Assignment 10

Due date: 11:59pm, December 7 (Monday), 2020

1. Two reflections is a rotation [12 points].

For $\theta \in [0, \pi]$, consider the orthonormal basis

$$|\psi_{\theta}\rangle = \cos\theta|0\rangle + \sin\theta|1\rangle$$
 and $|\psi_{\theta}^{\perp}\rangle = -\sin\theta|0\rangle + \cos\theta|1\rangle$. (1)

Define the reflections $R_1 = |\psi_{\theta_1}\rangle\langle\psi_{\theta_1}| - |\psi_{\theta_1}^{\perp}\rangle\langle\psi_{\theta_1}^{\perp}|$ and $R_2 = |\psi_{\theta_2}\rangle\langle\psi_{\theta_2}| - |\psi_{\theta_2}^{\perp}\rangle\langle\psi_{\theta_2}^{\perp}|$. Prove that R_1R_2 is a rotation by angle $2(\theta_1 - \theta_2)$.

2. Searching when the fraction of marked items is 1/4 [18 points].

Suppose that $f: \{0,1\}^n \to \{0,1\}$ has the property that, for exactly $\frac{1}{4}2^n$ of the values of $x \in \{0,1\}^n$, f(x) = 1. Let the goal be to find such an $x \in \{0,1\}^n$ such f(x) = 1. Note that there's a simple classical algorithm that finds such an x with high probability with few queries (because a random query succeeds with probability 1/4). What if we want to solve this problem exactly (i.e., with error probability 0)?

- (a) [4] Show that, for any classical algorithm, the number of f-queries required to solve this problem exactly is exponential in n.
- (b) [14] Show that there is a quantum algorithm that makes one single f-query and is guaranteed to find an $x \in \{0,1\}^n$ such f(x) = 1. (Hint: consider what a single iteration of Grover's algorithm does.)

3. (This is an optional question for bonus credit) Searching when the fraction of marked items is 1/2? [8 points].

This is the same as part 2(b), but with the assumption that f has the property that, for exactly $\frac{1}{2}2^n$ of the values of $x \in \{0,1\}^n$, f(x) = 1. Can the x still be found exactly with one f-query? Either give a quantum algorithm that solves this problem with a single f-query or prove that none exists.