QIC710/CS768/C0O681/PH767/AMS71 Introduction to Quantum Information Processing (F19)

Assignment 5
Due date: November 21, 2019

1. Some properties of Shor’s 9-qubit code [12 points, 4 each]. Here we consider
Pauli errors, which are 9-fold tensor products of {/, X, Z, Y}, and the weight of an error
is the number of components that are not I.

(a) The Shor code can correct for the set of errors of weight < 1. For this error set, does
the error syndrome uniquely determine the error? Either way, justify your answer.

(b) Note that the Shor code corrects a larger set of errors than those of weight < 1. For
example, it corrects I @ X @ I @ X @ I ® I ® I ® I ® X (because this is one X error
in each of the three blocks and hence corrected by the “inner code”). On the other
hand, it does not correct the error X @ X R I I QIR TR IR X I.

There are 4° = 262,144 potential errors. The code corrects: 1 error of weight 0
(namely, I@ IR I®IQRIRI®I®I®I); 27 errors of weight 1 (X, Y, or Z in
nine possible positions). How many errors of weight 2 does it correct?

(c) What is the maximum weight of error that the Shor code corrects? Give an example
of such an error.

2. Hadamard transform on uniform superposition of affine linear space [12 points;
6 each|. Let C' be any linear subspace of {0,1}" (viewed as a vector space over Zs).
Define C*+ = {x € {0,1}" : such that x -y = 0 for all y € C'}, where we define x -y =
r1y1 + - - + Ty, mod 2.

(a) Prove that H®"<\/|? Z| )
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(b) Prove that, for any z € {0,1}", H®”< |z + ) = 1)Y%|y).
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Note: Since part (b) subsumes part (a), a correct solution to (b) alone results in full
marks for (a). The purpose of part (a) is as a warm-up to part (b).

3. Is the transpose a valid quantum operation? [14 points]. Here we consider an
operation on qubits that we denote by A, defined as A(p) = p’ for each density matrix p
(where p” is the transpose of T').

(a) [4] Give an example of a one-qubit pure state |¢)) such that A([¢)(¢|) is a pure state
orthogonal to [¢).
(b) [5] Prove that there is no unitary operation U such that A(p) = UpU" for all p.

(c) [5] Prove that there is no qubit-to-qubit quantum channel y such such that x(p) =
A(p) for all p. (Note: part (c) subsumes part (b), so a correct solution to (c) alone
results in full marks for (b).)



4. Searching with good guessing algorithm [12 points, 6 each]. Consider the search
problem where, we are given a black box computing f : {0,1}" — {0, 1}, and the goal is
to find a satisfying input to f (i.e., an x € {0,1}" such that f(z) = 1). But now suppose
that, in addition to the black box for f, we may use a probabilistic “guessing procedure”
g that produces a random x € {0, 1}" distributed as Pr[f(z) = 1] = p,, where

S p—1/4 (1)

z€{0,1}™
f(z)=1

If g is run multiple times, it produces an independent sample from the same probability
distribution for each run.

Intuitively, if © € {0,1}" is repeatedly sampled using ¢, until an x such that f(z) = 1
occurs then the expected number of rounds (and calls to f) will be 4 (since there is a
success probability 1/4 per round).

(a) Let e > 0 be given and suppose that we have the aforementioned guessing procedure
g at our disposal. How many times must f be queried to produce a satisfying
assignment to f with probability at least 1 — €?

(b) Now, suppose that we are given a “quantum guessing procedure”, which is an n-
qubit unitary operation U,, with the following property. For each = € {0,1}",
define p, = [(x|Uy|0™)|* (so p, is the probability of outcome z occuring if state
U,|0™) is measured in the computational basis). Then the property of U, is that the
probabilities p, (z € {0,1}") satisfy the above equation, Eq. (1). Show how to find
a satisfying assignment to f by making just one query to f, assuming that we have
Uy and U;f at our disposal. (Note: as usual, a query to f is the unitary operation
that, for all x € {0,1}" and b € {0,1}, maps |z)|b) to |z)|f(x) ® b).)

5. Characterizing %|00) + %|11> [10 points, 5 each]. Suppose that Alice and Bob are
each given one qubit of \/Li 100) + \/Li |11) and either they both measure in the computational

basis or they both measure in the Hadamard basis. Let a,b € {0,1} be their respective
measurement outcomes. Note than a = b holds in either case (computational basis or
Hadamard basis).

(a) Show that %\OO} + %]11) is the only two qubit state with the above property (i.e.,
that the measurement outcomes of both of the above procedures satisfies a = b).
(b) Consider the variant of the above: either Alice measures in the computational basis

and Bob in the Hadamard basis or vice versa. What are all the states that result in
a = b in both cases?



