
Introduction to Quantum Information Processing (Fall 2022) QIC710/CS768/CO681/PHYS767/AMATH871/PMATH871

Assignment 3 [question 3(c) revised]
Due date: 11:59pm, October 27, 2022

1. A simple collision-finding problem [15 points]. Call f : {0, 1}2 → {0, 1} a two-
to-one function if there are exactly two a ∈ {0, 1}2 such that f(a) = 0 and exactly two
a ∈ {0, 1}2 such that f(a) = 1. Consider the problem where one is given such a function
as a black-box and the goal is to find a collision, which is a pair a, b ∈ {0, 1}2 such that
a ̸= b and f(a) = f(b).

(a) [3 points] How many queries to f does a classical algorithm require to find a collision?
The algorithm must always succeed (the error probability for any run should be 0).

(b) [12 points] Show how to solve this problem by a quantum algorithm that makes one
single query to f . The algorithm must always succeed (the error probability for any
run should be 0).

2. Control-target inversion for mod m registers [15 points]. Consider a scenario
where the registers are m-dimensional (m ≥ 2). Let the computational basis states
be |0⟩, |1⟩, . . . , |m − 1⟩. Define the two-register addition (mod m) gate as the unitary
operation that acts on the computational basis states as

|a⟩ • |a⟩

|b⟩ |b+ a mod m⟩

(where a, b ∈ Zm). In the above circuit diagram, each wire represents an m-dimensional
system (a qubit in the special case where m = 2).

(a) [9 points] Prove that, for any m ≥ 2, the following circuit equivalence holds:

Fm • F ∗
m

≡
F ∗
m Fm •

where Fm is the m×m Fourier transform.

(b) [6 points] Consider the following circuit diagram where the Fm and F ∗
m are arranged

in a slightly different way:

F ∗
m • Fm

F ∗
m Fm

Give a simple expression for what the circuit does to computational basis states
|a⟩|b⟩ (for a, b ∈ Zm). There is a very simple expression.
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3. Computing Fpq in terms of Fp and Fq [15 points]. Our construction of F2n is in terms
of n computations of F2 (Hadamard gates) with phase adjustment gates inserted between
these F2 gates. For the case where m = p1p2 · · · pk, where p1, p2, . . . , pk are distinct
primes, there is a construction of Fm in terms of Fp1 , Fp2 , . . . , Fpm that doesn’t require
any phase adjustments. The idea is that Fm is the same matrix as Fp1 ⊗ Fp2 ⊗ · · · ⊗ Fpk

up to a reordering of the rows and columns. Here we explore a simple case of this.

(a) [3 points] Write out the 6 × 6 matrix of F6, the 3 × 3 matrix of F3, and the 2 × 2
matrix of F2.

(b) [4] Write out the 6× 6 matrix of F2 ⊗ F3.

(c) [8] Show that there exist 6× 6 permutation matrices P and Q such that

F6 = P (F2 ⊗ F3)Q, (1)

where a permutation a matrix has exactly one 1 in each row, and in each column,
and all other entries are 0.

(In fact, this generalizes to Fm1m2 = P (Fm1 ⊗ Fm2)Q whenever m1 and m2 are
relatively prime, but you are not asked to show this more general result.)

4. Computing the “square root” of a quantum circuit [15 points]. Suppose that
you are given a quantum circuit acting on n qubits consisting of m 2-qubit gates. It
corresponds to some 2n×2n unitary matrix U , but, in general, there is no way of efficiently
calculating all the entries of U from the circuit. Suppose that we want to construct another
circuit that computes a square root of U (i.e., a unitary V such that V 2 = U). You can
check that just taking the square root of each individual gate in the original circuit U
does not yield such a V .

We will use a clever trick involving the eigenvalue-estimation algorithm to do this effi-
ciently. We just consider a simplified case where we are promised that all the eigenvalues
of U are in {+1,−1}; however, the basic approach can be extended to the arbitrary case.

If the eigenvalues of U are assumed to be in {+1,−1}, there exists a unitary matrix W
such that U = W ∗DW , where D is a diagonal matrix of the form

D =


(−1)d0 0 · · · 0

0 (−1)d1 · · · 0
...

...
. . .

...
0 0 · · · (−1)d2n−1

 (2)

for some d0, d1, . . . , d2n−1 ∈ {0, 1}. It’s easy to see that a square root of D is
i d0 0 · · · 0
0 i d1 · · · 0
...

...
. . .

...
0 0 · · · i d2n−1

 , (3)

where i =
√
−1.
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Now, assume that we’re given a circuit computing U with m 2-qubit gates and are
promised that the eigenvalues of U are all in {+1,−1}. To be clear, although the afore-
mentioned W and D exist mathematically, the circuit for U that we’re given is not in the
form of a composition separate circuits for W ∗, D, W ; our circuit is just some jumble of
2-qubit gates.

(a) [3 points] Explain how, given a circuit for U consisting of m 2-qubit gates, we can
construct a circuit for a controlled-U and a controlled-U∗, where each consists of
m 3-qubit gates. (These could be converted to circuits consisting of O(m) 2-qubit
gates, but you are not asked to show that.)

(b) [3 points] Prove that, for all k ∈ {0, 1}n ≡ {0, 1, . . . , 2n − 1}, the vector W ∗|k⟩ is an
eigenvector of U with eigenvalue (−1)dk . (W is as explained on the previous page.)

(c) [6 points] Consider this quantum circuit that we’ll refer to as C (where the 1-qubit
gate G is yet to be determined):

H • H G H • H

U U∗

Notice that this circuit begins as a circuit for phase estimation, followed by a 1-qubit
gate G, followed by the inverse of the phase estimation circuit. Of course, if we were
to set G = I then the above circuit would just compute the identity operation on
n+ 1 qubits. Choosing the right setting for G will make the circuit interesting.

Show how to set the 1-qubit gate G so that, for all k ∈ {0, 1, . . . , 2n − 1},

C
(
|0⟩ ⊗ (W ∗|k⟩)

)
= |0⟩ ⊗ (i dk W ∗|k⟩) (4)

(where i =
√
−1 ). Include an explanation of why your choice of G works.

(d) [3 points] Explain why Eq. (4) from part (c) implies that, for some unitary V such
that V 2 = U , it holds that, for all n-qubit states |ψ⟩,

C
(
|0⟩ ⊗ |ψ⟩

)
= |0⟩ ⊗

(
V |ψ⟩). (5)

5. (This is an optional question for bonus credit)
Fully identifying a function f : {0, 1} → {0, 1} [6 points]. Recall that, in Deutsch’s
problem, we are given a black-box for an arbitrary function f : {0, 1} → {0, 1}, but we are
not required to fully identify which of the four possible functions f is. Here we consider
the problem where the goal is to correctly guess which of the four functions f is.

It’s easy to deduce that, with a single classical f -query, the best success probability
achievable is 1

2
.

Give a quantum algorithm that makes a single f -query and correctly guesses f with
success probability 3

4
. Assume that the f is a worst-case instance for your algorithm.

(Warning: this might be more challenging than the two previous bonus questions.)
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