QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F16)

Assignment 5

Due date: December 1, 2016

1. A nonlocal game [12 points; 6 each]. Consider the nonlocal game where Alice are physically separated and their goal is to produce outputs that satisfy the winning conditions explained below. Alice receives a trit $s \in\{0,1,2\}$ (randomly sampled by the uniform distribution), and Bob receives a trit $t \in\{s, s+1 \bmod 3\}$ (randomly sampled according to the uniform distribution).
They each output a bit, a for Alice and b for Bob, and they win if: $a \oplus b=1$, in the case where $(s, t)=(2,0)$; and $a \oplus b=0$ in the other five cases. There six possible instances of (s, t), which each arise with probability $1 / 6$. They are listed in the following table, along with the corresponding winning condition.

s	t	$a \oplus b$
0	0	0
0	1	0
1	1	0
1	2	0
2	2	0
2	0	1

(a) Show that any classical strategy for this game succeeds with probability at most $5 / 6 \approx 0.833$.
(b) Show that there is a quantum strategy (using entanglement) that succeeds with probability $\cos ^{2}(\pi / 12) \approx 0.933$. (Hint: Recall that the entangled strategy for the CHSH game can be expressed as starting with the state $\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle$ and Alice and Bob each perform a rotation depending on their respective inputs s and t. Consider a variant of this with different rotation angles.)

2. Some reflections [12 points; 6 each].

(a) For $\theta \in[0, \pi]$, define the orthonormal basis

$$
\begin{equation*}
\left|\psi_{\theta}\right\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle \quad \text { and } \quad\left|\psi_{\theta}^{\perp}\right\rangle=-\sin \theta|0\rangle+\cos \theta|1\rangle . \tag{1}
\end{equation*}
$$

Define the reflections $R_{1}=\left|\psi_{\theta_{1}}\right\rangle\left\langle\psi_{\theta_{1}}\right|-\left|\psi_{\theta_{1}}^{\perp}\right\rangle\left\langle\psi_{\theta_{1}}^{\perp}\right|$ and $R_{1}=\left|\psi_{\theta_{2}}\right\rangle\left\langle\psi_{\theta_{2}}\right|-\left|\psi_{\theta_{2}}^{\perp}\right\rangle\left\langle\psi_{\theta_{2}}^{\perp}\right|$. Prove that $R_{1} R_{2}$ is a rotation by angle $2\left(\theta_{1}-\theta_{2}\right)$.
(b) Consider the following scenario. $|u\rangle$ and $|v\rangle$ are two n-qubit states with the property $\langle u \mid v\rangle=\cos (\pi / 12)$ and all you are given is: these two black-box n-qubit unitaries

$$
\begin{equation*}
U=I-2|u\rangle\langle u| \quad \text { and } \quad V=I-2|v\rangle\langle v| \tag{2}
\end{equation*}
$$

as well as one single copy of the state $|u\rangle$. (Note that U is a reflection, where $U|u\rangle=-|u\rangle$ and $U|w\rangle=|w\rangle$ for each state $|w\rangle$ that is orthogonal to $|u\rangle$; and V satisfies similar properties for $|v\rangle$.)
Your goal is to construct a state orthogonal to $|u\rangle$. Show how to do this starting with state $|u\rangle$ and making queries to U and to V (make as few queries as you can).
3. Distributed testing of $|00\rangle+|11\rangle$ states [12 points]. Consider the scenario that arises in the Lo-Chau cryptosystem, where Alice and Bob share a two-qubit state and they want to test if it is $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ with local measurements and classical communication.

We consider the following procedure. They randomly select a measurement basis: with probability $\frac{1}{2}$, they both measure in the computational basis; and, with probability $\frac{1}{2}$, they both measure in the Hadamard basis. Then they perform the measurement and they accept if and only if their outcomes are the same.
(a) [4 points] Show that the state $\left|\phi^{+}\right\rangle$is always (i.e., with probability 1) accepted by this test.
(b) [8 points] Show that, for an arbitrary 2 -qubit state $|\mu\rangle$, the probability that it passes the test is at most

$$
\begin{equation*}
\frac{1+\left|\left\langle\mu \mid \phi^{+}\right\rangle\right|^{2}}{2} \tag{3}
\end{equation*}
$$

(Hint: Consider expressing $|\mu\rangle$ as a superposition of the four Bell states.)
4. Analysis of a particular channel [12 points; 6 each]. For each $p \in \mathbb{R}$ such that $0<p \leq \frac{1}{2}$, consider the qubit channel C_{p}, with Kraus operators

$$
A_{0}=\left(\begin{array}{cc}
\sqrt{1-p} & 0 \tag{4}\\
0 & \sqrt{1-p}
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{cc}
\sqrt{p} & 0 \\
0 & -\sqrt{p}
\end{array}\right) .
$$

Thus, for any qubit in state ρ, the output of the channel is $C_{p}(\rho)=A_{0} \rho A_{0}^{\dagger}+A_{1} \rho A_{1}^{\dagger}$.
(a) If the channel C_{p} is composed with the channel C_{q}, show that the result is the channel C_{r} for some r that is a function of p and q.
(b) Give the set of all 1-qubit states ρ such that $C_{p}(\rho)=\rho$.

5. Transpose operation [12 points; 6 each].

Here we consider an operation on qubits that we denote by Λ, defined as $\Lambda(\rho)=\rho^{T}$ for each density matrix ρ (where ρ^{T} is the transpose of T).
(a) Give an example of a one-qubit pure state $|\psi\rangle$ such that $\Lambda(|\psi\rangle\langle\psi|)$ is a pure state orthogonal to $|\psi\rangle$.
(b) Prove that there is no unitary operation U such that $\Lambda(\rho)=U \rho U^{\dagger}$ for all ρ. (In fact, Λ is not even of the form $\rho \mapsto \sum_{k=1}^{m} A_{k} \rho A_{k}^{\dagger}$, where $\sum_{k=1}^{m} A_{k}^{\dagger} A_{k}=I$, though this is harder to show.)

