Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lectures 19–20 (2013)

Richard Cleve
DC 2117 / QNC 3129
cleve@cs.uwaterloo.ca

Grover's quantum search algorithm

Quantum search problem

Given: a black box computing $f: \{0,1\}^n \rightarrow \{0,1\}$

Goal: determine if f is **satisfiable** (if $\exists x \in \{0,1\}^n$ s.t. f(x) = 1)

In positive instances, it makes sense to also \emph{find} such a satisfying assignment x

Classically, using probabilistic procedures, order 2^n queries are necessary to succeed—even with probability $\frac{3}{4}$ (say)

Grover's *quantum* algorithm that makes only $O(\sqrt{2^n})$ queries

[Grover '96] Query:
$$|x_1\rangle$$
 $|x_1\rangle$ $|x_1\rangle$ $|x_n\rangle$ $|y \oplus f(x_1,...,x_n)\rangle$

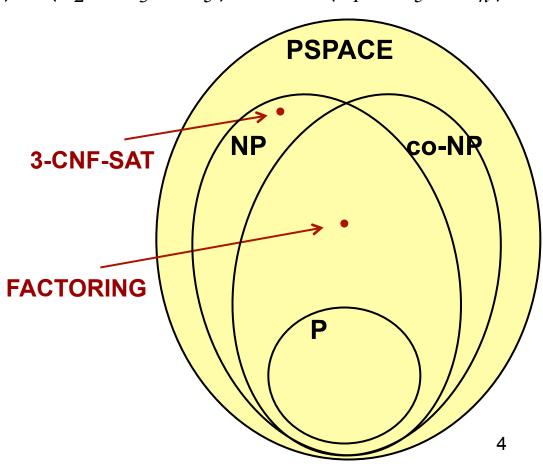
Applications of quantum search

The function f could be realized as a **3-CNF formula**:

$$f(x_1,...,x_n) = (x_1 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_2 \vee x_3 \vee \overline{x}_5) \wedge \cdots \wedge (\overline{x}_1 \vee x_5 \vee \overline{x}_n)$$

Alternatively, the search could be for a certificate for any problem in **NP**

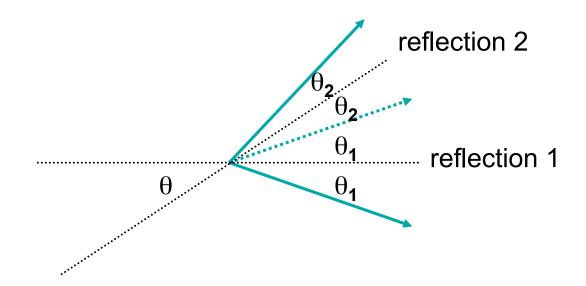
The resulting quantum algorithms appear to be *quadratically* more efficient than the best classical algorithms known



Prelude to Grover's algorithm:

two reflections = a rotation

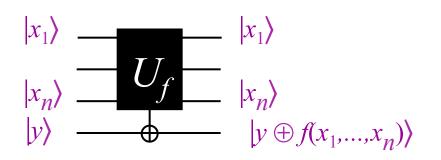
Consider two lines with intersection angle θ :



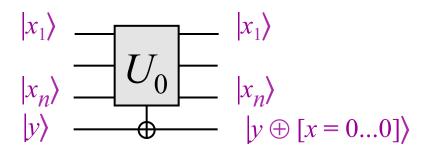
Net effect: rotation by angle 2θ , regardless of starting vector

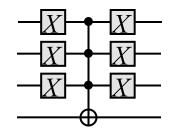
Grover's algorithm: description I

Basic operations used:

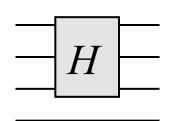


$$U_f|x\rangle|-\rangle = (-1)^{f(x)}|x\rangle|-\rangle$$

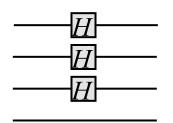




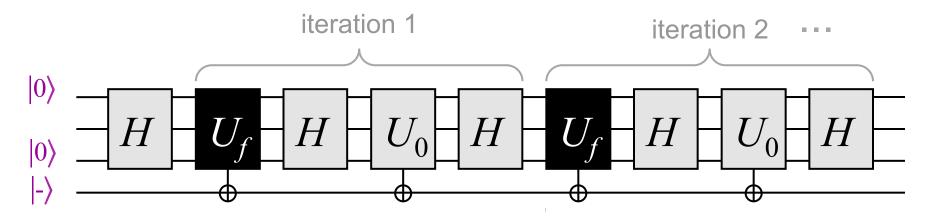
$$U_0|x\rangle|-\rangle = (-1)^{[x = 0...0]}|x\rangle|-\rangle$$



Hadamard



Grover's algorithm: description II



- 1. construct state $H|0...0\rangle|-\rangle$
- 2. repeat k times: apply - HU_0HU_f to state
- 3. measure state, to get $x \in \{0,1\}^n$, and check if f(x)=1

(The setting of *k* will be determined later)

Grover's algorithm: analysis I

Let
$$A = \{x \in \{0,1\}^n : f(x) = 1\}$$
 and $B = \{x \in \{0,1\}^n : f(x) = 0\}$ and $N = 2^n$ and $a = |A|$ and $b = |B|$

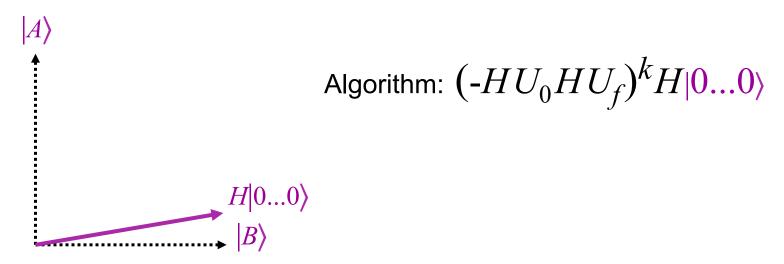
Let
$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
 and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$

Consider the space spanned by $|A\rangle$ and $|B\rangle$

$$H|0...0\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle = \sqrt{\frac{a}{N}} |A\rangle + \sqrt{\frac{b}{N}} |B\rangle$$

Interesting case: $a \ll N$

Grover's algorithm: analysis II



Observation:

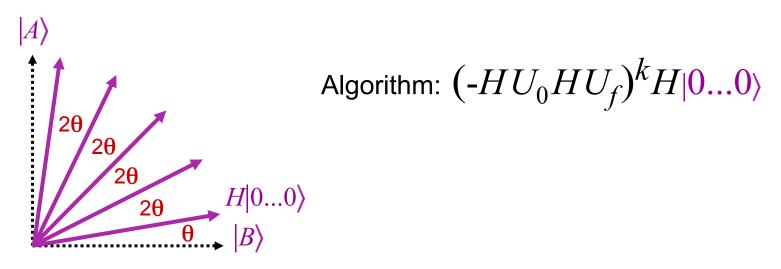
$$U_f$$
 is a reflection about $|B\rangle$: $U_f|A\rangle = -|A\rangle$ and $U_f|B\rangle = |B\rangle$

Question: what is - HU_0H ? U_0 is a reflection about $H_{|0...0\rangle}$

Partial proof:

$$-HU_0HH|0...0\rangle = -HU_0|0...0\rangle = -H(-|0...0\rangle) = H|0...0\rangle$$

Grover's algorithm: analysis III



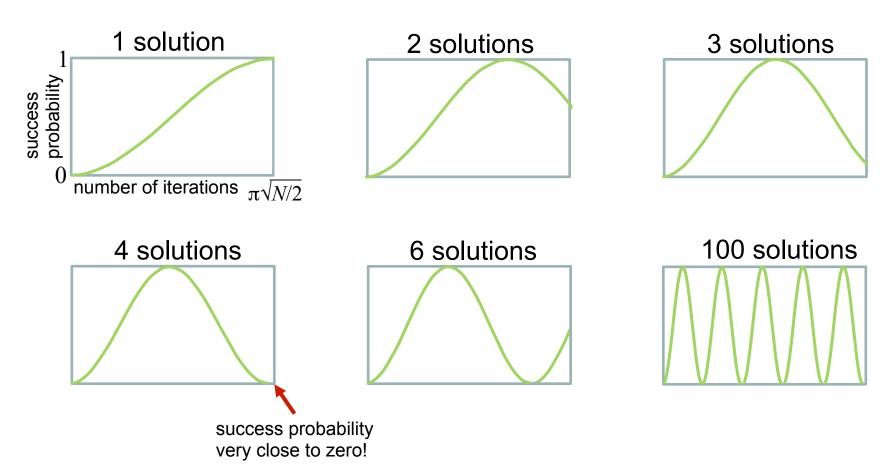
Since $-HU_0HU_f$ is a composition of two reflections, it is a rotation by 20, where $\sin(\theta) = \sqrt{a/N} \approx \sqrt{a/N}$

When a=1, we want $(2k+1)(1/\sqrt{N}) \approx \pi/2$, so $k \approx (\pi/4)\sqrt{N}$

More generally, it suffices to set $k \approx (\pi/4)\sqrt{N/a}$

Question: what if α is not known in advance?

Unknown number of solutions



Choose a *random* k in the range to get success probability > 0.43

Optimality of Grover's algorithm

Optimality of Grover's algorithm I

Theorem: any quantum search algorithm for $f: \{0,1\}^n \to \{0,1\}$ must make $\Omega(\sqrt{2^n})$ queries to f (if f is used as a black-box)

Proof (of a slightly simplified version):

Assume queries are of the form

$$|x\rangle \equiv \int = (-1)^{f(x)} |x\rangle$$

and that a k-query algorithm is of the form

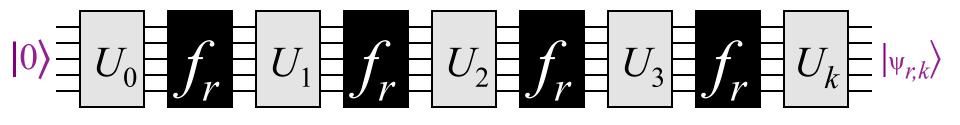
$$|0...0\rangle \equiv U_0 \equiv f \equiv U_1 \equiv f \equiv U_2 \equiv f \equiv U_3 \equiv f \equiv U_k \equiv 0$$

where U_0 , U_1 , U_2 , ..., U_k , are arbitrary unitary operations

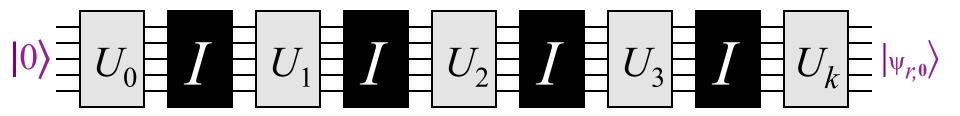
Optimality of Grover's algorithm II

Define $f_r: \{0,1\}^n \to \{0,1\}$ as $f_r(x) = 1$ iff x = r

Consider



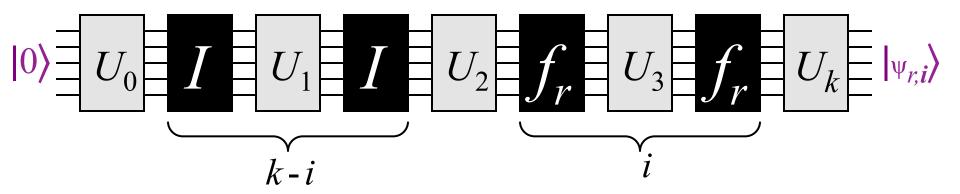
versus



We'll show that, averaging over all $r \in \{0,1\}^n$, $|| |\psi_{r,k} \rangle - |\psi_{r,0} \rangle || \le 2k/\sqrt{2^n}$

Optimality of Grover's algorithm III

Consider



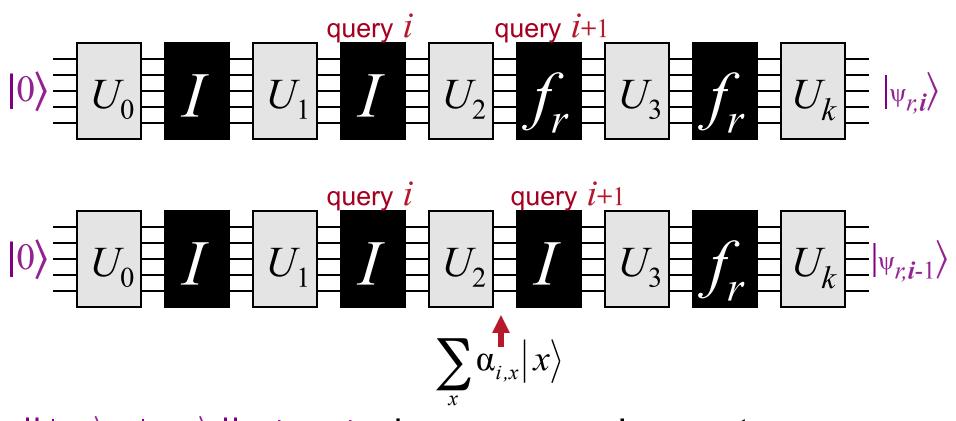
Note that

$$|\psi_{r,k}\rangle - |\psi_{r,0}\rangle = (|\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle) + (|\psi_{r,k-1}\rangle - |\psi_{r,k-2}\rangle) + ... + (|\psi_{r,1}\rangle - |\psi_{r,0}\rangle)$$

which implies

$$|| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle || \leq || |\psi_{r,k}\rangle - |\psi_{r,k-1}\rangle || + \dots + || |\psi_{r,1}\rangle - |\psi_{r,0}\rangle ||$$

Optimality of Grover's algorithm IV



$$|| |\psi_{r,i}\rangle - |\psi_{r,i-1}\rangle || = |2\alpha_{i,r}|$$
, since query only negates $|r\rangle$

Therefore,
$$\| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle \| \le \sum_{i=0}^{k-1} 2|\alpha_{i,r}|$$

Optimality of Grover's algorithm V

Now, averaging over all $r \in \{0,1\}^n$,

$$\frac{1}{2^{n}} \sum_{r} \left\| |\psi_{r,k} \rangle - |\psi_{r,0} \rangle \right\| \leq \frac{1}{2^{n}} \sum_{r} \left(\sum_{i=0}^{k-1} 2 |\alpha_{i,r}| \right)$$

$$= \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2 \left(\sum_{r} |\alpha_{i,r}| \right)$$

$$\leq \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2 \left(\sqrt{2^{n}} \right) \qquad \text{(By Cauchy-Schwarz)}$$

$$= \frac{2k}{\sqrt{2^{n}}}$$

Therefore, for **some** $r \in \{0,1\}^n$, the number of queries k must be $\Omega(\sqrt{2^n})$, in order to distinguish f_r from the all-zero function

This completes the proof