Introduction to

Quantum Information Processing
QIC 710/ CS 678 / PH 767 / CO 681 / AM 871

Lectures 17-18 (2013)

Richard Cleve
DC 2117 / QNC 3129
cleve@cs.uwaterloo.ca



Entropy and
compression



Shannon Entropy

Letp =(p,,..., py) be a probability distribution on a set {1,....d}
d

Then the (Shannon) entropy of p is H(p,,.... p,) = —E p;logp;
=1

Intuitively, this turns out to be a good measure of “how
random” the distribution p is:

VS. VS. VS.
[l M

H(p)=logd H(p)=20

Operationally, H(p) is the number of bits needed to store the
outcome (in a sense that will be made formal shortly)




Von Neumann Entropy

For a density matrix p, it turns out that S(p) = -Trp logp is a
good quantum analogue of entropy

Note: S(p) = H(p,,..., py), Where p,,..., p, are the eigenvalues
of p (with multiplicity)

Operationally, S(p) is the number of qubits needed to store p
(in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to
the case of large blocks of n independent instances of data:

- probability distribution p®” in the classical case, and

- quantum state p®” in the quantum case



Classical compression (1)

Letp =(p,,..., py) be a probability distribution on a set {1,....d}
where n independent instances are sampled:
(J15--5J) €E{1,....d}" (d" possibilities, nlogd bits to specify one)

Theorem®: for all ¢ > 0, for sufficiently large n, there is a

scheme that compresses the specification to n(H(p) + ¢) bits
while introducing an error with probability at most ¢

Intuitively, there is a subset of {1,...,d}", called the “typical
sequences’, that has size 2" ) *2 and probability 1 - ¢

A nice way to prove the theorem, is based on two cleverly
defined random variables ...

* “Plain vanilla” version that ignores, for example, the tradeoffs between n and ¢ 5



Classical compression (2)

Define the random variable f:{1,....d} — Ras f(j)=-logp,

d d
Note that  E[f1= Y p,f(j)== p,logp, = H(p,.....,)
=1 J=1

) LU+ )

n

Define g:{1,....d}" — R as g(j1 ----- I

Thus E[g]|= H(pp"'apd)

: : 1
AISO, g(]laa,]n) = _;log(ph p]n)



Classical compression (3)

By standard results in statistics, as n — o, the observed
value of g(J,,...,/,) approaches its expected value, H(p)

More formally, call (/,,...,j,) E{1,....d}" e-typical if
8(jirenrdy)-H(p)|se

Then, the result is that, for all € > 0, for sufficiently large n,
Pr|(Jji,--..J,) IS e-typical] = 1- €

We can also bound the number of these ¢-typical sequences:
« By definition, each such sequence has probability = 27"#P) +¢)

* Therefore, there can be at most 2"%®) +¢ sych sequences



Classical compression (4)

In summary, the compression procedure is as follows:

The input datais (J,....,7,) €{1,...,d}", each independently
sampled according the probability distribution p = (p,,..., p,)

The compression procedure is to leave (J,,...,/,) intact if it is
e-typical and otherwise change it to some fixed e-typical
sequence, say, (/,..., /) (which will result in an error)

Since there are at most 2""p) *¢) ¢_typical sequences, the data
can then be converted into n(H(p) + ¢) bits

The error probability is at most ¢, the probability of an atypical

iInput arising .



Quantum compression (1)

The scenario: n independent instances of a d-dimensional
state are randomly generated according some distribution:

~

¢;) prob. p, 0) prob. %

+) prob. Y%

Example:

_|p,) prob. p,

Goal: to “compress” this into as few qubits as possible so that
the original state can be reconstructed with small error in the
following sense ...
g-qood:
No procedure can distinguish between these two states

(a) compressing and then uncompressing the data

(b) the original data left as is
with probability more than %: + Y4 ¢ 9




Quantum compression (2)

Define p = E D
=1

(Pi><(Pi

Theorem: for all € > 0, for sufficiently large n, there is a
scheme that compresses the data to n(S(p) + €) qubits,

that is 2Ve -good

For the aforementioned example, =0.6xn qubits suffices

The compression method: )
Express p in its eigenbasis as o = qu‘\pj ><\yj ‘
7=1

With respect to this basis, we will define an e-typical subspace

of dimension 2/S(p) +¢) = Dn(H(g) +¢)
10



Quantum compression (3)

The e-typical subspace is that spanned by ‘\p. \} jn>

]1 ’’’’’

where (Jj,,...,J,) is e-typical with respect to (¢,,..., q,)

Define IT,,

as the projector into the e-typical subspace

By the same argument as in the classical case, the subspace
has dimension < 2" *® and Tr(Il,, p®") = 1- €

This is because p is the density matrix of

~

<

y,) prob. ¢,

y,) prob. g,
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Quantum compression (4)

Calculation of the expected fidelity:
Y pr{¢r,lér) = > prTr (I, ¢r)(¢r]) = Tr (Zmﬂtyp@wzl)
I I I

S XRn .
Abbreviations =1r (thpp ) > 1—¢

I =1119...17,
Pr = DPiyis...ip,

' ?
b7) = |di, b, - - Di) What does this mean”

If the generated state is |¢;) and the compression process
first applies the measurement thp,ijp then the success
probability is (¢7|IL,,|¢r) (call outcome II,,, “success”)

Averaging over the possible choices of the index I, the
success probability for the compression partis > 1 — ¢ 12



Quantum compression (5)

How good an approximation of the true data is the compressed
state when the compression part succeeds?

The true data is of the form (I, |¢;)) where the I is generated
with probability pr

The approximate data is of the form (I, %thp|¢1>> where I is
generated with probability pr

v = /{¢r|IL,,|61) normalization factor
Above two states at least as hard to distinguish as these two:
@) =) VP @) (@) = 1Y, /prll) @ 1L, |e1)
I
Fidelity: (®|®') = >3, pr{¢1|lL,,lér) > 2(1—-¢)>V1—¢

Trace distance: || |®) — |®) ||ty < 2Ve
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