Introduction to Quantum Information Processing (Fall 2020)

QIC710/CS768/CO681/PHYS767/AMATH871/PMATH871

Assignment 6 Due date: 11:59pm, <u>October 30</u>, 2020

1. Quantum Fourier transform [20 points]. Let F_m denote the *m*-dimensional Fourier transform

$$F_m = \frac{1}{\sqrt{m}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \cdots & \omega^{m-1}\\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(m-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{m-1} & \omega^{2(m-1)} & \cdots & \omega^{(m-1)^2} \end{bmatrix}, \quad \text{where } \omega = e^{2\pi i/m} \ (i = \sqrt{-1}).$$

- (a) [10 points] Prove that F_m is unitary.
- (b) [10 points] Whenever m > 2, $(F_m)^2 \neq I$; however, $(F_m)^2$ maps computational basis states to computational basis states. For $a \in \mathbb{Z}_m$, what computational basis state is $(F_m)^2 |a\rangle$? Give a simple expression and justify your answer.
- 2. Superposition of eigenvectors in phase estimation algorithm [10 points]. This question is about what happens when the quantum algorithm for phase-estimation is applied to a superposition of two eigenvectors. Let U be an n-qubit unitary and let W be a multiplicity-controlled-U gate with ℓ control qubits. That is, for all $x \in \{0,1\}^{\ell}$, $y \in \{0,1\}^n$, $W|x\rangle|y\rangle = |x\rangle U^x|y\rangle$.

Let $|\psi_1\rangle$, $|\psi_2\rangle$ be two orthogonal eigenvectors of U, with respective eigenvalues $e^{2\pi i\phi_1}$ and $e^{2\pi i\phi_2}$, where $\phi_1 = a/2^{\ell}$ and $\phi_2 = b/2^{\ell}$ $(a, b \in \mathbb{Z}_{2^{\ell}} \equiv \{0, 1\}^{\ell})$.

We know from the exact case of the Phase-Estimation Algorithm that

$$(F_{2^{\ell}}^* \otimes I)W(H^{\otimes \ell} \otimes I)|0^{\ell}\rangle|\psi_1\rangle = |a\rangle|\psi_1\rangle \tag{1}$$

$$(F_{2^{\ell}}^* \otimes I)W(H^{\otimes \ell} \otimes I)|0^{\ell}\rangle|\psi_2\rangle = |b\rangle|\psi_2\rangle.$$
(2)

Let $\alpha_1, \alpha_2 \in \mathbb{C}$ be such that $|\alpha_1|^2 + |\alpha_2|^2 = 1$. Describe the result of a measurement in the computational basis of the first ℓ qubits of the state

$$(F_{2^{\ell}}^* \otimes I)W(H^{\otimes \ell} \otimes I)|0^{\ell}\rangle(\alpha_1|\psi_1\rangle + \alpha_2|\psi_2\rangle).$$
(3)

(Hint: The answer and justification are simple.)