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Due date: December 1, 2016

1. A nonlocal game [12 points; 6 each]. Consider the nonlocal game where Alice
are physically separated and their goal is to produce outputs that satisfy the winning
conditions explained below. Alice receives a trit s ∈ {0, 1, 2} (randomly sampled by the
uniform distribution), and Bob receives a trit t ∈ {s, s + 1 mod 3} (randomly sampled
according to the uniform distribution).

They each output a bit, a for Alice and b for Bob, and they win if: a⊕ b = 1, in the case
where (s, t) = (2, 0); and a⊕ b = 0 in the other five cases. There six possible instances of
(s, t), which each arise with probability 1/6. They are listed in the following table, along
with the corresponding winning condition.

s t a⊕ b
0 0 0
0 1 0
1 1 0
1 2 0
2 2 0
2 0 1

(a) Show that any classical strategy for this game succeeds with probability at most
5/6 ≈ 0.833.

(b) Show that there is a quantum strategy (using entanglement) that succeeds with
probability cos2(π/12) ≈ 0.933. (Hint: Recall that the entangled strategy for the
CHSH game can be expressed as starting with the state 1√

2
|00〉− 1√

2
|11〉 and Alice and

Bob each perform a rotation depending on their respective inputs s and t. Consider
a variant of this with different rotation angles.)

2. Some reflections [12 points; 6 each].

(a) For θ ∈ [0, π], define the orthonormal basis

|ψθ〉 = cos θ|0〉+ sin θ|1〉 and |ψ⊥
θ 〉 = − sin θ|0〉+ cos θ|1〉. (1)

Define the reflections R1 = |ψθ1〉〈ψθ1 |− |ψ⊥
θ1
〉〈ψ⊥

θ1
| and R1 = |ψθ2〉〈ψθ2 |− |ψ⊥

θ2
〉〈ψ⊥

θ2
|.

Prove that R1R2 is a rotation by angle 2(θ1 − θ2).

(b) Consider the following scenario. |u〉 and |v〉 are two n-qubit states with the property
〈u|v〉 = cos(π/12) and all you are given is: these two black-box n-qubit unitaries

U = I − 2|u〉〈u| and V = I − 2|v〉〈v|, (2)

as well as one single copy of the state |u〉. (Note that U is a reflection, where
U |u〉 = −|u〉 and U |w〉 = |w〉 for each state |w〉 that is orthogonal to |u〉; and V
satisfies similar properties for |v〉.)
Your goal is to construct a state orthogonal to |u〉. Show how to do this starting
with state |u〉 and making queries to U and to V (make as few queries as you can).
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3. Distributed testing of |00〉 + |11〉 states [12 points]. Consider the scenario that
arises in the Lo-Chau cryptosystem, where Alice and Bob share a two-qubit state and
they want to test if it is |φ+〉 = 1√

2
(|00〉 + |11〉) with local measurements and classical

communication.

We consider the following procedure. They randomly select a measurement basis: with
probability 1

2
, they both measure in the computational basis; and, with probability 1

2
,

they both measure in the Hadamard basis. Then they perform the measurement and
they accept if and only if their outcomes are the same.

(a) [4 points] Show that the state |φ+〉 is always (i.e., with probability 1) accepted by
this test.

(b) [8 points] Show that, for an arbitrary 2-qubit state |µ〉, the probability that it passes
the test is at most

1 + |〈µ|φ+〉|2
2

. (3)

(Hint: Consider expressing |µ〉 as a superposition of the four Bell states.)

4. Analysis of a particular channel [12 points; 6 each]. For each p ∈ R such that
0 < p ≤ 1

2
, consider the qubit channel Cp, with Kraus operators

A0 =

!√
1− p 0
0

√
1− p

"
and A1 =

!√
p 0
0 −√

p

"
. (4)

Thus, for any qubit in state ρ, the output of the channel is Cp(ρ) = A0ρA
†
0 + A1ρA

†
1.

(a) If the channel Cp is composed with the channel Cq, show that the result is the channel
Cr for some r that is a function of p and q.

(b) Give the set of all 1-qubit states ρ such that Cp(ρ) = ρ.

5. Transpose operation [12 points; 6 each].

Here we consider an operation on qubits that we denote by Λ, defined as Λ(ρ) = ρT for
each density matrix ρ (where ρT is the transpose of T ).

(a) Give an example of a one-qubit pure state |ψ〉 such that Λ(|ψ〉〈ψ|) is a pure state
orthogonal to |ψ〉.

(b) Prove that there is no unitary operation U such that Λ(ρ) = UρU † for all ρ.

(In fact, Λ is not even of the form ρ )→
#m

k=1 AkρA
†
k, where

#m
k=1 A

†
kAk = I, though

this is harder to show.)
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