Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lectures 17–18 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

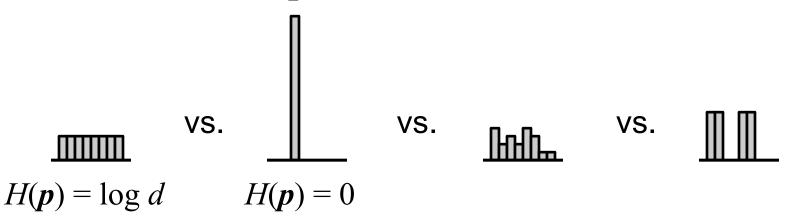
Entropy and compression

Shannon Entropy

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$

Then the (Shannon) *entropy* of p is $H(p_1,...,p_d) = -\sum_{j=1}^{a} p_j \log p_j$

Intuitively, this turns out to be a good measure of "how random" the distribution p is:



Operationally, H(p) is the number of bits needed to store the outcome (in a sense that will be made formal shortly)

Von Neumann Entropy

For a density matrix ρ , it turns out that $S(\rho) = -\text{Tr}\rho \log \rho$ is a good quantum analogue of entropy

Note: $S(\rho) = H(p_1, ..., p_d)$, where $p_1, ..., p_d$ are the eigenvalues of ρ (with multiplicity)

Operationally, $S(\rho)$ is the number of **qubits** needed to store ρ (in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to the case of large blocks of n independent instances of data:

- probability distribution $p^{\otimes n}$ in the classical case, and
- quantum state $ho^{\otimes n}$ in the quantum case

Classical compression (1)

Let $p = (p_1, ..., p_d)$ be a probability distribution on a set $\{1, ..., d\}$ where *n* independent instances are sampled:

 $(j_1,...,j_n) \in \{1,...,d\}^n$ (*dⁿ* possibilities, $n \log d$ bits to specify one)

Theorem*: for all $\varepsilon > 0$, for sufficiently large *n*, there is a scheme that compresses the specification to $n(H(p) + \varepsilon)$ bits while introducing an error with probability at most ε

Intuitively, there is a subset of $\{1,...,d\}^n$, called the "typical sequences", that has size $2^{n(H(p) + \varepsilon)}$ and probability $1 - \varepsilon$

A nice way to prove the theorem, is based on two cleverly defined random variables ...

* "Plain vanilla" version that ignores, for example, the tradeoffs between n and ϵ

Classical compression (2)

Define the random variable $f:\{1,...,d\} \rightarrow \mathbf{R} \text{ as } f(j) = -\log p_j$

Note that
$$E[f] = \sum_{j=1}^{d} p_j f(j) = -\sum_{j=1}^{d} p_j \log p_j = H(p_1, ..., p_d)$$

Define
$$g:\{1,\ldots,d\}^n \to \mathbf{R}$$
 as $g(j_1,\ldots,j_n) = \frac{f(j_1) + \cdots + f(j_n)}{n}$
Thus $E[g] = H(p_1,\ldots,p_d)$

Also,
$$g(j_1,...,j_n) = -\frac{1}{n} \log(p_{j_1} \cdots p_{j_n})$$

Classical compression (3)

By standard results in statistics, as $n \to \infty$, the observed value of $g(j_1,...,j_n)$ approaches its expected value, H(p)

More formally, call $(j_1, ..., j_n) \in \{1, ..., d\}^n$ ε -typical if $|g(j_1, ..., j_n) - H(p)| \le \varepsilon$

Then, the result is that, for all $\varepsilon > 0$, for sufficiently large n, $\Pr[(j_1,...,j_n) \text{ is } \varepsilon \text{-typical}] \ge 1 - \varepsilon$

We can also bound the *number of* these ε -typical sequences:

- By definition, each such sequence has probability $\geq 2^{-n(H(p) + \varepsilon)}$
- Therefore, there can be at most $2^{n(H(p) + \varepsilon)}$ such sequences

Classical compression (4)

In summary, the compression procedure is as follows:

The input data is $(j_1,...,j_n) \in \{1,...,d\}^n$, each independently sampled according the probability distribution $\mathbf{p} = (p_1,...,p_d)$

The compression procedure is to leave $(j_1,...,j_n)$ intact if it is ε -typical and otherwise change it to some fixed ε -typical sequence, say, (j,...,j) (which will result in an error)

Since there are at most $2^{n(H(p) + \varepsilon)} \varepsilon$ -typical sequences, the data can then be converted into $n(H(p) + \varepsilon)$ bits

The error probability is at most ϵ , the probability of an atypical input arising

Quantum compression (1)

The scenario: *n* independent instances of a *d*-dimensional state are randomly generated according some distribution:

 $\begin{cases} | \boldsymbol{\varphi}_1 \rangle \text{ prob. } p_1 \\ \vdots & \vdots & \vdots \\ | \boldsymbol{\varphi}_r \rangle \text{ prob. } p_r \end{cases} \quad \text{Example: } \begin{cases} | \boldsymbol{0} \rangle \text{ prob. } \frac{1}{2} \\ | + \rangle \text{ prob. } \frac{1}{2} \end{cases}$

Goal: to "compress" this into as few qubits as possible so that the original state can be reconstructed with small error in the following sense ...

<u>ε**-good**:</u>

No procedure can distinguish between these two states
(a) compressing and then uncompressing the data
(b) the original data left as is
with probability more than ¹/₂ + ¹/₄ ε

Quantum compression (2) Define $\rho = \sum_{i=1}^{r} p_i |\varphi_i\rangle\langle\varphi_i|$

Theorem: for all $\varepsilon > 0$, for sufficiently large *n*, there is a scheme that compresses the data to $n(S(\rho) + \varepsilon)$ qubits, that is $2\sqrt{\varepsilon}$ -good

For the aforementioned example, $\approx 0.6n$ qubits suffices

The compression method:

Express ρ in its eigenbasis as $\rho = \sum_{j=1}^{a} q_j |\psi_j\rangle \langle \psi_j |$

With respect to this basis, we will define an ε -typical subspace of dimension $2^{n(S(\rho) + \varepsilon)} = 2^{n(H(q) + \varepsilon)}$

Quantum compression (3)

The ε -*typical subspace* is that spanned by $|\psi_{j_1}, ..., \psi_{j_n}\rangle$ where $(j_1, ..., j_n)$ is ε -typical with respect to $(q_1, ..., q_d)$

Define Π_{tvp} as the projector into the ϵ -typical subspace

By the same argument as in the classical case, the subspace has dimension $\leq 2^{n(S(\rho) + \varepsilon)}$ and $Tr(\Pi_{tvp} \rho^{\otimes n}) \geq 1 - \varepsilon$

This is because ρ is the density matrix of $\begin{cases} |\psi_1\rangle & \text{prob. } q_1 \\ \vdots & \vdots & \vdots \\ |\psi_d\rangle & \text{prob. } q_d \end{cases}$

Quantum compression (4)

Calculation of the expected fidelity:

$$\sum_{I} p_{I} \langle \phi_{I} | \Pi_{\text{typ}} | \phi_{I} \rangle = \sum_{I} p_{I} \text{Tr} \left(\Pi_{\text{typ}} | \phi_{I} \rangle \langle \phi_{I} | \right) = \text{Tr} \left(\sum_{I} p_{I} \Pi_{\text{typ}} | \phi_{I} \rangle \langle \phi_{I} | \right)$$

Abbreviations

$$I = i_1 i_2 \dots i_n$$

$$p_I = p_{i_1 i_2 \dots i_n}$$

 $|\phi_I\rangle = |\phi_{i_1}\phi_{i_2}\dots\phi_{i_n}\rangle$

What does this mean?

If the generated state is $|\phi_I\rangle$ and the compression process first applies the measurement $\Pi_{typ}, \Pi_{typ}^{\perp}$ then the success probability is $\langle \phi_I | \Pi_{typ} | \phi_I \rangle$ (call outcome Π_{typ} "success")

Averaging over the possible choices of the index *I*, the success probability for the compression part is $\geq 1 - \varepsilon$

12

Quantum compression (5)

How good an approximation of the true data is the compressed state when the compression part succeeds?

The *true data* is of the form $(I, |\phi_I\rangle)$ where the *I* is generated with probability p_I

The *approximate data* is of the form $\left(I, \frac{1}{\gamma_I} \Pi_{typ} | \phi_I \right)$ where I is generated with probability $p_I = \sqrt{\langle \phi_I | \Pi_{typ} | \phi_I \rangle}$ normalization factor

Above two states *at least* as hard to distinguish as these two:

$$\begin{split} |\Phi\rangle &= \sum_{I} \sqrt{p_{I}} |I\rangle \otimes |\phi_{I}\rangle \qquad |\Phi'\rangle = \frac{1}{\gamma} \sum_{I} \sqrt{p_{I}} |I\rangle \otimes \Pi_{\text{typ}} |\phi_{I}\rangle \\ \text{Fidelity: } \langle \Phi |\Phi'\rangle &= \frac{1}{\gamma} \sum_{I} p_{I} \langle \phi_{I} |\Pi_{\text{typ}} |\phi_{I}\rangle \geq \frac{1}{\gamma} (1-\varepsilon) \geq \sqrt{1-\varepsilon} \\ \text{Trace distance: } \| |\Phi\rangle - |\Phi'\rangle \|_{\text{tr}} \leq 2\sqrt{\varepsilon} \end{split}$$

13