}^n \rightarrow \{0,1\}^n$ have the property that there exists an $r \in \{0,1\}^n$ such that f(x) = f(y) iff $x \oplus y = r$ or x = y

Example:

x	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is r is this case?

Answer: *r* = 101

A classical algorithm for Simon

Search for a *collision*, an $x \neq y$ such that f(x) = f(y)

1. Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ randomly (independently)

2. For all $i \neq j$, if $f(x_i) = f(x_j)$ then output $x_i \oplus x_j$ and halt

A hard case is where *r* is chosen randomly from $\{0,1\}^n - \{0^n\}$ and then the "table" for f is filled out randomly subject to the structure implied by *r*

How big does k have to be for the probability of a collision to be a constant, such as $\frac{3}{4}$?

Answer: order $2^{n/2}$ (each (x_i, x_j) collides with prob. $O(2^{-n})$)

Classical lower bound

Theorem: *any* classical algorithm solving Simon's problem must make $\Omega(2^{n/2})$ queries

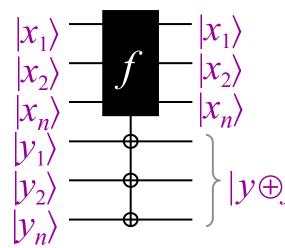
Proof is omitted here—note that the performance analysis of the previous algorithm does *not* imply the theorem

... how can we know that there isn't a *different* algorithm that performs better?

A quantum algorithm for Simon I

 $(x)\rangle$

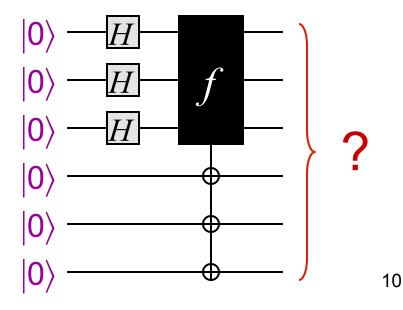
Queries:



Not clear what *eigenvector* of target registers is ...

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?



A quantum algorithm for Simon II

Answer: the output state is

$$\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$$

Let $T \subseteq {\{0,1\}}^n$ be such that **one** element from each matched pair is in T (assume $r \neq 00...0$)

Example: could take $T = \{000, 001, 011, 111\}$

Then the output state can be written as:

$$\sum_{x \in T} |x\rangle |f(x)\rangle + |x \oplus r\rangle |f(x \oplus r)\rangle$$

$$= \sum_{x \in T} \left(\left| x \right\rangle + \left| x \oplus r \right\rangle \right) \left| f(x) \right\rangle$$

A quantum algorithm for Simon III

Measuring the second register yields $|x\rangle + |x \oplus r\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain some information about r?

Try applying $H^{\otimes n}$ to the state, yielding:

$$\sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} |y\rangle + \sum_{y \in \{0,1\}^n} (-1)^{(x \oplus r) \bullet y} |y\rangle$$

$$= \sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} \left(1 + (-1)^{r \bullet y} \right) |y\rangle$$

Measuring this state yields y with prob. $\begin{cases} (1/2)^{n-1} & \text{if } r \cdot y = 0 \\ 0 & \text{if } r \cdot y \neq 0 \end{cases}$

A quantum algorithm for Simon IV

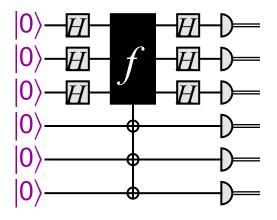
Executing this algorithm k = O(n) times yields random $y_1, y_2, ..., y_k \in \{0,1\}^n$ such that $r \cdot y_1 = r \cdot y_2 = ... = r \cdot y_n = 0$

How does this help?

This is a system of k linear equations:

$$\begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \cdots & y_{kn} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

With high probability, there is a unique non-zero solution that is r (which can be efficiently found by linear algebra) ¹³



Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box Ω(2^{n/2}) times, even to succeed with probability ³/₄
- There is a quantum algorithm that queries the black box only O(n) times, performs only O(n³) auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability ³/₄

Discrete log problem

Discrete logarithm problem (DLP)

Input: *p* (prime), *g* (generator of \mathbf{Z}_{p}^{*}), $a \in \mathbf{Z}_{p}^{*}$

Output: $r \in \mathbf{Z}_{p-1}$ such that $g^r \mod p = a$

Example: p = 7, $\mathbf{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\} = \{3^{0}, 3^{2}, 3^{1}, 3^{4}, 3^{5}, 3^{3}\}$ (hence 3 is a generator of \mathbf{Z}_{7}^{*})

For a = 6, since $3^3 = 6$, the output should be r = 3

Note: No efficient classical algorithm for **DLP** is known (and cryptosystems exist whose security is predicated on the computational difficulty of DLP)

Efficient quantum algorithm for DLP? (Hint: it can be made to look like Simon' s problem!)

DLP similar to Simon's problem

Clever idea (of Shor): define $f: \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$ as $f(x_1, x_2) = g^{x_1} a^{-x_2} \mod p$ (can be efficiently computed)

When is $f(x_1, x_2) = f(y_1, y_2)$?

We know $a = g^r$ for **some** r, so $f(x_1, x_2) = g^{x_1 - rx_2} \mod p$ Thus, $f(x_1, x_2) = f(y_1, y_2)$ iff $x_1 - rx_2 \equiv y_1 - ry_2 \pmod{p-1}$ iff $(x_1, x_2) \cdot (1, -r) \equiv (y_1, y_2) \cdot (1, -r) \pmod{p-1}$ iff $((x_1, x_2) - (y_1, y_2)) \cdot (1, -r) \equiv 0 \pmod{p-1}$ iff $(x_1, x_2) - (y_1, y_2) \equiv k(r, 1) \pmod{p-1}$

Recall Simon's property: f(x) = f(y) iff $x - y = kr \pmod{2}$

 $Z_{p-1} \times Z_{p-1}$ 17

Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lecture 7 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Recap from last class ...

Discrete logarithm problem (DLP)

Input: *p* (prime), *g* (generator of \mathbf{Z}_{p}^{*}), $a \in \mathbf{Z}_{p}^{*}$

Output: $r \in \mathbf{Z}_{p-1}$ such that $g^r \mod p = a$

Example: p = 7, $\mathbf{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\} = \{3^{0}, 3^{2}, 3^{1}, 3^{4}, 3^{5}, 3^{3}\}$ (hence 3 is a generator of \mathbf{Z}_{7}^{*})

For a = 6, since $3^3 = 6$, the output should be r = 3

Note: No efficient classical algorithm for **DLP** is known (and cryptosystems exist whose security is predicated on the computational difficulty of DLP)

Efficient quantum algorithm for DLP? (Hint: it can be made to look like Simon's problem!)

DLP similar to Simon's problem

Clever idea (of Shor): define $f: \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$ as $f(x_1, x_2) = g^{x_1} a^{-x_2} \mod p$ (can be efficiently computed)

When is $f(x_1, x_2) = f(y_1, y_2)$?

We know $a = g^r$ for **some** r, so $f(x_1, x_2) = g^{x_1 - rx_2} \mod p$ Thus, $f(x_1, x_2) = f(y_1, y_2)$ iff $x_1 - rx_2 \equiv y_1 - ry_2 \pmod{p-1}$ iff $(x_1, x_2) \cdot (1, -r) \equiv (y_1, y_2) \cdot (1, -r) \pmod{p-1}$ iff $((x_1, x_2) - (y_1, y_2)) \cdot (1, -r) \equiv 0 \pmod{p-1}$ iff $(x_1, x_2) - (y_1, y_2) \equiv k(r, 1) \pmod{p-1}$ (1,-r) (r, 1)

Recall Simon's property: f(x) = f(y) iff $x - y = kr \pmod{2}$

21

 $\mathbf{Z}_{p-1} \times \mathbf{Z}_{p-1}$

Simon's problem modulo m

The function arising in DLP can be abstracted to the following

Given: $f: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{T}$ with the property that:

 $f(x_1, x_2) = f(y_1, y_2)$ iff $(x_1, x_2) - (y_1, y_2) = k(r_1, r_2) \pmod{m}$ where (r_1, r_2) is the hidden data

Goal: determine (r_1, r_2)

The reversible query box for f is: $|_{x}$

(Each "wire" denotes several qubit wires, enough to represent elements of Z_m)

It's not a "black" box, because we can simulate it by 1- and 2-qubit gates (and this can be done efficiently) ...

$$\begin{vmatrix} x_1 \\ x_2 \\ x_2 \\ y \\ \end{vmatrix} \xrightarrow{f} \qquad \begin{vmatrix} x_1 \\ x_2 \\ x_2 \\ y + f(x_1, x_2) \\ y + f(x_1, x_2) \\ \end{vmatrix}$$

Note: in DLP case,
$$(r_1, r_2) = (r, 1)$$

Digression: on simulating black boxes

How not to simulate a black box

Given an explicit function, such as $f(x) = g^{x_1} a^{-x_2} \mod p$, over some finite domain, simulate *f*-queries over that domain

Easy to compute mapping $|x\rangle|y\rangle|00...0\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|g(x)\rangle$, where the third register is "work space" with accumulated "garbage" (e.g., two such bits arise when a Toffoli gate is used to simulate an AND gate)

This works fine – *as long as f is not queried in superposition*

If *f* is queried in superposition then the resulting state can be $\sum_{x} \alpha_x |x\rangle |y \oplus f(x)\rangle |g(x)\rangle$ can we just discard the third register?

No ... there could be entanglement ...

How to simulate a black box

Simulate the mapping $|x\rangle|y\rangle|00...0\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|00...0\rangle$, (i.e., clean up the "garbage")

To do this, use an additional register, and:

- 1. compute $|x\rangle|y\rangle|00...0\rangle|00...0\rangle \rightarrow |x\rangle|y\rangle|f(x)\rangle|g(x)\rangle$ (ignoring the 2nd register in this step)
- 2. compute $|x\rangle|y\rangle|f(x)\rangle|g(x)\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|f(x)\rangle|g(x)\rangle$ (using CNOT gates between the 2nd and 3rd registers)
- 3. compute $|x\rangle|y\oplus f(x)\rangle|f(x)\rangle|g(x)\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle|00...0\rangle|00...0\rangle$ (by reversing the procedure in step 1)

Total cost: around twice the classical cost of computing f, plus n auxiliary gates

Simon's problem modulo m

So now we have an efficient way of implementing the reversible black box for f

Each "wire" denotes several qubits, to represent an element of Z_m

What is a quantum algorithm for this problem? To get one, must go beyond the Hadamard transform, which has been our main tool so far, to ...

Quantum Fourier transform (QFT)

Quantum Fourier transform

$$F_{m} = \frac{1}{\sqrt{m}} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \dots & \omega^{m-1} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \dots & \omega^{2(m-1)} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \dots & \omega^{3(m-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{m-1} & \omega^{2(m-1)} & \omega^{3(m-1)} & \dots & \omega^{(m-1)^{2}} \end{bmatrix}$$

where $\omega = e^{2\pi i/m}$ (for *n* qubits, $m = 2^n$)

This is unitary and $F_2 = H$, the Hadamard transform

This generalization of *H* is an important component of several interesting quantum algorithms ...

Quantum algorithm for Simon mod m

 $f(x_1, x_2) = f(y_1, y_2) \operatorname{iff} (x_1, x_2) - (y_1, y_2) = k(r, 1) \pmod{m}$

 $\begin{array}{c} |0\rangle - F \\ |0\rangle - F$

if $gcd(s_1, m) = 1$ then s_1 has an inverse mod m, and r can be computed as $r = -s_2/s_1 \mod m$ (The details follow from the extended Euclidean algorithm)

Moreover, the probability that $gcd(s_1, m) = 1$ occurs is not too small (if it fails the algorithm can be run again)

Quantum algorithm for Simon mod *m*

Steps that have been shown to be efficiently implementable (i.e., in terms of a number of 1- and 2-qubit/bit gates that scales polynomially with respect to the number of bits of m):

- Implementation of reversible gate for f
- The classical post-processing at the end

What's missing? The implementation of the QFT f modulo m (for DLP, we would need to do this for m = p - 1)

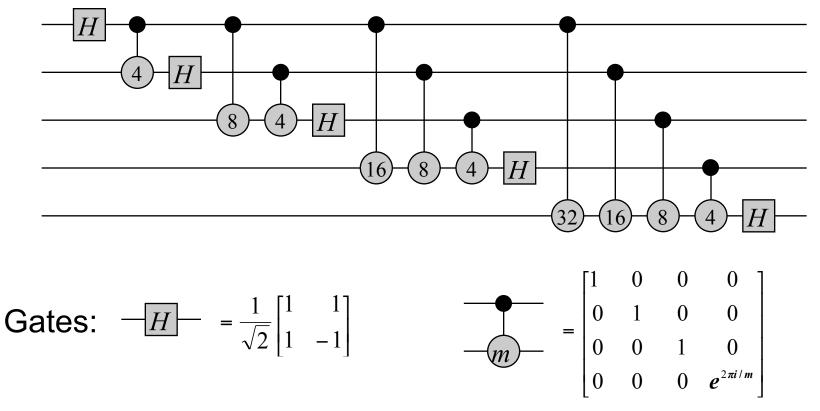
We'll just show how to implement the QFT for $m = 2^n$

Shor did thus too, and showed that if the modulus is within a factor of 2 from p-1, by using careful error-analysis, this was good enough, though the calculations and analysis become more complicated (we omit the details of this)

Computing the QFT for $m = 2^n$

Computing the QFT for $m = 2^n$ (1)

Quantum circuit for F_{32} :



For F_{2^n} costs $O(n^2)$ gates

everse orde

Computing the QFT for $m = 2^n$ (2)

One way on seeing why this circuit works is to first note that

 $F_{2^{n}}|a_{1}a_{2}...a_{n}\rangle$ = $(|0\rangle + e^{2\pi i(0.a_{n})}|1\rangle)...(|0\rangle + e^{2\pi i(0.a_{2}...a_{n})}|1\rangle)(|0\rangle + e^{2\pi i(0.a_{1}a_{2}...a_{n})}|1\rangle)$

It can then be checked that the circuit produces these states (with qubits in reverse order) for all computational basis states $|a_1a_2...a_n\rangle$

Exercise: (a) prove the above equation from the definition of the QFT; (b) confirm that the circuit produces these states

Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lecture 8 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Continuing with the QFT for $m = 2^n$

Quantum Fourier transform

$$F_{m} = \frac{1}{\sqrt{m}} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \dots & \omega^{m-1} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \dots & \omega^{2(m-1)} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \dots & \omega^{3(m-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{m-1} & \omega^{2(m-1)} & \omega^{3(m-1)} & \dots & \omega^{(m-1)^{2}} \end{bmatrix}$$

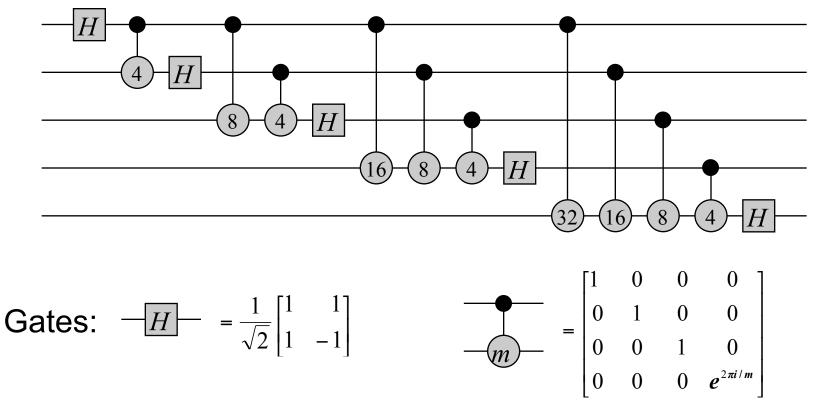
where $\omega = e^{2\pi i/m}$ (for *n* qubits, $m = 2^n$)

This is unitary and $F_2 = H$, the Hadamard transform

This generalization of H is an important component of several interesting quantum algorithms ...

Computing the QFT for $m = 2^n$ (1)

Quantum circuit for F_{32} :



For F_{2^n} costs $O(n^2)$ gates

everse orde

Computing the QFT for $m = 2^n$ (2)

One way on seeing why this circuit works is to first note that

 $F_{2^{n}}|a_{1}a_{2}...a_{n}\rangle$ = $(|0\rangle + e^{2\pi i(0.a_{n})}|1\rangle)...(|0\rangle + e^{2\pi i(0.a_{2}...a_{n})}|1\rangle)(|0\rangle + e^{2\pi i(0.a_{1}a_{2}...a_{n})}|1\rangle)$

It can then be checked that the circuit produces these states (with qubits in reverse order) for all computational basis states $|a_1a_2...a_n\rangle$

Exercise: (a) prove the above equation from the definition of the QFT; (b) confirm that the circuit produces these states

Hidden Subgroup Problem framework

Hidden subgroup problem (1)

Let ${\cal G}$ be a known group and ${\cal H}$ be an unknown subgroup of ${\cal G}$

Let $f: G \rightarrow T$ have the property f(x) = f(y) iff $x - y \in H$ (i.e., x and y are in the same **right coset** of H)

Problem: given a black-box for computing f, determine H

Example 1: $G = (\mathbf{Z}_2)^n$ (the additive group) and $H = \{0, r\}$

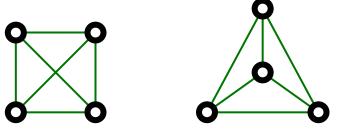
Example 2: $G = (\mathbf{Z}_{p-1})^2$ and $H = \{(0,0), (r,1), (2r,2), \dots, ((p-2)r, p-2)\}$

Example 3: G = Z and H = rZ (Shor's factoring algorithm was originally approached this way. A complication that arises is that **Z** is infinite. We'll use a different approach)

Hidden subgroup problem (2)

Example 4: $G = S_n$ (the symmetric group, consisting of all permutations on *n* objects—which is not abelian) and *H* is any subgroup of *G*

A quantum algorithm for this instance of HSP *would* lead to an efficient quantum algorithm for the graph isomorphism problem ...



... *alas* no efficient quantum has been found for this instance of HSP, despite significant effort by many people

Eigenvalue estimation problem (a.k.a. phase estimation)

Note: this will lead to a factoring algorithm similar to Shor's

A simplified example

U is an unknown unitary operation on n qubits

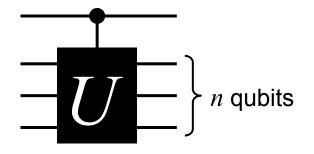
 $|\psi\rangle$ is an eigenvector of U, with eigenvalue $\lambda = +1$ or -1

Input: a black-box for a controlled-U

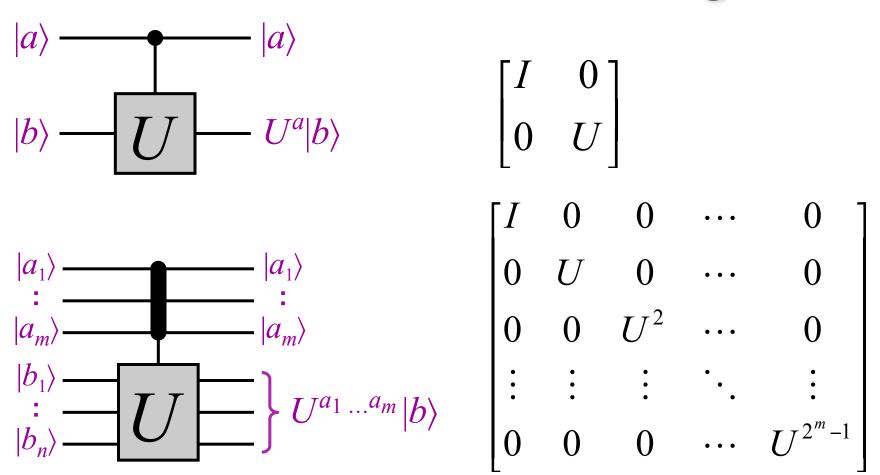
and a copy of the state $|\psi
angle$

Output: the eigenvalue λ

Exercise: solve this making a single query to the controlled-U



Generalized controlled-U gates

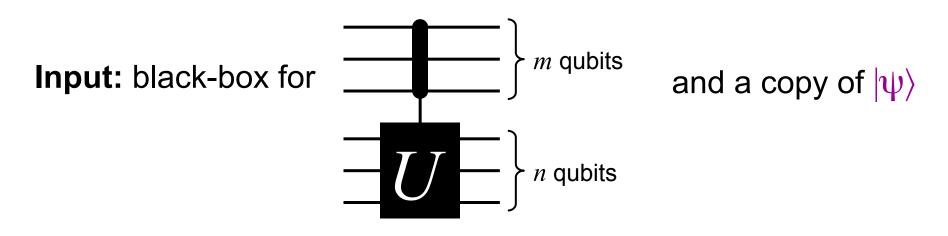


Example: $|1101\rangle|0101\rangle \rightarrow |1101\rangle U^{1101}|0101\rangle$

Eigenvalue estimation problem

U is a unitary operation on n qubits

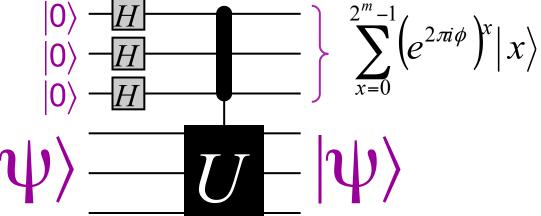
 $|\psi\rangle$ is an eigenvector of *U*, with eigenvalue $e^{2\pi i\phi}$ ($0 \le \phi \le 1$)



Output: ϕ (*m*-bit approximation)

Algorithm for eigenvalue estimation (1)

Starts off as:

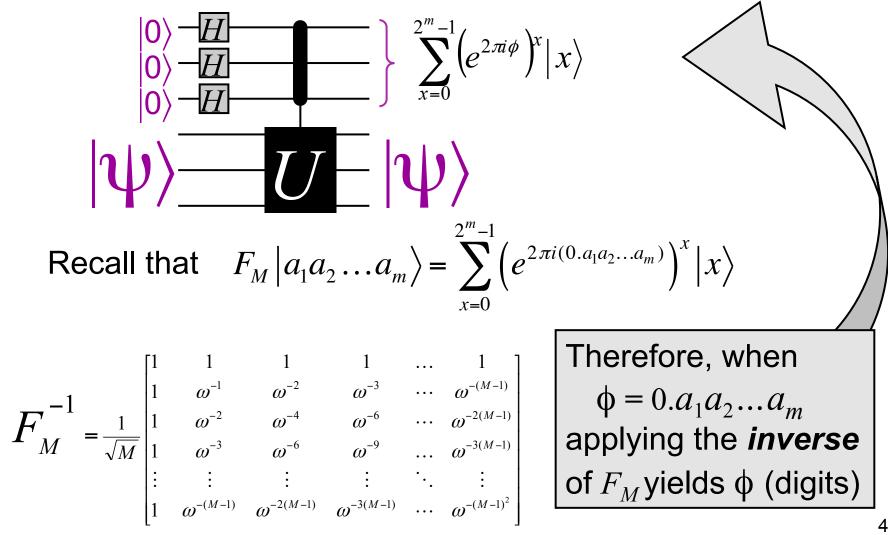


 $|00\ ...\ 0\rangle |\psi\rangle$

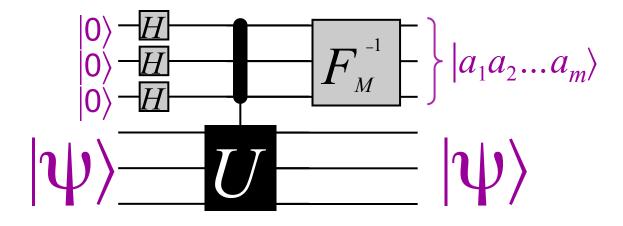
$$|a\rangle|b\rangle \rightarrow |a\rangle U^{a}|b\rangle$$

- $\rightarrow (|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \dots (|0\rangle + |1\rangle)|\psi\rangle$
- $= (|000\rangle + |001\rangle + |010\rangle + |011\rangle + \ldots + |111\rangle)|\psi\rangle$
- $= (|0\rangle + |1\rangle + |2\rangle + |3\rangle + \ldots + |2^{m} 1\rangle)|\psi\rangle$
- $\rightarrow (|0\rangle + e^{2\pi i\phi}|1\rangle + (e^{2\pi i\phi})^2|2\rangle + (e^{2\pi i\phi})^3|3\rangle + \ldots + (e^{2\pi i\phi})^{2^m-1}|2^m-1\rangle)|\psi\rangle$

Algorithm for eigenvalue estimation (2)



Algorithm for eigenvalue estimation (3)



If $\phi = 0.a_1a_2...a_m$ then the above procedure yields $|a_1a_2...a_m\rangle$ (from which ϕ can be deduced exactly)

But what ϕ if is not of this nice form?

Example: $\phi = \frac{1}{3} = 0.010101010101010101...$

Algorithm for eigenvalue estimation (4)

What if ϕ is not of the nice form $\phi = 0.a_1a_2...a_m$? **Example:** $\phi = \frac{1}{3} = 0.01010101010101...$

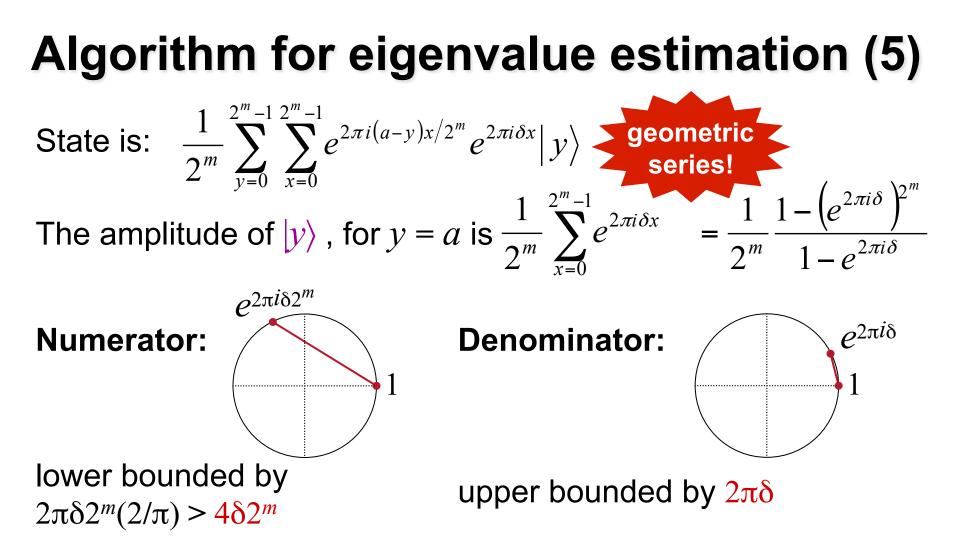
Let's calculate what the previously-described procedure does:

Let $a/2^m = 0.a_1a_2...a_m$ be an *m*-bit approximation of ϕ , in the sense that $\phi = a/2^m + \delta$, where $|\delta| \le 1/2^{m+1}$

$$(F_{M})^{-1} \sum_{x=0}^{2^{m}-1} (e^{2\pi i \phi})^{x} |x\rangle = \frac{1}{2^{m}} \sum_{y=0}^{2^{m}-1} \sum_{x=0}^{2^{m}-1} e^{-2\pi i x y/2^{m}} e^{2\pi i \phi x} |y\rangle$$

$$= \frac{1}{2^{m}} \sum_{y=0}^{2^{m}-1} \sum_{x=0}^{2^{m}-1} e^{-2\pi i x y/2^{m}} e^{2\pi i (\frac{a}{2^{m}} + \delta)^{x}} |y\rangle$$

$$What is the amplitude of an equation is the amplitude of a state of the equation is the amplitude of a state of the equation is the amplitude of a state of the equation is the amplitude of a state of the equation is the amplitude of a state of the equation is the amplitude of a state of the equation is the amplitude of a state of the equation is the amplitude of the equation is the equation is the amplitude of the equation is the equ$$



Therefore, the absolute value of the amplitude of $|v\rangle$ is at least the quotient of $(1/2^m)$ (numerator/denominator), which is $2/\pi$ 50

Algorithm for eigenvalue estimation (6)

Therefore, the probability of measuring an *m*-bit approximation of ϕ is always at least $4/\pi^2 \approx 0.4$

For example, when $\phi = \frac{1}{3} = 0.01010101010101...$, the outcome probabilities look roughly like this:

