
QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F16)

Assignment 3
Due date: November 1, 2016

1. Approximating unitary transformations [12 points; 4 each]. There are situations
where it is much easier to approximate a unitary transformation than to compute it

exactly. For a vector v = (v0, . . . , vm−1), let ||v|| =
!"m−1

j=0 |vj|2, which is the usual

Euclidean length of v. For any m×m matrix M , define its (spectral) norm ||M || as

||M || = max
|ψ〉

||M |ψ〉||,

where the maximum is taken over quantum states (i.e., vectors |ψ〉 such that |||ψ〉|| = 1).
Define the distance between two m×m unitary matrices U1 and U2 as ||U1 − U2||.

(a) Show that ||A − B|| ≤ ||A − C|| + ||C − B||, for any three m × m matrices A, B,
and C. (Thus, this distance measure satisfies the triangle inequality.)

(b) Show that, for any any m×m matrix A and the ℓ× ℓ identity matrix I,
||A⊗ I|| = ||A||.

(c) Show that, for any two m × m unitary matrices U1 and U2, and any matrix A,
||U1AU2|| = ||A||.

2. Approximate quantum Fourier transform modulo 2n [12 points]. In class, we
computed the QFT modulo 2n by a quantum circuit of size O(n2). Here, we compute an
approximation of this QFT within ε by a quantum circuit of size O(n log(n/ε)).

(a) [4 points] Recall that the O(n2) size QFT quantum circuit uses gates of the form

Pk =

#

$$%

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k

&

''( ,

for values of k that range between 2 and n. Show that ||Pk − I|| ≤ 2π/2k, where I
is the 4× 4 identity matrix. (Thus, Pk gets very close to I when k increases.)

(b) [8 points] The idea behind the approximate QFT circuit is to start with the O(n2)
circuit and then remove some of its Pk gates. Removing a Pk gate makes the circuit
smaller but also changes the unitary transformation (it is equivalent to changing the
Pk gate to an I gate). From part (a) and the properties of our measure of distance
between unitary transformations from the previous question, we can deduce that if
k is large enough then removing a Pk gate changes the unitary transformation by
only a small amount. Show how to use this approach to obtain a quantum circuit of
size O(n log(n/ε)) that computes a unitary transformation F̃2n such that

||F̃2n − F2n || ≤ ε.

(Hint: Try removing all Pk gates where k ≥ t, for some carefully chosen threshold t.
The properties of our distance measure from the previous question should be useful
for your analysis here.)
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3. Computing the “square root” of a quantum circuit [12 points; 4 each].

Suppose that you are given a quantum circuit acting on n qubits that consists of s 2-qubit
gates. It corresponds to some 2n × 2n unitary matrix U , but, in general, there is no way
of efficiently calculating all the entries of U from the circuit. Suppose that we want to
construct another circuit that computes a square root of U (i.e., a unitary V such that
V 2 = U). You can check that just taking the square roots of each gates in the original
circuit does not yield such a V .

We will use a clever trick involving the eigenvalue-estimation algorithm do this efficiently.
We just consider a simplified case where we are promised that the eigenvalues of U are
all in {1, i,−1,−i}; however, the basic approach can be extended to the arbitrary case.

Let {|ψx〉 : x ∈ {0, . . . , 2n − 1}} be a set of orthonormal eigenvectors of U . Then

U =
2n−1)

x=0

iφx |ψx〉〈ψx|,

where φx ∈ {00, 01, 10, 11} ≡ {0, 1, 2, 3} for each x. Our method will compute

V =
2n−1)

x=0

ωφx |ψx〉〈ψx|,

where ω = e2πi/8, which is a square root of U .

An outline of the construction is the following. First construct a generalized-control-U
gate, with two control-qubits. Then apply the eigenvalue-estimation algorithm to this
controlled-U gate, which results in a circuit that computes ab = φx, in two ancillary
qubits, for any input |ψx〉. Next, apply gates to those two ancilliary qubits to induce the
mapping |ab〉 *→ ωab|ab〉. Then apply the inverse of the eigenvalue estimation circuit. The
net result is a circuit that maps every |ψx〉 to ωφx |ψx〉. Note that this construction does
exactly what V does when the input is an eigenvector |ψx〉. Moreover, since the circuit
computes a linear operation and the |ψx〉 are a basis, the circuit must compute V .

Assume that we have a circuit computing U with s 2-qubit gates:

(a) Explain how to construct a circuit computing the two-qubit controlled-U operation
using 3s 3-qubit gates.

(b) Explain how to construct a circuit computing ab = φx on input |φx〉 using 3s 3-qubit
gates plus one 2-qubit gate plus four 1-qubit gates.

(c) Give a 2-qubit quantum circuit consisting of two 1-qubit gates that maps each basis
state |ab〉 to ωab|ab〉.

Note that the total gate cost is 6s 3-qubit gates plus two 2-qubit gates plus eight 1-qubit
gates. This can be converted into a circuit consisting of O(s) 2-qubit gates, not much
more than the original circuit.
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4. Basic questions about density matrices [12 points; 4 each].

(a) A density matrix ρ corresponds to a pure state if and only if ρ = |ψ〉〈ψ|. Show that
ρ corresponds to a pure state if and only if Tr(ρ2) = 1.

(b) Show that, for any operator that is Hermitian, positive definite (i.e., has no negative
eigenvalues), and has trace 1, there is a probabilistic mixture of pure states whose
denisty matrix is ρ.

(c) Show that every 2 × 2 density matrix ρ can be expressed as an equally weighted
mixture of pure states. That is

ρ =
1

2
|ψ1〉〈ψ1|+

1

2
|ψ2〉〈ψ2|

for states |ψ1〉 and |ψ2〉 (note that, in general, the two states will not be orthogonal).

5. The density matrix is in the eye of the beholder [12 points; 3 each]. Consider
the following scenario. Alice first flips a biased coin that has outcome 0 with probability
cos2(π/8) and 1 with probability sin2(π/8). If the coin value is 0 she creates the state |0〉
and if the coin value is 1 she creates the state |1〉. Then Alice sends the state that she
created to Bob (she does not send the coin value).

(a) From Alice’s perspective (who knows the coin value), the density matrix of the state

she created will be either |0〉〈0| =
*

1 0
0 0

+
or |1〉〈1| =

*
0 0
0 1

+
. What is the

density matrix of the state from Bob’s perspective (who does not know the coin
value)? Give the four matrix entries of this density matrix.

(b) Suppose that, upon receiving the state from Alice, Bob measures it in the compu-
tational basis. The measurement process yields a classical bit and an output state
(“collapsed” to |0〉 or |1〉). Will Bob’s density matrix for the state (with Bob knowing
the classical measurement outcome) be the same as Alice’s?

Suppose that we modify the above scenario to one where Alice flips a fair coin (where
outcomes 0 and 1 each occur with probability 1/2) and if the coin value is 0 she creates
the state |ψ0〉 = cos(π/8)|0〉+ sin(π/8)|1〉 and if the coin value is 1 she creates the state
|ψ1〉 = cos(π/8)|0〉 − sin(π/8)|1〉. Alice sends the state (but not the coin value) to Bob.

(c) From Alice’s perspective (who knows the coin value), the density matrix of the state
she created will be either |ψ0〉〈ψ0| or |ψ1〉〈ψ1|. What is the density matrix of the
state from Bob’s perspective (who does not know the coin value)? Give the four
matrix entries of this density matrix.

(d) Suppose that, upon receiving the state from Alice, Bob measures it in the computa-
tional basis, yielding a classical bit and an output state (“collapsed” to |0〉 or |1〉).
Bob knows the classical bit outcome from his measurement, but does not reveal this
to Alice. Will Bob’s density matrix for the output state be the same as Alice’s?
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