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Entropy and 
compression 



Shannon Entropy 
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Let p = (p1,…, pd) be a probability distribution on a set {1,…,d}  

Then the (Shannon) entropy of p is H(p1,…, pd)   j
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Intuitively, this turns out to be a good measure of “how 
random” the distribution p is: 

vs. vs. vs. 

H(p) = log d  H(p) = 0  
Operationally, H(p) is the number of bits needed to store the 
outcome (in a sense that will be made formal shortly) 



Von Neumann Entropy 
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For a density matrix ρ, it turns out that S(ρ) = − Trρ logρ  is a 
good quantum analogue of entropy 

Note: S(ρ) = H(p1,…, pd), where p1,…, pd  are the eigenvalues 
of ρ (with multiplicity) 

Operationally, S(ρ) is the number of qubits needed to store ρ 
(in a sense that will be made formal later on) 

Both the classical and quantum compression results pertain to 
the case of large blocks of n independent instances of data:  
 

•  probability distribution p⊗n in the classical case, and  

•  quantum state ρ 
⊗n in the quantum case 

 



Classical compression (1) 
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Let p = (p1,…, pd) be a probability distribution on a set {1,…,d} 
where n independent instances are sampled:  
( j1,…, jn) ∈{1,…,d}n  (d 

n possibilities, n log d bits to specify one)  

Theorem*: for all ε > 0, for sufficiently large n, there is a 
scheme that compresses the specification to n(H(p) + ε) bits 
while introducing an error with probability at most ε 

A nice way to prove the theorem, is based on two cleverly 
defined random variables … 

Intuitively, there is a subset of {1,…,d}n, called the “typical 
sequences”, that has size 2n(H(p) + ε)  and probability  1 − ε   

* “Plain vanilla” version that ignores, for example, the tradeoffs between n and ε 



Classical compression (2) 
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Define the random variable  f :{1,…,d} → R as f ( j ) = − log pj 
 
Note that ( )dj
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Also, g ( j1,…, jn)
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Classical compression (3) 
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By standard results in statistics, as n → ∞, the observed 
value of  g ( j1,…, jn) approaches its expected value, H(p) 

More formally, call ( j1,…, jn) ∈{1,…,d}n ε-typical  if 
 
 
 

Then, the result is that, for all ε > 0, for sufficiently large n, 
 

                      Pr[( j1,…, jn) is ε-typical] ≥ 1− ε  

g j1,…, jn( )−H p( ) ≤ ε

We can also bound the number of  these ε-typical sequences: 
  

•  By definition, each such sequence has probability ≥ 2−n(H(p) + ε) 

•  Therefore, there can be at most 2n(H(p) + ε) such sequences  



Classical compression (4) 
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In summary, the compression procedure is as follows:  

The input data is ( j1,…, jn) ∈{1,…,d}n, each independently 
sampled according the probability distribution  p = (p1,…, pd)  

The compression procedure is to leave ( j1,…, jn) intact if it is 
ε-typical and otherwise change it to some fixed ε-typical 
sequence, say, ( j ,…,  j)  (which will result in an error) 

Since there are at most 2n(H(p) + ε) ε-typical sequences, the data 
can then be converted into n(H(p) + ε) bits  

The error probability is at most ε, the probability of an atypical 
input arising 



Quantum compression (1) 
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The scenario: n independent instances of a d -dimensional 
state are randomly generated according some distribution: 

|φ1 〉   prob.  p1 
 :        :        :  
|φr 〉   prob.  pr   

Goal: to “compress” this into as few qubits as possible so that 
the original state can be reconstructed with small error in the 
following sense … 
ε-good: 
No procedure can distinguish between these two states 

(a) compressing and then uncompressing the data 
(b)  the original data left as is 

with probability more than ½ + ¼ ε 

|0〉   prob.  ½ 
|+〉   prob.  ½   Example: 



Quantum compression (2) 
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Theorem: for all ε > 0, for sufficiently large n, there is a 
scheme that compresses the data to n(S(ρ) + ε) qubits, 
that is 2√ε -good 

For the aforementioned example, ≈ 0.6n qubits suffices 

With respect to this basis, we will define an ε-typical subspace 
of dimension 2n(S(ρ) + ε) = 2n(H(q) + ε) 

The compression method: 



Quantum compression (3) 
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The ε-typical subspace is that spanned by  
 

where ( j1,…, jn) is ε-typical with respect to (q1,…, qd)  
njj ,, ψψ

1
…

By the same argument as in the classical case, the subspace 
has dimension ≤ 2n(S(ρ) + ε)  and  Tr(Πtyp ρ ⊗n) ≥ 1− ε  

Define Πtyp  as the projector into the ε-typical subspace  

|ψ1〉   prob.  q1 
 :        :        :  
|ψd〉   prob.  qd   

This is because ρ is the density matrix of  



Quantum compression (4) 
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Calculation of the expected fidelity: 

What does this mean? 
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If the generated state is          and the compression process 
first applies the measurement                   then the success 
probability is                          (call outcome          “success”)   h�I |⇧typ|�Ii
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Abbreviations 

Averaging over the possible choices of the index I, the 
success probability for the compression part is    � 1� "



Quantum compression (5) 

13 

How good an approximation of the true data is the compressed 
state when the compression part succeeds? 
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The true data is of the form                 where the  I  is generated 
with probability  

Above two states at least as hard to distinguish as these two: 
|�i =

X

I

p
pI |Ii ⌦ |�Ii |�0i = 1

�

P
I
p
pI |Ii ⌦⇧typ|�Ii

h�|�0i = 1
�

P
I pIh�I |⇧typ|�Ii � 1

� (1� ") �
p
1� "Fidelity: 

k |�i � |�0i ktr  2
p
"Trace distance: 

pI
The approximate data is of the form                        where  I  is 
generated with probability  

⇣
I, 1

�I
⇧typ|�Ii

⌘

                       normalization factor �I =
p
h�I |⇧typ|�Ii


