
QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F16)

Assignment 2
Due date: October 13, 2016

1. The 2-out-of-4 and 3-out-of-4 search problems [12 points; 6 each]. Recall the
1-out-of-4 search problem, where one is given a function f : {0, 1}2 → {0, 1} with the
property that there is a unique x ∈ {0, 1}2 such that f(x) = 1 and the goal is to deter-
mine x. We saw that 3 queries are necessary to solve this problem, whereas 1 quantum
query is sufficient. In the context of this question, we are only interested in exact solutions
(with failure probability zero).

(a) Consider the 2-out-of-4 search problem, where one is given a black box for a function
f : {0, 1}2 → {0, 1} with the property that there are exactly two x ∈ {0, 1}2 such
that f(x) = 1 and the goal is to determine both such x’s. Prove that 3 classical
queries are necessary to solve this problem and that 2 quantum queries are sufficient
to solve this problem.

(b) Consider the 3-out-of-4 search problem, where one is given a black box for a function
f : {0, 1}2 → {0, 1} with the property that there are exactly three x ∈ {0, 1}2 such
that f(x) = 1 and the goal is to determine all three such x’s. Prove that 3 classical
queries are necessary to solve this problem and that 1 quantum queries is sufficient
to solve this problem.

2. Can a function be evaluated at two points with one quantum query? [12 points;
4 each]. Here we consider the problem where we have a query oracle for a function
f : {0, 1} → {0, 1} and the goal is to obtain information about both f(0) and f(1) with a
single query. We assume that the query oracle is in the usual form of a unitary operator
Uf that, for all a, b ∈ {0, 1}, maps |a〉|b〉 to |a〉|b ⊕ f(a)〉. For simplicity, we consider
methods that employ only two qubits in all and are expressible by a circuit of the form

|0〉
V Uf W

l

|0〉 l

where V and W are two-qubit unitaries and the D-shaped gates are measurements in the
computational basis. Therefore, it can be assumed that the input state to the query is a
two-qubit state of the form α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉.

(a) For each of the four functions of the form f : {0, 1} → {0, 1}, give the quantum state
right after the query has been performed.

(b) If there is a measurement procedure that perfectly distinguishes between the four
states in part (a) then they must be mutually orthogonal. Show that, for a measure-
ment to be able to perfectly determine the value of f(0), it must be the case that
α10 = α11. (Hint: think of the orthogonality relationships that need to hold.)

(c) Show that, if the states are such that f(0) can be determined perfectly from them,
then f(1) cannot be determined with probability better than 1/2 (which is no better
than random guessing). (Hint: You may use the result in part (b) for this.)
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3. Constructing a Toffoli gate out of two-qubit gates [12 points]. The Toffoli gate
(controlled-controlled-NOT) is a 3-qubit gate, and here we show how to implement it
with 2-qubit gates. The construction is given by the following quantum circuit

• • • •

• • ≡ •

V V † V

where

V = 1√
2

(
ω ω
ω ω

)
, with ω = eiπ/4 and ω = e−iπ/4 (ω’s conjugate).

We could verify this by multiplying 8× 8 matrices; however, we take a simpler approach.

(a) [2 points] Show that V 2 = X (this means V is a square root of NOT).

(b) [8 points] Prove each of the following, where |ψ〉 = α|0〉+β|1〉 is an arbitrary 1-qubit
state:

i. The circuit maps |00〉|ψ〉 maps to |00〉|ψ〉.
ii. The circuit maps |01〉|ψ〉 maps to |01〉|ψ〉.
iii. The circuit maps |10〉|ψ〉 maps to |10〉|ψ〉.
iv. The circuit maps |11〉|ψ〉 maps to |11〉V 2|ψ〉.

(c) [2 points] Based on parts (a) and (b), write down the 8× 8 unitary matrix that the
above circuit computes.

4. Quantum Fourier transform [12 points; 4 each]. Let FN denote the N -dimensional
Fourier transform

FN =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

 , where ω = e2πi/N (i =
√
−1)

(an N×N matrix, whose entry in position jk is 1√
N

(e2πi/N)jk for j, k ∈ {0, 1, . . . , N−1}).

(a) As a warm-up exercise, show that, for all j ∈ {1, 2, . . . , N−1},
∑N−1

k=0 ω
jk = 0.

(b) Show that, for FN , all rows are vectors of length 1, and any two rows are orthogonal.

(c) What is (FN)2? The matrix has a very simple form.
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5. Period inversion [12 points]. Recall the 2-dimensional mod m generalization of Si-
mon’s problem, where f : Z2

m → Z has the property that f(x) = f(y) iff x−y is a multiple
of some nonzero r ∈ Z2

m. The first part of the quantum algorithm for this (discussed in
class) generates a state of the form

1√
m2

m−1∑
k=0

|x+ kr〉 =
1√
m2

( |x〉 + |x+ r〉+ |x+ 2r〉+ · · ·+ |x+ (m− 1)r〉 ) ,

for some arbitrary x ∈ Z2
m (all arithmetic expressions are mod m). Informally, we can

think of this as a periodic superposition of basis states with period r and offset x. Measur-
ing this state in the computational basis is useless, because of the offset x. However, ap-
plying a suitable quantum Fourier transform to this state produces a an equally weighted
superposition of all s ∈ Z2 such that s · r = 0. We proved this in the context of Simon’s
algorithm and asserted it without proof in the mod m case.

Here we consider a different problem somewhat related to the above. Let m = qr for
positive integers q and r (juxtaposition means multiplication) and suppose we are given
a state of the form

|ψ1〉 =
1
√
q

q−1∑
k=0

|x+ kr〉 =
1
√
q

( |x〉 + |x+ r〉+ |x+ 2r〉+ · · ·+ |x+ (q − 1)r〉 ) ,

where r, x ∈ Zm, and with arithmetic mod m. Informally, we can think of this state as
periodic with periodicity r and an offset of x.

(a) [8 points] Prove that, if we apply the quantum Fourier transform Fm to |ψ1〉, we
obtain the state

|ψ2〉 =
1√
r

r−1∑
`=0

(ωqx)`|`q〉

=
1√
r

(
|0〉 + ωqx|q〉+ (ωqx)2|2q〉+ · · ·+ (ωqx)r−1|(r − 1)q〉

)
,

where ω = e2πi/m. Informally, the periodicity has changed from r to q—and there is
no offset! The original offset x has become part of the phase.

Hint: Note that ωr = e2πi/q and ωq = e2πi/r.

(b) [4 points] Explain why, if we measure the state |ψ2〉 (in the computational basis),
the result is a uniformly sampled element from the set {s ∈ Zm : sr = 0} (where the
arithmetic is mod m).

(Informally, this is analogous to the measured outcome s in the quantum part of
Simon’s algorithm satisfying s · r = 0.)
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