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Characterizing density matrices

Three properties of O : 3 d ‘ >< ‘

« 0=0" (i.e. p is Hermitian)
- (¢|p|p) = 0, for all states |@) (i.e. o is positive semidefinite)

Moreover, for any matrix p satisfying the above properties,
there exists a probabilistic mixture whose density matrix is p

Exercise: show this




Recap of general

gquantum operations




General quantum operations (1)

Also known as:
(11 ”
quantum channels
“completely positive trace preserving maps”,

“admissible operations”

LetA,, A,, ..., A be matrices satisfying EA]T.AJ. =/
=

Then the mapping pH— EAij]T is a general quantum op
=1

Note: 4,, 4,, ..., A,, do not have to be square matrices

Example 1 (unitary op): applying U to p yields U,OUT




General quantum operations (2)

Example 2 (decoherence): let 4,=|0)(0| and 4,=|1){1]

This quantum op maps p to [0)0|p|0)0| + [1){1|p|1)(1

af’ ] -‘a‘z 0
For ’\V> = O{’O> + /3’1>’ OC*,B ‘,8‘2 = 0 ‘,3‘2

Corresponds to measuring 0 ~ without looking at the outcome”

After looking at the outcome, p becomes ( |0)(0| with prob. |a?
1)1] with prob. |37
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General quantum operations (3)

Example 3 (discarding the second of two qubits):

1 0 0O 0100}

Let 4,= 10| =15 o 1 ¢ 000 1

and A,=I®(1| =

States of the form p®0 (product states) become p

1 O
State (4{00)+4{11))(4(00]+(11])  becomes %[0 }

),

0)), (%%,

Note 2: the operation is called the partial trace Tr, p

Note 1: it' s the same density matrix as for ((1/2,



Partial trace



More about the partial trace

Two quantum registers ' ' in states o and u (resp.) are
independent when the combined system is in state p = o ®u

If the 2nd register is discarded, state of the 15t register remains o

In general, the state of a two-register system may not be of the
form o ®u (it may contain entanglement or correlations)

The partial trace Tr, gives the effective state of the first register

For d-dimensional registers, Tr, is defined with respect to the

operators A, = I®(d,|, where |§,), [§,), ..., |¢,.,) can be any
orthonormal basis

The partial trace Tr, 0, can also be characterized as the
unique linear operator satisfying the identity Tr,(oc®u) = o




Partial trace continued

For 2-qubit systems, the partial trace is explicitly

Poooo  Pooot  Pooio  PLoori

Tr Poroo  Poror Porio  Port B
N —
Prooo  Proor  Proto  Prort

_,011,00 Piior Piiio ,011,11_
and

1000,00 + 1001,01 pOO,lO + 1001,11

Prooo T Piror Proto T Piini

Poooo  Pooor  Pooto  Poort

Poooo T Proto Pooor T Prori

Poroo T Piiio Porot T Piini

Tr Poroo  Poror  Porio  Poii :
Prooo  Proor  Proio  Prort

Piioo  Prior Piiio Priia
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General quantum operations (4)

Example 4 (adding an extra qubit):
Just one operator 4,= I®|0) =

o o o =

States of the form © become o ®|0)0

More generally: to add a register in state |(|)> use the
single operator A4,= I®|})

| o H O

11



POVM measurements

(POVM = Positive Operator Valued Measure)



POVM measurements (1)

Let A,, A,, ..., A be matrices satisfying EA]*.A]. =]
=

Corresponding POVM measurement is a stochastic operation
on p that, with probability TT(AJ-,OA;), produces outcome:

f

J (classical information)

N
T
=,

j . (the collapsed quantum state)
\ TI‘(AJPA*)

Example 1: 4,=|9,)(¢,| (orthogonal projectors)

This reduces to our previously defined measurements ... |




POVM measurements (2)
When A4;=|¢;)(¢;| are orthogonal projectors and o = [y)(1)|,
Tr(4,p 47 ) = Tl XWX W]d XN/
- |<¢]|1P>|2

Moreover, ApA; = ‘¢j><¢j ‘l// <W ¢j><¢j‘ ‘€0><§”‘
Tr(Aij;) <§0]- ‘W> 2 AN,
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POVM measurements (3)

Example 3 (trine state “measurent”): >—

Let |(P0> = |O>’
| 211 O
Define A,=v2/3|p,){@,| = 310 O]

A=Vl )Xo <LV 2] vl < L[VAE 2
41442 V6 41-J2 e

Then A, A, + A A + A4, A, =1

@,) = -1/2|0) +v3/2[1),

@,) = -1/2|0) -V3/2|1)

If the input itself is an unknown trine state, |, ){,/, then the
probability that classical outcome is k is 2/3 = 0.6666... 15



POVM measurements (4)

Often POVMs arise in contexts where we only care about the
classical part of the outcome (not the residual quantum state)

The probability of outcome j is Tr(Aj,OA; )= Tr(pA}Aj)

Simplified definition for POVM measurements:

Let £, £,, ..., E, be positive semidefinite and with EEJ- =1
7=l

The probability of outcome j is TT(PE,- )

This is usually the way POVM measurements are defined
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“Mother of all operations”

m;

Let 4, ,A4,,, .-, 4,,, satisfy £ ;
! ’ T A A . =1
AZ,I’A2,2’ AZ,mz ;,Zl S
Ay, Ay - A

k,my

Then there is a quantum operation that, on input p, produces

with probability ZTr ,OAT ) the state:

f

j (classical information)

(the collapsed quantum state)

\D;
E




Simulations among operations
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Simulations among operations (1)

Theorem 1: any general quantum operation can be simulated
by applying a unitary operation on a larger quantum system:

o]

0) — — .

0) — __  discard This specification of a
| U | gquantum operation is

out — | called the Stinespring

nput 04 _ — ~ O output form

Example: decoherence
0) —P

al0) + B|1) -:i:— p=

0 |4
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Simulations among operations (2)

Proof of Theorem 1:
Let A,,A,, ..., A,k be any 2™ x 2" matrices such that

2k
Y AlA; =T
j=1

This defines a mapping from m qubits to n qubits:
2k
.i.
pr> ) AjpA
J=1
This specification of the quantum operation is called the Krauss form

20



Simulations among operations (3)

Set V=

Let U be any unitary matrix
with first 2” columns from V' 0 —

U=[VW]

Uis a 2"k x 2m*k matrix
(and its columns partition into
2mntkplocks of size 2%)

Ay
A

A2k

Since VTV =
[ AJ{ A; Agk

}

Ay
Az

AQk

=1

the columns of " are orthonormal

0) —
0) _

>
| 1 | |

U

Now, consider the circuit:
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Simulations among operations (4)
The output state of the circuitis U(|00---0)(00---0| ® p)UT

S A AL A
=W z W T
| Ao 110 0 0| L i
| [ALAL A
I Al
| Aowp 0 .-+ 0 | L _
T AipAl ApAl o AppAlL T
B AspAl  AgpAl .. AgpAik
| AgpA AgipAl - AgepAl, -




Simulations among operations (5)

Tracing out the high-order & qubits of this state yields
A1pAl + AgpAl + - - + Ay pAl,

exactly the output of mapping that we want to simulate

odl [T

11 |+ discard
o+ [

input 2 — — ~ O output

Note: this approach is not, in general, optimal in the number

of ancilliary qubits used—there are more efficient methods



Simulations among operations (6)

Theorem 2: any POVM measurement can also be simulated
by applying a unitary operation on a larger quantum system
and then measuring:

input O : O quantum output
U -

0) — D— ] classical output
0) — D—
0) — D—

This is the same diagram as for Theorem 1 (drawn with the
extra qubits at the bottom) but where the “discarded” qubits
are measured and part of the output
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Separable states

(very briefly)



Separable states

A bipartite (i.e. two register) state p is a:
- product state if p = O®E

* separable state if O = Epjﬂj ®§j (pys-- P, 20)
=1

(i.e. a probabilistic mixture

of product states)
« entangled = not separable

Since mixed states might be expressible as a mixture in several
different ways, determining whether they are separabile is tricky

Question: which of the following states are separable?
p, = (00)-+11))(00] +{11)

p: =4(00) +[11))((00]+ 11]}+ 4 (00) ~[11) (00| 11] .
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Distance measures

for quantum states
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Distance measures

Some simple (and often useful) measures:

 Euclidean distance: || |\V> - |(P> ||2

« Fidelity: | (o|y) |

Small Euclidean distance implies “closeness” but large
Euclidean distance need not (for example, |y) vs -|y) )

Not so clear how to extend these for mixed states ...

... though fidelity does generalize, to Tr\/,o”2 op'2
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Trace norm — preliminaries (1)

For a normal matrix M and a function f: C — C, we define
the matrix f (M) as follows:

M =U'DU, where D is diagonal (i.e. unitarily diagonalizable)
Now, define f(M) = U'f(D) U, where

0 o 0] f(a) o0 - 0]
I BTN IS

0 0 - 7 0 0 - f(4,)




Trace norm — preliminaries (2)

For a normal matrix M = U DU, define |M] in terms of

replacing D with M‘ 0 ... 0°
0 4] - 0

P\ ‘s‘ R

0 0 |

This is the same as defining |M| = YM'M and the latter
definition extends to all matrices (not necessarily normal

ones), since MM is positive definite
31



Trace norm/distance — definition

The trace norm of M'is ||M]| = Tr|M] = MM

Intuitively, it's the 1-norm of the eigenvalues (or, in the non-
normal case, the singular values) of M

The trace distance between p and o is defined as |[p - o

Why is this a meaningful distance measure between
quantum states?

Theorem: for any two quantum states p and o, the
optimal measurement procedure for distinguishing
between them succeeds with probability %5 + Yi||o - c7||tr

32




Distinguishing between two

arbitrary quantum states



Holevo-Helstrom Theorem (1)

Theorem: for any two quantum states p and o, the optimal
measurement procedure for distinguishing between them

succeeds with probability %5 + Ya||o - a||tr (equal prior probs.)
Proof* (the attainability part):

Since p - o is Hermitian, its eigenvalues are real
Let I1, be the projector onto the positive eigenspaces

Let I1_ be the projector onto the non-positive eigenspaces

Take the POVM measurement specified by I1, and I1_ with
the associations +=p and - = o

* The other direction of the theorem (optimality) is omitted here
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Holevo-Helstrom Theorem (2)

Claim: this succeeds with probability %5 + V4|0 - c7||tr

Proof of Claim:

A key observation is Tr(IL.-T1_)(p-0) =||p - ol

The success probability is p, = %Tr(I1, p ) + 2Tr(I1_0)
& the failure probability is pr=""Tr1l, 0) + YT p)

Therefore, p;-p, =Y%Tr(IL -I1)(p -0) = %o - o]

From this, the result follows
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Purifications & Ulhmann’s Theorem

Any density matrix p, can be obtained by tracing out part of
some larger pure state:

- ilj‘%x%‘=Tr2(2\/ﬂ/j‘%>‘f>)(2ﬂ<% \<j\)

a purification of p

Ulhmann’s Theorem*: The fidelity between p and o is the
maximum of (o|y) taken over all purifications |y) and |o)

* See [Nielsen & Chuang, pp. 410-411] for a proof of this
Recall our previous definition of fidelity as
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Relationships between fidelity
and trace distance

L = F(p,0) = |p-oll, = VI-F(p,07

See [Nielsen & Chuang, pp. 415-416] for more details
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Preliminary remarks about

gquantum communication

38



Quantum information can apparently be
used to substantially reduce computation
costs for a number of interesting problems

How does quantum information affect the
communication costs of information
processing tasks?

We explore this issue ...
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Entanglement and signaling

Recall that Entangled states, such as -|00) + 1-|11),

qubit qubit
can be used to perform some intriguing feats, such as

teleportation and superdense coding

—but they cannot be used to “signal instantaneously”

Any operation performed on one system has no affect on
the state of the other system (its reduced density matrix)

40



Basic communication scenario

Goal: convey n bits from Alice to Bob

Resources g Bob

XXy ..o X

XXy ..o X,

Alice

n

41



Basic communication scenario

Bit communication:

»
»
»
»
-
<
»
»

Cost: 71

Bit communication
& prior entanglement:
9099 9080

»
»
»
»
P
<
»
»

Cost: /1 (can be deduced)

Qubit communication:

o
»
»
»
P
<
o
»

Cost: 71 [Holevo’ s Theorem, 1973]

Qubit communication
& prior entanglement:
9990 9990

»
>
o
>
P
<«
[
>

Cost: 11/2 superdense coding
[Bennett & Wiesner, 1992]
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The GHZ “paradox”

(Greenberger-Horne-Zeilinger)



GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]
Input:

r S
Output: a«—7r b «— —s

Alice Bob

Rules of the game:

1. It is promised that r®s®f =0

2. No communication after inputs received

3. They win if a®b®c = rvsvt

Carol
rst | a®b@®c |abc
000 0 @®|011
011 1 @|001
101 1 @111

110

101

44




No perfect strategy for GHZ

TS

Input: @ r
Output: % a
rst | a®bdc
000 0

011

101

110

— | — | —

Has no solution,
thus no perfect
strategy exists

General deterministic strategy:
ay, a, by, by, ¢, ¢,

Winning conditions:

(a4, ® b, @ c,=0
a,®b,®c, =1
a,®b,®c, =1

L 4, @D,® ¢, =1 45

<




GHZ: preventing communication

:

Input and output events can be space-like separated:
so signals at the speed of light are not fast enough for cheating

Input:

Output:

What if Alice, Bob, and Carol still keep on winning?
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To be continued ...
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Continuation of:

The GHZ “paradox”

(Greenberger-Horne-Zeilinger)




“GHZ Paradox” explained
Prior entanglement: ) = |000) — [011) — [101) — [110)

r S [
a b c
Alice’ s strategy:

1 1
1. if =1 then apply H to qubit (else /) H=— [1 J
2. measure qubit and set a to result -

Bob’s & Carol’ s strategies: similar

Case 1 (st = 000): state is measured directly ... @
Case 2 (rst = 011): new state |001) +|010) - [100) + [111) @
Cases 3 & 4 (rst =101 & 110): similar by symmetry @



GHZ: conclusions

For the GHZ game, any classical team succeeds with
probability at most %4

Allowing the players to communicate would enable them to
succeed with probability 1

Entanglement cannot be used to communicate

Nevertheless, allowing the players to have entanglement
enables them to succeed with probability 1 (but not by
using entanglement to communicate)

Thus, entanglement is a useful resource for the task of
winning the GHZ game
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The Bell inequality and its violation

— Physicist’s perspective
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Bell’ s Inequality and its violation
Part I: physicist’ s view:

Can a quantum state have pre-determined outcomes for
each possible measurement that can be applied to it?

qubit: Q
if {|0),|1)} measurement
E where the then output 0
“manuscript” is _
: . - if {|+),|-)} measurement
something like this: the|n>c|>u>tput1
if ... (etc)
called hidden variables G P
table could be implicitly
[Bell, 1964] given by some formula

[Clauser, Horne, Shimony, Holt, 1969] 53



Bell Inequality

Imagine a two-qubit system, where one of two measurements,
called M, and M,, will be applied to each qubit:

@ ) space-like separated, so @ )
M, - a, no cross-coordination M, - by
M, a, M, : b,
G ) G
—1 a()
Ag=( l)a Proof: 4,(B,+B,)+4,(B,—B,) =<2
Al = (_l)bl — —
By=(-1)"0 4 A

_ b
Bl — (—1) . one is +2 and the other is 0 54



Bell Inequality
AyBy+A,B,+A,B, —A,B, <2 is called a Bell Inequality”

Question: could one, in principle, design an experiment to
check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because 4, 4,, B,, B, cannot
all be measured (only one A4 B, term can be measured)

Answer 2: yes, indirectly, by making many runs of this

experiment: pick a random s7 €{00,01,10,11} and then
measure with M and M, to get the value of 4 B,

The average of 4,B,, A,B, A,B,, —A,B, should be <

* also called CHSH Inequality 55



Violating the Bell Inequality

Two-qubit system in state
§) =100) - [11)

Applying rotations 6, and 65 yields:
cos(6p + 65 ) (|00) —[11)) + sin(6 + 65 ) (|01) +[10))

AB =+1 AB =1
Define P SE=1
M,: rotate by -m/16 then measure s \st=otar o
M,: rotate by +37/16 then measure i
Then AO B, AO B,, AB 0 —A, B, all have Sl‘ = 00
expected value %\2, which contradicts R
the upper bound of % cos?(t/8) = Ya + Va2
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Bell Inequality violation: summary

Assuming that quantum systems are
governed by local hidden variables E E E
leads to the Bell inequality

AgBy+AyB, +A,By— A, B, <2

But this is violated in the case of Bell states (by a factor of V2)
Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments
along these lines have actually been conducted

By @  rrsssanunnunnnnnns >

Y



The Bell inequality and its violation

— Computer Scientist’ s perspective
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Bell’ s Inequality and its violation

Part Il: computer scientist’ s view:

input: A !
@ O
output: a b
Rules: 1. No communication after inputs received st | aob
2. They win if a®b = st 00 | 0
01 0
With classical resources, Prla®b = sAt] <0.75 10 | O
11 1

But, with prior entanglement state |00) — [11),
Pr[a®b = sAt] = cosX (/) = % + VaN2 = 0.853...
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The quantum strategy

« Alice and Bob start with entanglement |

) =100) —[11)

* Alice: if s =0 then rotate by 6, =-1/16
else rotate by 6, = +37/16 and measure

3ws .81 =01o0r10

7t/8

« Bob: if £ = 0 then rotate by 6; = —m/16 st = 00
else rotate by HB — +3n/16 and measure e

cos(6x — 6 ) (|00) —[11)) + sin(6, — 65 ) (|01) + [10))

Success probability:
Prla®b = sAt] = cos2(m/8) =% + Va2 = 0.853...
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Nonlocality in operational terms

information
processing
task

classically, quantum
communication entanglement

IS needed
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The magic square game




Magic square game

Problem: fill in the matrix with bits such that each row has
even parity and each column has odd parity

odd odd odd

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: 8/y classical and 1 quantum
[Aravind, 2002] (details omitted here) 63



