QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F19)

Assignment 1
 Due date: September 19, 2019

1. Simple operations on quantum states [12 points; $\mathbf{3}$ for each part]. Let $\theta \in[0,2 \pi]$. In each case, describe the resulting state, where R_{θ} is the 2×2 rotation

$$
R_{\theta}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \tag{1}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

(a) Apply R_{θ} to the qubit in state $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$.
(b) Apply R_{θ} to the first qubit of state $\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle$.
(c) Apply R_{θ} to both qubits of state $\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle$.
(d) Apply $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right)$ to both qubits of state $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle . \quad(i=\sqrt{-1})$
2. Distinguishing between pairs of quantum states [12 points; 4 each]. In each case, one of the two given states is randomly selected (probability $1 / 2$ each) and given to you. You are not told which one it is. Your goal is to guess which state was selected with as high a probability as you can achieve. Describe your distinguishing procedure as a unitary operation followed by a measurement (in the computational basis) and give its success probability. (Your assigned grade will depend on how close your distinguishing procedure is to optimal.)
(a) $|0\rangle$ and $|+\rangle \quad$ (recall that $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$).
(b) $|0\rangle|0\rangle$ and $|+\rangle|+\rangle \quad$ (two copies of the state in part (a))
(c) $|0\rangle|0\rangle$ and $\frac{1}{\sqrt{2}}|0\rangle|0\rangle+\frac{1}{\sqrt{2}}|1\rangle|1\rangle$
3. Distinguishing between two sets of quantum states [12 points, 6 each]. Let $A=$ $\{|0\rangle,|-\rangle\}$ and $B=\{|1\rangle,|+\rangle\}$ (recall that $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ and $|-\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$).
(a) Suppose that you are given one of the four states $|0\rangle,|+\rangle,|1\rangle,|-\rangle$ as input and your goal is to determine whether it is in set A or in set B (but not necessarily the state itself). Describe a procedure that, for any of the four possible input states, succeeds at this task with probability $\cos ^{2}(\pi / 8)$.
(b) Same question, but with $A=\{|0\rangle,|+\rangle\}$ and $B=\{|1\rangle,|-\rangle\}$.

CONTINUED ON NEXT PAGE
4. Control-target inversion [12 points; 6 each]. Recall that

where H is the Hadamard gate and the controlled- X gate is a CNOT gate. Here we consider an analogous property for the other Pauli matrices, namely the controlled- Z and controlled- Y gates, where

$$
X=\left(\begin{array}{ll}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \text { and } \quad Y=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)
$$

(a) Give a 2×2 unitary operation V such that

(b) Give a 2×2 unitary operation W such that

Hint: the unitary V for case (a) is extremely simple; the unitary W for case (b) is somewhat more challenging to find.
5. Product states versus entangled states [12 points; 4 for each part]. In each case, either express the 2 -qubit state as a tensor product of 1 -qubit states or prove that it cannot be expressed this way:
(a) $\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle-\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$
(b) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(c) $\frac{3}{4}|00\rangle+\frac{\sqrt{3}}{4}|01\rangle+\frac{\sqrt{3}}{4}|10\rangle+\frac{1}{4}|11\rangle$
6. Optional question for bonus credit: distinguishing among three qutrtit states [10 points].
Here, the states are qutrits, where the computational basis states are $|0\rangle,|1\rangle$, and $|2\rangle$. Let $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle,\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}|1\rangle+\frac{1}{\sqrt{2}}|2\rangle$, and $\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}|2\rangle+\frac{1}{\sqrt{2}}|0\rangle$. Note that these states are not orthogonal to each other and therefore not perfectly distinguishable. Describe a procedure that distinguishes among these states with as high a probability as possible (i.e, the input state is $\left|\psi_{k}\right\rangle$, for some (unknown) randomly chosen $k \in\{0,1,2\}$ and the goal is to determine k).

