Introduction to Quantum Information Processing (Fall 2022)

Assignment 3 [question 3(c) revised] Due date: 11:59pm, October 27, 2022

- 1. A simple collision-finding problem [15 points]. Call $f : \{0,1\}^2 \to \{0,1\}$ a twoto-one function if there are exactly two $a \in \{0,1\}^2$ such that f(a) = 0 and exactly two $a \in \{0,1\}^2$ such that f(a) = 1. Consider the problem where one is given such a function as a black-box and the goal is to find a *collision*, which is a pair $a, b \in \{0,1\}^2$ such that $a \neq b$ and f(a) = f(b).
 - (a) [3 points] How many queries to f does a *classical* algorithm require to find a collision? The algorithm must always succeed (the error probability for any run should be 0).
 - (b) [12 points] Show how to solve this problem by a *quantum* algorithm that makes one single query to f. The algorithm must always succeed (the error probability for any run should be 0).
- 2. Control-target inversion for mod m registers [15 points]. Consider a scenario where the registers are m-dimensional $(m \ge 2)$. Let the computational basis states be $|0\rangle, |1\rangle, \ldots, |m-1\rangle$. Define the two-register *addition* (mod m) gate as the unitary operation that acts on the computational basis states as

(where $a, b \in \mathbb{Z}_m$). In the above circuit diagram, each wire represents an *m*-dimensional system (a qubit in the special case where m = 2).

(a) [9 points] Prove that, for any $m \ge 2$, the following circuit equivalence holds:

where F_m is the $m \times m$ Fourier transform.

(b) [6 points] Consider the following circuit diagram where the F_m and F_m^* are arranged in a slightly different way:

Give a simple expression for what the circuit does to computational basis states $|a\rangle|b\rangle$ (for $a, b \in \mathbb{Z}_m$). There is a very simple expression.

- 3. Computing F_{pq} in terms of F_p and F_q [15 points]. Our construction of F_{2^n} is in terms of *n* computations of F_2 (Hadamard gates) with phase adjustment gates inserted between these F_2 gates. For the case where $m = p_1 p_2 \cdots p_k$, where p_1, p_2, \ldots, p_k are distinct primes, there is a construction of F_m in terms of $F_{p_1}, F_{p_2}, \ldots, F_{p_m}$ that doesn't require any phase adjustments. The idea is that F_m is the same matrix as $F_{p_1} \otimes F_{p_2} \otimes \cdots \otimes F_{p_k}$ up to a reordering of the rows and columns. Here we explore a simple case of this.
 - (a) [3 points] Write out the 6×6 matrix of F_6 , the 3×3 matrix of F_3 , and the 2×2 matrix of F_2 .
 - (b) [4] Write out the 6×6 matrix of $F_2 \otimes F_3$.
 - (c) [8] Show that there exist 6×6 permutation matrices P and Q such that

$$F_6 = P(F_2 \otimes F_3)Q,\tag{1}$$

where a permutation a matrix has exactly one 1 in each row, and in each column, and all other entries are 0.

(In fact, this generalizes to $F_{m_1m_2} = P(F_{m_1} \otimes F_{m_2})Q$ whenever m_1 and m_2 are relatively prime, but you are not asked to show this more general result.)

4. Computing the "square root" of a quantum circuit [15 points]. Suppose that you are given a quantum circuit acting on n qubits consisting of m 2-qubit gates. It corresponds to some $2^n \times 2^n$ unitary matrix U, but, in general, there is no way of efficiently calculating all the entries of U from the circuit. Suppose that we want to construct another circuit that computes a square root of U (i.e., a unitary V such that $V^2 = U$). You can check that just taking the square root of each individual gate in the original circuit Udoes not yield such a V.

We will use a clever trick involving the eigenvalue-estimation algorithm to do this efficiently. We just consider a simplified case where we are *promised* that all the eigenvalues of U are in $\{+1, -1\}$; however, the basic approach can be extended to the arbitrary case.

If the eigenvalues of U are assumed to be in $\{+1, -1\}$, there exists a unitary matrix W such that $U = W^*DW$, where D is a diagonal matrix of the form

$$D = \begin{pmatrix} (-1)^{d_0} & 0 & \cdots & 0 \\ 0 & (-1)^{d_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (-1)^{d_{2^n-1}} \end{pmatrix}$$
(2)

for some $d_0, d_1, \ldots, d_{2^n-1} \in \{0, 1\}$. It's easy to see that a square root of D is

$$\begin{pmatrix} i^{d_0} & 0 & \cdots & 0 \\ 0 & i^{d_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & i^{d_{2^n-1}} \end{pmatrix},$$
(3)

where $i = \sqrt{-1}$.

Now, assume that we're given a circuit computing U with m 2-qubit gates and are promised that the eigenvalues of U are all in $\{+1, -1\}$. To be clear, although the aforementioned W and D exist mathematically, the circuit for U that we're given is not in the form of a composition separate circuits for W^* , D, W; our circuit is just some jumble of 2-qubit gates.

- (a) [3 points] Explain how, given a circuit for U consisting of m 2-qubit gates, we can construct a circuit for a controlled-U and a controlled- U^* , where each consists of m 3-qubit gates. (These could be converted to circuits consisting of O(m) 2-qubit gates, but you are not asked to show that.)
- (b) [3 points] Prove that, for all $k \in \{0, 1\}^n \equiv \{0, 1, \dots, 2^n 1\}$, the vector $W^* | k \rangle$ is an eigenvector of U with eigenvalue $(-1)^{d_k}$. (W is as explained on the previous page.)
- (c) [6 points] Consider this quantum circuit that we'll refer to as C (where the 1-qubit gate G is yet to be determined):

Notice that this circuit begins as a circuit for phase estimation, followed by a 1-qubit gate G, followed by the inverse of the phase estimation circuit. Of course, if we were to set G = I then the above circuit would just compute the identity operation on n + 1 qubits. Choosing the right setting for G will make the circuit interesting. Show how to set the 1-qubit gate G so that, for all $k \in \{0, 1, \ldots, 2^n - 1\}$,

$$C(|0\rangle \otimes (W^*|k\rangle)) = |0\rangle \otimes (i^{d_k} W^*|k\rangle)$$
(4)

(where $i = \sqrt{-1}$). Include an explanation of why your choice of G works.

(d) [3 points] Explain why Eq. (4) from part (c) implies that, for some unitary V such that $V^2 = U$, it holds that, for all *n*-qubit states $|\psi\rangle$,

$$C(|0\rangle \otimes |\psi\rangle) = |0\rangle \otimes (V|\psi\rangle).$$
(5)

5. (This is an optional question for bonus credit)

Fully identifying a function $f : \{0, 1\} \rightarrow \{0, 1\}$ [6 points]. Recall that, in Deutsch's problem, we are given a black-box for an arbitrary function $f : \{0, 1\} \rightarrow \{0, 1\}$, but we are not required to fully identify which of the four possible functions f is. Here we consider the problem where the goal is to correctly guess which of the four functions f is.

It's easy to deduce that, with a single *classical* f-query, the best success probability achievable is $\frac{1}{2}$.

Give a quantum algorithm that makes a single f-query and correctly guesses f with success probability $\frac{3}{4}$. Assume that the f is a worst-case instance for your algorithm.

(Warning: this might be more challenging than the two previous bonus questions.)