Assignment 7

Due: 11:59pm, Thursday, November 11, 2021

1. Analysis of Grover's algorithm for some special densities of satisfying inputs [20 points; 5 each]. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (where $n \geq 2$). Recall that Grover's algorithm creates the initial state $H|00 \ldots 0\rangle|-\rangle$ and then iterates the operation $-H U_{0} H U_{f}$.
In each case below, determine the state after one single iteration of Grover's algorithm. Also, what's the probability that, if this state is measured, the outcome is a satisfying input to f ?
(a) The case where f has no satisfying inputs.
(b) The case where f has $\frac{1}{4} 2^{n}$ satisfying inputs.
(c) The case where f has $\frac{1}{2} 2^{n}$ satisfying inputs.
(d) The case where f has 2^{n} satisfying inputs.
2. Search problem when the density of inputs is $\frac{1}{2}$ [5 points]. Suppose you know that $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has $\frac{1}{2} 2^{n}$ satisfying inputs, but you have no idea where they are. Classically, you can find a satisfying input with high probability by making f-queries at random points; however, in order to be guaranteed to find a satisfying input requires many queries. Give a quantum algorithm that finds a satisfying input with one single f-query.
3. Searching for a secret state [5 points]. Suppose that $|\psi\rangle$ is a secret n-qubit state. You have no idea what this state is, and your goal is to create it. How? What you are given is two n-qubit unitary operations as black-boxes.
The first unitary B maps $\left|0^{n}\right\rangle$ to a state that has overlap $\frac{1}{2}$ with $|\psi\rangle$, in the sense that

$$
\begin{equation*}
\langle\psi| B\left|0^{n}\right\rangle=\frac{1}{2} . \tag{1}
\end{equation*}
$$

The second unitary U_{ψ} has the property that

$$
U_{\psi}|\phi\rangle=\left\{\begin{array}{cl}
-|\phi\rangle & \text { if }|\phi\rangle=|\psi\rangle \tag{2}\\
|\phi\rangle & \text { if }\langle\phi \mid \psi\rangle=0
\end{array}\right.
$$

(This is equivalent to saying that $U_{\psi}=I-2|\psi\rangle\langle\psi|$.)
Show how to construct an n-qubit quantum circuit that maps the state $\left|0^{n}\right\rangle$ to the state $|\psi\rangle$, where the circuit can use U_{ψ}, B, and B^{*} operations as its gates, as well as additional unitary operations that you can choose. ${ }^{1}$
If you get stuck, there's a hint on the next page ... but first try this without the hint.

[^0]
Hint for question 3 (first try without looking at this)

Consider the ideas behind Grover's algorithm, in the case where f has $\frac{1}{4} 2^{n}$ satisfying inputs (as in question 1(b)).
You are already given one reflection, U_{ψ}.
Can you construct a useful second reflection, using B, B^{*}, and a unitary operation of your own choosing?

[^0]: ${ }^{1}$ Of course, the additional unitaries of your choosing cannot depend on what $|\psi\rangle$ is, which is unknown to you.

