## Assignment 3 [question 3(c) revised]

## Due date: 11:59pm, October 27, 2022

1. A simple collision-finding problem [15 points]. Call $f:\{0,1\}^{2} \rightarrow\{0,1\}$ a two-to-one function if there are exactly two $a \in\{0,1\}^{2}$ such that $f(a)=0$ and exactly two $a \in\{0,1\}^{2}$ such that $f(a)=1$. Consider the problem where one is given such a function as a black-box and the goal is to find a collision, which is a pair $a, b \in\{0,1\}^{2}$ such that $a \neq b$ and $f(a)=f(b)$.
(a) [3 points] How many queries to $f$ does a classical algorithm require to find a collision? The algorithm must always succeed (the error probability for any run should be 0 ).
(b) [12 points] Show how to solve this problem by a quantum algorithm that makes one single query to $f$. The algorithm must always succeed (the error probability for any run should be 0).
2. Control-target inversion for mod $m$ registers [15 points]. Consider a scenario where the registers are $m$-dimensional $(m \geq 2)$. Let the computational basis states be $|0\rangle,|1\rangle, \ldots,|m-1\rangle$. Define the two-register addition ( $\bmod m$ ) gate as the unitary operation that acts on the computational basis states as

(where $a, b \in \mathbb{Z}_{m}$ ). In the above circuit diagram, each wire represents an $m$-dimensional system (a qubit in the special case where $m=2$ ).
(a) [ 9 points] Prove that, for any $m \geq 2$, the following circuit equivalence holds:

where $F_{m}$ is the $m \times m$ Fourier transform.
(b) [6 points] Consider the following circuit diagram where the $F_{m}$ and $F_{m}^{*}$ are arranged in a slightly different way:


Give a simple expression for what the circuit does to computational basis states $|a\rangle|b\rangle$ (for $a, b \in \mathbb{Z}_{m}$ ). There is a very simple expression.
3. Computing $F_{p q}$ in terms of $F_{p}$ and $F_{q}$ [ 15 points]. Our construction of $F_{2^{n}}$ is in terms of $n$ computations of $F_{2}$ (Hadamard gates) with phase adjustment gates inserted between these $F_{2}$ gates. For the case where $m=p_{1} p_{2} \cdots p_{k}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, there is a construction of $F_{m}$ in terms of $F_{p_{1}}, F_{p_{2}}, \ldots, F_{p_{m}}$ that doesn't require any phase adjustments. The idea is that $F_{m}$ is the same matrix as $F_{p_{1}} \otimes F_{p_{2}} \otimes \cdots \otimes F_{p_{k}}$ up to a reordering of the rows and columns. Here we explore a simple case of this.
(a) [3 points] Write out the $6 \times 6$ matrix of $F_{6}$, the $3 \times 3$ matrix of $F_{3}$, and the $2 \times 2$ matrix of $F_{2}$.
(b) [4] Write out the $6 \times 6$ matrix of $F_{2} \otimes F_{3}$.
(c) [8] Show that there exist $6 \times 6$ permutation matrices $P$ and $Q$ such that

$$
\begin{equation*}
F_{6}=P\left(F_{2} \otimes F_{3}\right) Q, \tag{1}
\end{equation*}
$$

where a permutation a matrix has exactly one 1 in each row, and in each column, and all other entries are 0 .
(In fact, this generalizes to $F_{m_{1} m_{2}}=P\left(F_{m_{1}} \otimes F_{m_{2}}\right) Q$ whenever $m_{1}$ and $m_{2}$ are relatively prime, but you are not asked to show this more general result.)
4. Computing the "square root" of a quantum circuit [ 15 points]. Suppose that you are given a quantum circuit acting on $n$ qubits consisting of $m$ 2-qubit gates. It corresponds to some $2^{n} \times 2^{n}$ unitary matrix $U$, but, in general, there is no way of efficiently calculating all the entries of $U$ from the circuit. Suppose that we want to construct another circuit that computes a square root of $U$ (i.e., a unitary $V$ such that $V^{2}=U$ ). You can check that just taking the square root of each individual gate in the original circuit $U$ does not yield such a $V$.
We will use a clever trick involving the eigenvalue-estimation algorithm to do this efficiently. We just consider a simplified case where we are promised that all the eigenvalues of $U$ are in $\{+1,-1\}$; however, the basic approach can be extended to the arbitrary case. If the eigenvalues of $U$ are assumed to be in $\{+1,-1\}$, there exists a unitary matrix $W$ such that $U=W^{*} D W$, where $D$ is a diagonal matrix of the form

$$
D=\left(\begin{array}{cccc}
(-1)^{d_{0}} & 0 & \cdots & 0  \tag{2}\\
0 & (-1)^{d_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (-1)^{d_{2^{n}-1}}
\end{array}\right)
$$

for some $d_{0}, d_{1}, \ldots, d_{2^{n}-1} \in\{0,1\}$. It's easy to see that a square root of $D$ is

$$
\left(\begin{array}{cccc}
i^{d_{0}} & 0 & \cdots & 0  \tag{3}\\
0 & i^{d_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & i^{d_{2^{n}-1}}
\end{array}\right),
$$

where $i=\sqrt{-1}$.

Now, assume that we're given a circuit computing $U$ with $m$ 2-qubit gates and are promised that the eigenvalues of $U$ are all in $\{+1,-1\}$. To be clear, although the aforementioned $W$ and $D$ exist mathematically, the circuit for $U$ that we're given is not in the form of a composition separate circuits for $W^{*}, D, W$; our circuit is just some jumble of 2-qubit gates.
(a) [3 points] Explain how, given a circuit for $U$ consisting of $m$ 2-qubit gates, we can construct a circuit for a controlled- $U$ and a controlled- $U^{*}$, where each consists of $m 3$-qubit gates. (These could be converted to circuits consisting of $O(m) 2$-qubit gates, but you are not asked to show that.)
(b) [3 points] Prove that, for all $k \in\{0,1\}^{n} \equiv\left\{0,1, \ldots, 2^{n}-1\right\}$, the vector $W^{*}|k\rangle$ is an eigenvector of $U$ with eigenvalue $(-1)^{d_{k}}$. ( $W$ is as explained on the previous page.)
(c) [6 points] Consider this quantum circuit that we'll refer to as $C$ (where the 1-qubit gate $G$ is yet to be determined):


Notice that this circuit begins as a circuit for phase estimation, followed by a 1-qubit gate $G$, followed by the inverse of the phase estimation circuit. Of course, if we were to set $G=I$ then the above circuit would just compute the identity operation on $n+1$ qubits. Choosing the right setting for $G$ will make the circuit interesting.
Show how to set the 1 -qubit gate $G$ so that, for all $k \in\left\{0,1, \ldots, 2^{n}-1\right\}$,

$$
\begin{equation*}
C\left(|0\rangle \otimes\left(W^{*}|k\rangle\right)\right)=|0\rangle \otimes\left(i^{d_{k}} W^{*}|k\rangle\right) \tag{4}
\end{equation*}
$$

(where $i=\sqrt{-1}$ ). Include an explanation of why your choice of $G$ works.
(d) [3 points] Explain why Eq. (4) from part (c) implies that, for some unitary $V$ such that $V^{2}=U$, it holds that, for all $n$-qubit states $|\psi\rangle$,

$$
\begin{equation*}
C(|0\rangle \otimes|\psi\rangle)=|0\rangle \otimes(V|\psi\rangle) \tag{5}
\end{equation*}
$$

## 5. (This is an optional question for bonus credit)

Fully identifying a function $f:\{0,1\} \rightarrow\{0,1\}$ [6 points]. Recall that, in Deutsch's problem, we are given a black-box for an arbitrary function $f:\{0,1\} \rightarrow\{0,1\}$, but we are not required to fully identify which of the four possible functions $f$ is. Here we consider the problem where the goal is to correctly guess which of the four functions $f$ is.

It's easy to deduce that, with a single classical $f$-query, the best success probability achievable is $\frac{1}{2}$.
Give a quantum algorithm that makes a single $f$-query and correctly guesses $f$ with success probability $\frac{3}{4}$. Assume that the $f$ is a worst-case instance for your algorithm.
(Warning: this might be more challenging than the two previous bonus questions.)

