Assignment 6

Due date: 11:59pm, October 30, 2020

1. Quantum Fourier transform [20 points]. Let F_{m} denote the m-dimensional Fourier transform

$$
F_{m}=\frac{1}{\sqrt{m}}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{m-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(m-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{m-1} & \omega^{2(m-1)} & \cdots & \omega^{(m-1)^{2}}
\end{array}\right], \quad \text { where } \omega=e^{2 \pi i / m}(i=\sqrt{-1}) .
$$

(a) [10 points] Prove that F_{m} is unitary.
(b) [10 points] Whenever $m>2,\left(F_{m}\right)^{2} \neq I$; however, $\left(F_{m}\right)^{2}$ maps computational basis states to computational basis states. For $a \in \mathbb{Z}_{m}$, what computational basis state is $\left(F_{m}\right)^{2}|a\rangle$? Give a simple expression and justify your answer.
2. Superposition of eigenvectors in phase estimation algorithm [10 points]. This question is about what happens when the quantum algorithm for phase-estimation is applied to a superposition of two eigenvectors. Let U be an n-qubit unitary and let W be a multiplicity-controlled- U gate with ℓ control qubits. That is, for all $x \in\{0,1\}^{\ell}$, $y \in\{0,1\}^{n}, W|x\rangle|y\rangle=|x\rangle U^{x}|y\rangle$.
Let $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ be two orthogonal eigenvectors of U, with respective eigenvalues $e^{2 \pi i \phi_{1}}$ and $e^{2 \pi i \phi_{2}}$, where $\phi_{1}=a / 2^{\ell}$ and $\phi_{2}=b / 2^{\ell}\left(a, b \in \mathbb{Z}_{2^{\ell}} \equiv\{0,1\}^{\ell}\right)$.

We know from the exact case of the Phase-Estimation Algorithm that

$$
\begin{align*}
\left(F_{2^{\ell}}^{*} \otimes I\right) W\left(H^{\otimes \ell} \otimes I\right)\left|0^{\ell}\right\rangle\left|\psi_{1}\right\rangle & =|a\rangle\left|\psi_{1}\right\rangle \tag{1}\\
\left(F_{2^{\ell}}^{*} \otimes I\right) W\left(H^{\otimes \ell} \otimes I\right)\left|0^{\ell}\right\rangle\left|\psi_{2}\right\rangle & =|b\rangle\left|\psi_{2}\right\rangle . \tag{2}
\end{align*}
$$

Let $\alpha_{1}, \alpha_{2} \in \mathbb{C}$ be such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$. Describe the result of a measurement in the computational basis of the first ℓ qubits of the state

$$
\begin{equation*}
\left(F_{2^{\ell}}^{*} \otimes I\right) W\left(H^{\otimes \ell} \otimes I\right)\left|0^{\ell}\right\rangle\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right) . \tag{3}
\end{equation*}
$$

(Hint: The answer and justification are simple.)

