Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 23 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Schmidt decomposition

Schmidt decomposition

Theorem:

Let $|\psi\rangle$ be *any* bipartite quantum state: $|\psi\rangle = \sum_{a=1}^{m} \sum_{b=1}^{n} \alpha_{a,b} |a\rangle \otimes |b\rangle$ (where we can assume $n \leq m$)

Then there exist orthonormal states $|\mu_1\rangle, |\mu_2\rangle, ..., |\mu_n\rangle$ and $|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_n\rangle$ such that

- $|\psi\rangle = \sum_{c=1}^{n} \sqrt{p_c} |\mu_c\rangle \otimes |\varphi_c\rangle$
- $|\phi_1\rangle$, $|\phi_2\rangle$, ..., $|\phi_n\rangle$ are the eigenvectors of $\text{Tr}_1|\psi\rangle\langle\psi|$

Schmidt decomposition: proof (1)

The density matrix for state $|\psi\rangle$ is given by $|\psi\rangle\langle\psi|$

Tracing out the first system, we obtain the density matrix of the second system, $\rho=Tr_1|\psi\rangle\!\langle\psi|$

Since ρ is a density matrix, we can express $\rho = \sum_{c=1}^{n} p_c |\varphi_c\rangle \langle \varphi_c|$, where $|\varphi_1\rangle$, $|\varphi_2\rangle$, ..., $|\varphi_n\rangle$ are orthonormal eigenvectors of ρ

Now, returning to $|\psi\rangle$, we can express $|\psi\rangle = \sum_{c=1}^{n} |v_c\rangle \otimes |\varphi_c\rangle$, where $|v_1\rangle$, $|v_2\rangle$, ..., $|v_n\rangle$ are **just some arbitrary vectors** (not necessarily valid quantum states; for example, they might not have unit length, and we cannot presume they're orthogonal)

Schmidt decomposition: proof (2)

Claim:
$$\langle \mathbf{v}_c | \mathbf{v}_{c'} \rangle = \begin{cases} p_c & \text{if } c = c' \\ 0 & \text{if } c \neq c' \end{cases}$$

Proof of Claim: Compute the partial trace Tr_1 of $|\psi\rangle\langle\psi|$ from

$$\begin{split} \psi \rangle \langle \psi | &= \left(\sum_{c=1}^{n} | v_c \rangle \otimes | \varphi_c \rangle \right) \left(\sum_{c'=1}^{n} \langle v_{c'} | \otimes \langle \varphi_{c'} | \right) = \sum_{c=1}^{n} \sum_{c'=1}^{n} | v_c \rangle \langle v_{c'} | \otimes | \varphi_c \rangle \langle \varphi_{c'} | \\ \hline \text{Note that: } \operatorname{Tr}_1(A \otimes B) = \operatorname{Tr}(A) \cdot B \quad \text{Example: } \operatorname{Tr}_1(\rho \otimes \sigma) = \sigma \\ \operatorname{Tr}_1\left(\sum_{c=1}^{n} \sum_{c'=1}^{n} | v_c \rangle \langle v_{c'} | \otimes | \varphi_c \rangle \langle \varphi_{c'} | \right) = \sum_{c=1}^{n} \sum_{c'=1}^{n} \operatorname{Tr}(| v_c \rangle \langle v_{c'} |) | \varphi_c \rangle \langle \varphi_{c'} | \quad \text{(linearity)} \\ &= \sum_{c=1}^{n} \sum_{c'=1}^{n} \langle v_{c'} | v_c \rangle | \varphi_c \rangle \langle \varphi_{c'} | = \sum_{c=1}^{n} p_c | \varphi_c \rangle \langle \varphi_c | \quad \text{the claim follows} \\ \\ \operatorname{Since} \sum_{c=1}^{n} \sum_{c'=1}^{n} \langle v_{c'} | v_c \rangle \otimes | \varphi_c \rangle \langle \varphi_{c'} | = \sum_{c=1}^{n} p_c | \varphi_c \rangle \langle \varphi_c | \quad \text{the claim follows} \\ \\ \\ \end{array}$$

Schmidt decomposition: proof (3)

Normalize the $|\mathbf{v}_c\rangle$ by setting $|\mu_c\rangle = \frac{1}{\sqrt{p_c}} |\nu_c\rangle$

Then
$$\langle \mu_c | \mu_{c'} \rangle = \begin{cases} 1 & \text{if } c = c' \\ 0 & \text{if } c \neq c' \end{cases}$$

and $|\psi\rangle = \sum_{c=1}^n \sqrt{p_c} |\mu_c\rangle \otimes |\varphi_c\rangle$

The story of bit commitment

Bit-commitment

- Alice has a bit *b* that she wants to *commit* to Bob:
- After the *commit* stage, Bob should know nothing about *b*, but Alice should not be able to change her mind
- After the *reveal* stage, either:
 - Bob should learn b and accept its value, or
 - Bob should reject Alice's reveal message, if she deviates from the protocol

Simple physical implementation

- Commit: Alice writes b down on a piece of paper, locks it in a safe, sends the safe to Bob, but keeps the key
- **Reveal:** Alice sends the key to Bob, who then opens the safe
- Desirable properties:
 - **Binding:** Alice cannot change *b* after **commit**
 - Concealing: Bob learns nothing about b until reveal

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols, such as coin-flipping, and "zero-knowledge proof systems"

Complexity-theoretic implementation

Based on a *one-way function** $f: \{0,1\}^n \rightarrow \{0,1\}^n$ and a *hard-predicate* $h: \{0,1\}^n \rightarrow \{0,1\}$ for f

Commit: Alice picks a random $x \in \{0,1\}^n$, sets y = f(x) and $c = b \oplus h(x)$ and then sends y and c to Bob

Reveal: Alice sends *x* to Bob, who verifies that y = f(x) and then sets $b = c \oplus h(x)$

This is (i) perfectly binding and (ii) computationally concealing, based on the hardness of predicate h

* should be one-to-one

Quantum implementation

- Inspired by the success of QKD, one can try to use the properties of quantum mechanical systems to design an information-theoretically secure bit-commitment scheme
- One simple idea:
 - To **commit** to **0**, Alice sends a random sequence from $\{|0\rangle, |1\rangle\}$
 - To **commit** to 1, Alice sends a random sequence from $\{|+\rangle, |-\rangle\}$
 - Bob measures each qubit received in a random basis
 - To reveal, Alice tells Bob exactly which states she sent in the commitment stage (by sending its index 00, 01, 10, or 11), and Bob checks for consistency with his measurement results
- A paper appeared in 1993 proposing a quantum bitcommitment scheme and a proof of security

Impossibility proof (I)

- Not only was the 1993 scheme shown to be insecure, but it was later shown that *no such scheme can exist!*
- To understand the impossibility proof, recall the Schmidt decomposition:

Let
$$|\psi\rangle$$
 be any bipartite quantum state:
 $|\psi\rangle = \sum_{a=1}^{n} \sum_{b=1}^{n} \alpha_{a,b} |a\rangle |b\rangle$
Then there exist orthonormal states
 $|\mu_1\rangle, |\mu_2\rangle, ..., |\mu_n\rangle$ and $|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_n\rangle$ such that
 $|\psi\rangle = \sum_{c=1}^{n} \beta_c |\mu_c\rangle |\phi_c\rangle$

[Mayers '96][Lo & Chau '96] Eigenvectors of $Tr_1 |\psi\rangle \langle \psi|$

Impossibility proof (II)

- **Corollary:** if $|\psi_0\rangle$, $|\psi_1\rangle$ are two bipartite states such that $\mathrm{Tr}_1 |\psi_0\rangle \langle \psi_0| = \mathrm{Tr}_1 |\psi_1\rangle \langle \psi_1|$ then there exists a unitary U (acting on the first register) such that $(U \otimes I) |\psi_0\rangle = |\psi_1\rangle$
- Proof:

$$|\psi_0\rangle = \sum_{c=1}^n \beta_c |\mu_c\rangle |\phi_c\rangle$$
 and $|\psi_1\rangle = \sum_{c=1}^n \beta_c |\mu'_c\rangle |\phi_c\rangle$

We can define U so that $U |\mu_c\rangle = |\mu'_c\rangle$ for c = 1, 2, ..., n

- Protocol can be "purified" so that Alice's commit states are $|\psi_0\rangle \& |\psi_1\rangle$ (where she sends the second register to Bob)
- By applying U to her register, Alice can change her commitment from b = 0 to b = 1 (by changing $|\psi_0\rangle$ to $|\psi_1\rangle$)

Continuous-time evolution (very briefly)

Continuous-time evolution

Although we've expressed quantum operations in discrete terms, in real physical systems, the evolution is continuous $|1\rangle$ Let *H* be any *Hermitian* matrix and $t \in \mathbf{R}$ Then e^{iHt} is **unitary** — why? *H* is called a *Hamiltonian* $H = U^{\dagger}DU$, where $D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix}$ $e^{iHt} = U^{\dagger}e^{iDt}U = U^{\dagger} \begin{pmatrix} e^{i\lambda_{1}t} & & \\ & \ddots & \\ & & e^{i\lambda_{d}t} \end{pmatrix} U \quad \text{(unitary)}$