Assignment 2
 Due date: October 13, 2016

1. The 2 -out-of-4 and 3 -out-of- 4 search problems [12 points; 6 each]. Recall the 1-out-of-4 search problem, where one is given a function $f:\{0,1\}^{2} \rightarrow\{0,1\}$ with the property that there is a unique $x \in\{0,1\}^{2}$ such that $f(x)=1$ and the goal is to determine x. We saw that 3 queries are necessary to solve this problem, whereas 1 quantum query is sufficient. In the context of this question, we are only interested in exact solutions (with failure probability zero).
(a) Consider the 2-out-of-4 search problem, where one is given a black box for a function $f:\{0,1\}^{2} \rightarrow\{0,1\}$ with the property that there are exactly two $x \in\{0,1\}^{2}$ such that $f(x)=1$ and the goal is to determine both such x 's. Prove that 3 classical queries are necessary to solve this problem and that 2 quantum queries are sufficient to solve this problem.
(b) Consider the 3 -out-of- 4 search problem, where one is given a black box for a function $f:\{0,1\}^{2} \rightarrow\{0,1\}$ with the property that there are exactly three $x \in\{0,1\}^{2}$ such that $f(x)=1$ and the goal is to determine all three such x 's. Prove that 3 classical queries are necessary to solve this problem and that 1 quantum queries is sufficient to solve this problem.
2. Can a function be evaluated at two points with one quantum query? [12 points; 4 each]. Here we consider the problem where we have a query oracle for a function $f:\{0,1\} \rightarrow\{0,1\}$ and the goal is to obtain information about both $f(0)$ and $f(1)$ with a single query. We assume that the query oracle is in the usual form of a unitary operator U_{f} that, for all $a, b \in\{0,1\}$, maps $|a\rangle|b\rangle$ to $|a\rangle|b \oplus f(a)\rangle$. For simplicity, we consider methods that employ only two qubits in all and are expressible by a circuit of the form

where V and W are two-qubit unitaries and the D-shaped gates are measurements in the computational basis. Therefore, it can be assumed that the input state to the query is a two-qubit state of the form $\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.
(a) For each of the four functions of the form $f:\{0,1\} \rightarrow\{0,1\}$, give the quantum state right after the query has been performed.
(b) If there is a measurement procedure that perfectly distinguishes between the four states in part (a) then they must be mutually orthogonal. Show that, for a measurement to be able to perfectly determine the value of $f(0)$, it must be the case that $\alpha_{10}=\alpha_{11}$. (Hint: think of the orthogonality relationships that need to hold.)
(c) Show that, if the states are such that $f(0)$ can be determined perfectly from them, then $f(1)$ cannot be determined with probability better than $1 / 2$ (which is no better than random guessing). (Hint: You may use the result in part (b) for this.)
3. Constructing a Toffoli gate out of two-qubit gates [12 points]. The Toffoli gate (controlled-controlled-NOT) is a 3-qubit gate, and here we show how to implement it with 2-qubit gates. The construction is given by the following quantum circuit

where

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\omega & \bar{\omega} \\
\bar{\omega} & \omega
\end{array}\right), \quad \text { with } \omega=e^{i \pi / 4} \text { and } \bar{\omega}=e^{-i \pi / 4} \text { (} \omega \text { 's conjugate). }
$$

We could verify this by multiplying 8×8 matrices; however, we take a simpler approach.
(a) [2 points] Show that $V^{2}=X$ (this means V is a square root of NOT).
(b) [8 points] Prove each of the following, where $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is an arbitrary 1-qubit state:
i. The circuit maps $|00\rangle|\psi\rangle$ maps to $|00\rangle|\psi\rangle$.
ii. The circuit maps $|01\rangle|\psi\rangle$ maps to $|01\rangle|\psi\rangle$.
iii. The circuit maps $|10\rangle|\psi\rangle$ maps to $|10\rangle|\psi\rangle$.
iv. The circuit maps $|11\rangle|\psi\rangle$ maps to $|11\rangle V^{2}|\psi\rangle$.
(c) [2 points] Based on parts (a) and (b), write down the 8×8 unitary matrix that the above circuit computes.
4. Quantum Fourier transform [12 points; 4 each]. Let F_{N} denote the N-dimensional Fourier transform

$$
F_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right), \quad \text { where } \omega=e^{2 \pi i / N} \quad(i=\sqrt{-1})
$$

(an $N \times N$ matrix, whose entry in position $j k$ is $\frac{1}{\sqrt{N}}\left(e^{2 \pi i / N}\right)^{j k}$ for $j, k \in\{0,1, \ldots, N-1\}$).
(a) As a warm-up exercise, show that, for all $j \in\{1,2, \ldots, N-1\}, \sum_{k=0}^{N-1} \omega^{j k}=0$.
(b) Show that, for F_{N}, all rows are vectors of length 1 , and any two rows are orthogonal.
(c) What is $\left(F_{N}\right)^{2}$? The matrix has a very simple form.
5. Period inversion [12 points]. Recall the 2-dimensional mod m generalization of $\mathrm{Si}-$ mon's problem, where $f: \mathbb{Z}_{m}^{2} \rightarrow \mathbb{Z}$ has the property that $f(x)=f(y)$ iff $x-y$ is a multiple of some nonzero $r \in \mathbb{Z}_{m}^{2}$. The first part of the quantum algorithm for this (discussed in class) generates a state of the form

$$
\frac{1}{\sqrt{m^{2}}} \sum_{k=0}^{m-1}|x+k r\rangle=\frac{1}{\sqrt{m^{2}}}(|x\rangle+|x+r\rangle+|x+2 r\rangle+\cdots+|x+(m-1) r\rangle),
$$

for some arbitrary $x \in \mathbb{Z}_{m}^{2}$ (all arithmetic expressions are $\bmod m$). Informally, we can think of this as a periodic superposition of basis states with period r and offset x. Measuring this state in the computational basis is useless, because of the offset x. However, applying a suitable quantum Fourier transform to this state produces a an equally weighted superposition of all $s \in \mathbb{Z}^{2}$ such that $s \cdot r=0$. We proved this in the context of Simon's algorithm and asserted it without proof in the mod m case.

Here we consider a different problem somewhat related to the above. Let $m=q r$ for positive integers q and r (juxtaposition means multiplication) and suppose we are given a state of the form

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{q}} \sum_{k=0}^{q-1}|x+k r\rangle=\frac{1}{\sqrt{q}}(|x\rangle+|x+r\rangle+|x+2 r\rangle+\cdots+|x+(q-1) r\rangle),
$$

where $r, x \in \mathbb{Z}_{m}$, and with arithmetic mod m. Informally, we can think of this state as periodic with periodicity r and an offset of x.
(a) [8 points] Prove that, if we apply the quantum Fourier transform F_{m} to $\left|\psi_{1}\right\rangle$, we obtain the state

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =\frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1}\left(\omega^{q x}\right)^{\ell}|\ell q\rangle \\
& =\frac{1}{\sqrt{r}}\left(|0\rangle+\omega^{q x}|q\rangle+\left(\omega^{q x}\right)^{2}|2 q\rangle+\cdots+\left(\omega^{q x}\right)^{r-1}|(r-1) q\rangle\right),
\end{aligned}
$$

where $\omega=e^{2 \pi i / m}$. Informally, the periodicity has changed from r to q-and there is no offset! The original offset x has become part of the phase.
Hint: Note that $\omega^{r}=e^{2 \pi i / q}$ and $\omega^{q}=e^{2 \pi i / r}$.
(b) [4 points] Explain why, if we measure the state $\left|\psi_{2}\right\rangle$ (in the computational basis), the result is a uniformly sampled element from the set $\left\{s \in \mathbb{Z}_{m}: s r=0\right\}$ (where the arithmetic is $\bmod m$).
(Informally, this is analogous to the measured outcome s in the quantum part of Simon's algorithm satisfying $s \cdot r=0$.)

