Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lectures 12–13 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Characterizing density matrices

Three properties of ρ :

• $\operatorname{Tr}\rho = 1 (\operatorname{Tr}M = M_{11} + M_{22} + \dots + M_{dd})$

$$\rho = \sum_{k=1}^{d} p_{k} |\psi_{k}\rangle \langle \psi_{k} |$$

- $\rho = \rho^{\dagger}$ (i.e. ρ is Hermitian)
- $\langle \phi | \rho | \phi \rangle \ge 0$, for all states $| \phi \rangle$ (i.e. ρ is *positive semidefinite*)

Moreover, for **any** matrix ρ satisfying the above properties, there exists a probabilistic mixture whose density matrix is ρ

Exercise: show this

Recap of general quantum operations

General quantum operations (1)

Also known as: "quantum channels" "completely positive trace preserving maps", "admissible operations"

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{j=1}^m A_j^{\dagger} A_j = I$ Then the mapping $\rho \mapsto \sum_{j=1}^m A_j \rho A_j^{\dagger}$ is a general quantum op

Note: $A_1, A_2, ..., A_m$ do not have to be square matrices

Example 1 (unitary op): applying U to ρ yields $U\rho U^{\dagger}$

General quantum operations (2)

Example 2 (decoherence): let $A_0 = |0\rangle\langle 0|$ and $A_1 = |1\rangle\langle 1|$ This quantum op maps ρ to $|0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

For
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, $\begin{bmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{bmatrix} \mapsto \begin{bmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{bmatrix}$

Corresponds to measuring ρ "without looking at the outcome"

After looking at the outcome, ρ becomes $\begin{cases} |0\rangle\langle 0| & \text{with prob. } |\alpha|^2 \\ |1\rangle\langle 1| & \text{with prob. } |\beta|^2 \end{cases}$

General quantum operations (3)

Example 3 (discarding the second of two qubits):

Let
$$A_0 = I \otimes \langle \mathbf{0} | = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 and $A_1 = I \otimes \langle \mathbf{1} | = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

States of the form $\rho \otimes \sigma$ (product states) become ρ

State
$$\left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right)\left(\frac{1}{\sqrt{2}}\langle00| + \frac{1}{\sqrt{2}}\langle11|\right)$$
 becomes $\frac{1}{2}\begin{bmatrix}1&0\\0&1\end{bmatrix}$

Note 1: it's the same density matrix as for $((\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle))$ **Note 2:** the operation is called the *partial trace* Tr₂ ρ

Partial trace

More about the partial trace

Two quantum registers in states σ and μ (resp.) are *independent* when the combined system is in state $\rho = \sigma \otimes \mu$

If the 2nd register is discarded, state of the 1st register remains σ

In general, the state of a two-register system may not be of the form $\sigma \otimes \mu$ (it may contain *entanglement* or *correlations*)

The *partial trace* Tr₂ gives the effective state of the first register For *d*-dimensional registers, Tr₂ is defined with respect to the operators $A_k = I \otimes \langle \phi_k |$, where $|\phi_0 \rangle$, $|\phi_1 \rangle$, ..., $|\phi_{d-1} \rangle$ can be any orthonormal basis

The **partial trace** $\text{Tr}_2 \rho$, can also be characterized as the unique linear operator satisfying the identity $\text{Tr}_2(\sigma \otimes \mu) = \sigma$

Partial trace continued

For 2-qubit systems, the partial trace is explicitly

$$\operatorname{Tr}_{2} \begin{bmatrix} \rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11} \\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11} \\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11} \\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11} \end{bmatrix} = \begin{bmatrix} \rho_{00,00} + \rho_{01,01} & \rho_{00,10} + \rho_{01,11} \\ \rho_{10,00} + \rho_{11,01} & \rho_{10,10} + \rho_{11,11} \end{bmatrix}$$

and

$$\operatorname{Tr}_{1}\begin{bmatrix} \rho_{00,00} & \rho_{00,01} & \rho_{00,10} & \rho_{00,11} \\ \rho_{01,00} & \rho_{01,01} & \rho_{01,10} & \rho_{01,11} \\ \rho_{10,00} & \rho_{10,01} & \rho_{10,10} & \rho_{10,11} \\ \rho_{11,00} & \rho_{11,01} & \rho_{11,10} & \rho_{11,11} \end{bmatrix} = \begin{bmatrix} \rho_{00,00} + \rho_{10,10} & \rho_{00,01} + \rho_{10,11} \\ \rho_{01,00} + \rho_{11,10} & \rho_{01,01} + \rho_{11,11} \end{bmatrix}$$

General quantum operations (4)

Example 4 (adding an extra qubit):

an extra qubit): Just one operator $A_0 = I \otimes |0\rangle = \begin{vmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{vmatrix}$

States of the form ρ become $\rho \otimes |0\rangle\langle 0|$

More generally: to add a register in state $|\phi\rangle$, use the single operator $A_0 = I \otimes |\phi\rangle$

POVM = Positive Operator Valued Measure)

POVM measurements (1)

Let $A_1, A_2, ..., A_m$ be matrices satisfying $\sum_{j=1} A_j^{\dagger} A_j = I$

Corresponding **POVM measurement** is a stochastic operation on ρ that, with probability $\text{Tr}(A_i \rho A_i^{\dagger})$, produces outcome:

 $\begin{cases} \boldsymbol{j} \text{ (classical information)} \\ \frac{A_j \rho A_j^{\dagger}}{Tr(A_j \rho A_i^{\dagger})} \text{ (the collapsed quantum state)} \end{cases}$

Example 1: $A_i = |\phi_i\rangle\langle\phi_i|$ (orthogonal projectors)

This reduces to our previously defined measurements ...

POVM measurements (2)

When $A_i = |\phi_i\rangle\langle\phi_i|$ are orthogonal projectors and $\rho = |\psi\rangle\langle\psi|$,

$$\operatorname{Tr}(A_{j}\rho A_{j}^{\dagger}) = \operatorname{Tr}|\phi_{j}\rangle\langle\phi_{j}|\psi\rangle\langle\psi|\phi_{j}\rangle\langle\phi_{j}|$$
$$= \langle\phi_{j}|\psi\rangle\langle\psi|\phi_{j}\rangle\langle\phi_{j}|\phi_{j}\rangle$$
$$= |\langle\phi_{j}|\psi\rangle|^{2}$$

reover,
$$\frac{A_{j}\rho A_{j}^{\dagger}}{\operatorname{Tr}(A_{j}\rho A_{j}^{\dagger})} = \frac{\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\left|\psi\right\rangle\left\langle\psi\right|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|}{\left|\left\langle\varphi_{j}\left|\psi\right\rangle\right|^{2}} = \left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|$$

Mor

POVM measurements (3)

Example 3 (trine state "measurent"):

Let $|\varphi_0\rangle = |0\rangle$, $|\varphi_1\rangle = -1/2|0\rangle + \sqrt{3}/2|1\rangle$, $|\varphi_2\rangle = -1/2|0\rangle - \sqrt{3}/2|1\rangle$ Define $A_0 = \sqrt{2}/3|\varphi_0\rangle\langle\varphi_0| = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}$ $A_1 = \sqrt{2}/3|\varphi_1\rangle\langle\varphi_1| = \frac{1}{4} \begin{bmatrix} \sqrt{2}/3 & +\sqrt{2}\\ +\sqrt{2} & \sqrt{6} \end{bmatrix}$ $A_2 = \sqrt{2}/3|\varphi_2\rangle\langle\varphi_2| = \frac{1}{4} \begin{bmatrix} \sqrt{2}/3 & -\sqrt{2}\\ -\sqrt{2} & \sqrt{6} \end{bmatrix}$ Then $A_0^{\dagger}A_0 + A_1^{\dagger}A_1 + A_2^{\dagger}A_2 = I$

If the input itself is an unknown trine state, $|\varphi_k\rangle\langle\varphi_k|$, then the probability that classical outcome is k is 2/3 = 0.6666...

15

POVM measurements (4)

Often POVMs arise in contexts where we only care about the classical part of the outcome (not the residual quantum state)

The probability of outcome **j** is $\operatorname{Tr}(A_j \rho A_j^{\dagger}) = \operatorname{Tr}(\rho A_j^{\dagger} A_j)$

Simplified definition for POVM measurements: Let $E_1, E_2, ..., E_m$ be positive semidefinite and with $\sum_{j=1}^m E_j = I$ The probability of outcome *j* is $\operatorname{Tr}(\rho E_j)$

This is usually the way POVM measurements are defined

"Mother of all operations"

satisfy

Let $A_{1,1}, A_{1,2}, \dots, A_{1,m_1}$ $A_{2,1}, A_{2,2}, \dots, A_{2,m_2}$ $A_{k1}, A_{k2}, ..., A_{km_{\rm b}}$

$$\sum_{j=1}^{k} \sum_{i=1}^{m_j} A_{j,i}^{\dagger} A_{j,i} = I$$

Then there is a quantum operation that, on input ρ , produces with probability $\sum_{i=1}^{m_j} \operatorname{Tr}(A_{j,i}\rho A_{j,i}^{\dagger})$ the state:

 $\begin{cases} \mathbf{j} \text{ (classical information)} \\ \frac{\sum_{i=1}^{m_j} A_{j,i} \rho A_{j,i}^{\dagger}}{\sum_{i=1}^{m_j} \operatorname{Tr}(A_{j,i} \rho A_{j,i}^{\dagger})} \text{ (the collapsed quantum state)} \end{cases}$

Simulations among operations

Simulations among operations (1)

Theorem 1: any *general quantum operation* can be simulated by applying a unitary operation on a larger quantum system:

Example: decoherence

Simulations among operations (2)

Proof of Theorem 1:

Let $A_1, A_2, ..., A_{2^k}$ be any $2^m \ge 2^n$ matrices such that

$$\sum_{j=1}^{2^k} A_j^{\dagger} A_j = I$$

This defines a mapping from *m* qubits to *n* qubits:

$$\rho \mapsto \sum_{j=1}^{2^k} A_j \rho A_j^{\dagger}$$

This specification of the quantum operation is called the Krauss form

Simulations among operations (3)

Let U be any unitary matrix with first 2^n columns from V

U = [V|W]

U is a $2^{m+k} \ge 2^{m+k}$ matrix (and its columns partition into 2^{m-n+k} blocks of size 2^n) Now, consider the circuit:

Simulations among operations (4)

22

Simulations among operations (5)

Tracing out the high-order k qubits of this state yields

$$A_1 \rho A_1^{\dagger} + A_2 \rho A_2^{\dagger} + \dots + A_{2^k} \rho A_{2^k}^{\dagger}$$

exactly the output of mapping that we want to simulate

Note: this approach is *not*, in general, optimal in the number of ancilliary qubits used—there are more efficient methods

Simulations among operations (6)

Theorem 2: any **POVM measurement** can also be simulated by applying a unitary operation on a larger quantum system and then measuring:

This is the same diagram as for Theorem 1 (drawn with the extra qubits at the bottom) but where the "discarded" qubits are measured and part of the output

Separable states (very briefly)

Separable states

A bipartite (i.e. two register) state ρ is a:

• product state if $\rho = \sigma \otimes \xi$

• separable state if
$$\rho = \sum_{j=1}^{m} p_j \sigma_j \otimes \xi_j \quad (p_1, \dots, p_m \ge 0)$$

(i.e. a probabilistic mixture of product states)

• *entangled* = not separable

Since mixed states might be expressible as a mixture in several different ways, determining whether they are separable is tricky

Question: which of the following states are separable?

$$\rho_1 = \frac{1}{2} \left(|00\rangle + |11\rangle \right) \left(\langle 00| + \langle 11| \right)$$

$$\rho_2 = \frac{1}{2} \left(|00\rangle + |11\rangle \right) \left(\langle 00| + \langle 11| \right) + \frac{1}{2} \left(|00\rangle - |11\rangle \right) \left(\langle 00| - \langle 11| \right)$$

Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lecture 13 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Distance measures for quantum states

Distance measures

Some simple (and often useful) measures:

- Euclidean distance: $\| |\psi\rangle |\phi\rangle \|_{2}$
- Fidelity: $\left|\left<\phi|\psi\right>\right|$

Small Euclidean distance implies "closeness" but large Euclidean distance need not (for example, $|\psi\rangle$ vs - $|\psi\rangle$)

Not so clear how to extend these for mixed states ...

... though fidelity does generalize, to ${\rm Tr}\sqrt{
ho^{1/2}\sigma
ho^{1/2}}$

Trace norm – preliminaries (1)

For a normal matrix M and a function $f: \mathbb{C} \to \mathbb{C}$, we define the matrix f(M) as follows:

 $M = U^{\dagger}DU$, where D is diagonal (i.e. unitarily diagonalizable)

Now, define $f(M) = U^{\dagger}f(D) U$, where

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix} \quad f(D) = \begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_d) \end{bmatrix}$$

Trace norm – preliminaries (2)

For a normal matrix $M = U^{\dagger}DU$, define |M| in terms of replacing D with

$$|D| = \begin{vmatrix} |\lambda_1| & 0 & \cdots & 0 \\ 0 & |\lambda_2| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |\lambda_d| \end{vmatrix}$$

This is the same as defining $|M| = \sqrt{M^{\dagger}M}$ and the latter definition extends to **all** matrices (not necessarily normal ones), since $M^{\dagger}M$ is positive definite

Trace norm/distance – definition

The *trace norm* of
$$M$$
 is $||M||_{tr} = Tr|M| = Tr\sqrt{M^{\dagger}M}$

Intuitively, it's the 1-norm of the eigenvalues (or, in the non-normal case, the singular values) of M

The *trace distance* between ρ and σ is defined as $\|\rho - \sigma\|_{tr}$

Why is this a meaningful distance measure between quantum states?

Theorem: for any two quantum states ρ and σ , the **optimal** measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} ||\rho - \sigma||_{t}$

Distinguishing between two arbitrary quantum states

Holevo-Helstrom Theorem (1)

Theorem: for any two quantum states ρ and σ , the optimal measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} ||\rho - \sigma||_{tr}$ (equal prior probs.)

Proof* (the attainability part):

Since ρ - σ is Hermitian, its eigenvalues are real Let Π_+ be the projector onto the positive eigenspaces Let Π_- be the projector onto the non-positive eigenspaces

Take the POVM measurement specified by Π_+ and Π_- with the associations + = ρ and - = σ

* The other direction of the theorem (optimality) is omitted here

Holevo-Helstrom Theorem (2)

Claim: this succeeds with probability $\frac{1}{2} + \frac{1}{4} \|\rho - \sigma\|_{tr}$ **Proof of Claim:**

A key observation is $Tr(\Pi_{+}-\Pi_{-})(\rho - \sigma) = \|\rho - \sigma\|_{tr}$

The success probability is $p_s = \frac{1}{2} \text{Tr}(\Pi_+ \rho) + \frac{1}{2} \text{Tr}(\Pi_- \sigma)$ & the failure probability is $p_f = \frac{1}{2} \text{Tr}(\Pi_+ \sigma) + \frac{1}{2} \text{Tr}(\Pi_- \rho)$

Therefore, $p_s - p_f = \frac{1}{2} \operatorname{Tr}(\Pi_+ - \Pi_-)(\rho - \sigma) = \frac{1}{2} \|\rho - \sigma\|_{\mathrm{tr}}$

From this, the result follows

Purifications & Ulhmann's Theorem

Any density matrix ρ , can be obtained by tracing out part of some larger *pure* state:

$$\rho = \sum_{j=1}^{d} \lambda_{j} |\varphi_{j}\rangle \langle \varphi_{j} | = \operatorname{Tr}_{2} \left(\sum_{j=1}^{m} \sqrt{\lambda_{j}} |\varphi_{j}\rangle | j\rangle \right) \left(\sum_{j=1}^{m} \sqrt{\lambda_{j}} \langle \varphi_{j} | \langle j | \right)$$

a purification of ρ

Ulhmann's Theorem*: The *fidelity* between ρ and σ is the maximum of $\langle \phi | \psi \rangle$ taken over all purifications $| \psi \rangle$ and $| \phi \rangle$

* See [Nielsen & Chuang, pp. 410-411] for a proof of this

Recall our previous definition of fidelity as $F(\rho, \sigma) = \text{Tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}} \equiv \left\|\rho^{1/2}\sigma^{1/2}\right\|_{\text{tr}}$

Relationships between fidelity and trace distance

$$1 - F(\rho, \sigma) \le \|\rho - \sigma\|_{tr} \le \sqrt{1 - F(\rho, \sigma)^2}$$

See [Nielsen & Chuang, pp. 415-416] for more details

Preliminary remarks about quantum communication

Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems

How does quantum information affect the *communication costs* of information processing tasks?

We explore this issue ...

Entanglement and signaling

Recall that Entangled states, such as $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$,

can be used to perform some intriguing feats, such as *teleportation* and *superdense coding*

—but they *cannot* be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

Basic communication scenario

Goal: convey *n* bits from Alice to Bob

Basic communication scenario

Bit communication:

Cost: \mathcal{N}

Cost: \mathcal{N} (can be deduced)

Qubit communication:

Cost: \mathcal{N} [Holevo's Theorem, 1973]

Qubit communication & prior entanglement:

Cost: *N*/2 superdense coding [Bennett & Wiesner, 1992]

The GHZ "paradox" (Greenberger-Horne-Zeilinger)

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]

Rules of the game:

- 1. It is promised that $r \oplus s \oplus t = 0$
- 2. No communication after inputs received
- 3. They **win** if $a \oplus b \oplus c = r \lor s \lor t$

rst	$a \oplus b \oplus c$	abc
000	0 😀	011
011	1 😜	001
101	1 🕄	111
110	1 😫	101

No perfect strategy for GHZ

Input:

rst	$a \oplus b \oplus c$
000	0
011	1
101	1
110	1

General deterministic strategy: $a_0, a_1, b_0, b_1, c_0, c_1$

Winning conditions:

Has no solution, thus no perfect strategy exists $\begin{cases} a_0 \oplus b_0 \oplus c_0 = 0 \\ a_0 \oplus b_1 \oplus c_1 = 1 \\ a_1 \oplus b_0 \oplus c_1 = 1 \\ a_1 \oplus b_1 \oplus c_0 = 1 \end{cases}$

GHZ: preventing communication

Input and output events can be *space-like* separated: so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol *still* keep on winning?

To be continued ...

Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871

Lecture 14 (2013)

Richard Cleve DC 2117 / QNC 3129 cleve@cs.uwaterloo.ca

Continuation of: The GHZ "paradox" (Greenberger-Horne-Zeilinger)

"GHZ Paradox" explained

Prior entanglement: $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$

Alice's strategy:

1. if r = 1 then apply H to qubit (else I)

2. measure qubit and set a to result

Bob's & Carol's strategies: similar

Case 1 (*rst* = 000): state is measured directly ... 2

Case 2 (*rst* = 011): new state $|001\rangle + |010\rangle - |100\rangle + |111\rangle$

Cases 3 & 4 (*rst* = 101 & 110): similar by symmetry

GHZ: conclusions

- For the GHZ game, any *classical* team succeeds with probability at most ³/₄
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1 (but not by using entanglement to communicate)
- Thus, entanglement is a useful resource for the task of winning the GHZ game

The Bell inequality and its violation – Physicist's perspective

Bell's Inequality and its violation Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the "manuscript" is something like this:

called *hidden variables*

[Bell, 1964]

[Clauser, Horne, Shimony, Holt, 1969]

1	· · · ·
1	
	()

if $\{|0\rangle, |1\rangle\}$ measurement then output **0**

```
if \{|+\rangle, |-\rangle\} measurement then output 1
```

if ... (etc)

table could be implicitly given by some formula

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1 , will be applied to each qubit:

Define: $A_0 = (-1)^{a_0}$ $A_1 = (-1)^{a_1}$ $B_0 = (-1)^{b_0}$ $B_1 = (-1)^{b_1}$

Bell Inequality

 $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$ is called a **Bell Inequality***

Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: *no, not directly*, because A_0, A_1, B_0, B_1 cannot all be measured (only **one** $A_s B_t$ term can be measured)

Answer 2: *yes, indirectly*, by making many runs of this experiment: pick a random $st \in \{00, 01, 10, 11\}$ and then measure with M_s and M_t to get the value of $A_s B_t$. The *average* of $A_0 B_0$, $A_0 B_1$, $A_1 B_0$, $-A_1 B_1$ should be $\leq \frac{1}{2}$.

* also called CHSH Inequality

Violating the Bell Inequality

Two-qubit system in state $|\phi\rangle = |00\rangle - |11\rangle$

Applying rotations θ_A and θ_B yields: $\cos(\theta_A + \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B) (|01\rangle + |10\rangle)$ AB = +1

Define

 M_0 : rotate by $-\pi/16$ then measure M_1 : rotate by $+3\pi/16$ then measure

Then $A_0 B_0$, $A_0 B_1$, $A_1 B_0$, $-A_1 B_1$ all have expected value $\frac{1}{2}\sqrt{2}$, which *contradicts* the upper bound of $\frac{1}{2}$

56

Bell Inequality violation: summary

Assuming that quantum systems are governed by *local hidden variables* leads to the Bell inequality $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$

But this is *violated* in the case of Bell states (by a factor of $\sqrt{2}$)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

The Bell inequality and its violation – Computer Scientist's perspective

Bell's Inequality and its violation Part II: computer scientist's view:

Rules: 1. No communication after inputs received 2. They *win* if $a \oplus b = s \wedge t$

With classical resources, $\Pr[a \oplus b = s \land t] \le 0.75$

But, with prior entanglement state $|00\rangle - |11\rangle$, $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

The quantum strategy

- Alice and Bob start with entanglement $| \phi \rangle = |00\rangle |11\rangle$
- Alice: if s = 0 then rotate by $\theta_A = -\pi/16$ else rotate by $\theta_A = +3\pi/16$ and measure
- **Bob:** if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = +3\pi/16$ and measure

st = 11 $3\pi/8$ st = 01 or 10 $\pi/8$ $-\pi/8$ st = 00

 $\cos(\theta_{\rm A} - \theta_{\rm B}) (|00\rangle - |11\rangle) + \sin(\theta_{\rm A} - \theta_{\rm B}) (|01\rangle + |10\rangle)$

Success probability: $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

Nonlocality in operational terms

The magic square game

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: $\frac{8}{9}$ classical and 1 quantum

[Aravind, 2002]

(details omitted here) ⁶³