Assignment 2

Due date: 11:59pm, September 28, 2021

1. Control-target inversion. Recall the three Pauli matrices

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad Y=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right], \quad \text { and } \quad Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(a) [4 points] Prove that

where H is the Hadamard gate and the controlled- X gate is a CNOT gate.
(b) Optional bonus question [5 extra points] Give a 2×2 unitary U such that

(c) [4 points] Give a 2×2 unitary operation V such that

2. Rotation around an axis in three dimensions [12 points; 4 each]. Consider a 1 -qutrit space, with computational basis states $|0\rangle,|1\rangle,|2\rangle$.
(a) Write down a 3×3 matrix corresponding to rotating by angle $\pm \theta$ around the axis $|2\rangle$. ($\pm \theta$ because of the ambiguity about rotation direction; either direction is fine.)
(b) Write down a 3×3 matrix corresponding to rotating by angle $\pm \theta$ around the axis $\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$.
(c) Write down a 3×3 matrix corresponding to rotating by angle $\pm \theta$ around the axis $\frac{1}{\sqrt{3}}|0\rangle+\frac{1}{\sqrt{3}}|1\rangle+\frac{1}{\sqrt{3}}|2\rangle$.
3. Distinguishing between a set of "tetrahedral" states [10 points]. Consider the following four 2-qubit states (note that they are confined to a 3 -dimensional space):

$$
\begin{array}{ll}
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{3}}(|00\rangle+|01\rangle+|10\rangle) & \left|\psi_{2}\right\rangle=\frac{1}{\sqrt{3}}(-|00\rangle+|01\rangle-|10\rangle) \\
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{3}}(|00\rangle-|01\rangle-|10\rangle) & \left|\psi_{3}\right\rangle=\frac{1}{\sqrt{3}}(-|00\rangle-|01\rangle+|10\rangle)
\end{array}
$$

It's easy to check that the inner product between each pair is $-1 / 3$, and they can be viewed geometrically as corresponding to the vertices of a regular tetrahedron in three dimensions. Suppose one of these states is selected and sent to you, and your goal is to guess which state it is. Describe a procedure based on unitary operations and measurements on the two-qubit system that predicts the state with as high a worst-case success probability as you can achieve. (Your grade will depend on how close your procedure is to optimal.)

