Assignment 1

Due date: 11:59pm, September 17, 2020

1. Distinguishing between pairs of qubit states [15 points; 5 for each part]. In each case, one of the two given states is randomly selected (probability $1 / 2$ each) and given to you. You are not told which one it is. Your goal is to guess which state was selected with as high a probability as you can achieve. Describe your distinguishing procedure as a unitary operation followed by a measurement (in the computational basis) and give its success probability. (Your assigned grade will depend on how close your distinguishing procedure is to optimal.)
(a) $|0\rangle$ and $|+\rangle \quad\left(\right.$ recall that $\left.|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)$.
(b) $|0\rangle$ and $-\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$.
(c) $\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle$ and $\frac{1}{\sqrt{2}}|0\rangle+\frac{-i}{\sqrt{2}}|1\rangle \quad$ (where $i=\sqrt{-1}$).
2. Product states versus entangled states [15 points; 5 each]. In each case, either express the 2-qubit state as a tensor product of two 1-qubit states or prove that it cannot be expressed this way:
(a) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(b) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle-\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(c) $\frac{1}{\sqrt{3}}|00\rangle+\frac{1}{\sqrt{3}}|01\rangle+\frac{1}{\sqrt{3}}|10\rangle$
3. (This is an optional question for bonus credit)

Classical bit strategies for communicating a trit [8 points].
In Lecture 1, slides 11-13, we consider the problem where Alice receives a trit $a \in\{0,1,2\}$ and the goal is to communicate this trit to Bob. Here we consider the case where Alice is allowed to send (only) one classical bit to Bob. Both Alice and Bob can make random decisions in their strategies; however, we assume that they have separate random sources so their randomness is uncorrelated. In the lecture, we saw a strategy whose worst-case success is probability is $1 / 2$. What's the highest possible worst-case success probability achievable by a classical bit strategy? Any answer must be justified.
(In the next assignment, we will continue this line, with the corresponding question about qubit strategies.)

