QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F16)

Assignment 1

Due date: September 27, 2016

1. Simple operations on quantum states [12 points; 2 for each part]. In each case, describe the resulting state. (H is the 2×2 Hadamard transform: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$)
(a) Apply H to the qubit in state $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$.
(b) Apply H to first qubit of state $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$.
(c) Apply H to both qubits of state $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$.
(d) Apply $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right)$ to both qubits of state $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle . \quad(i=\sqrt{-1})$
(e) Apply H to all three qubits of state $\frac{1}{\sqrt{2}}|000\rangle+\frac{1}{\sqrt{2}}|111\rangle$.
(f) Apply H to first qubit of state $\frac{1}{\sqrt{2}}|000\rangle+\frac{1}{\sqrt{2}}|111\rangle$, and then measure this first qubit (in the computational basis). Here, you should give the state of the two remaining qubits in each of two cases:
i. when the outcome of the measurement is 0 ;
ii. when the outcome of the measurement is 1 .
2. Distinguishing between pairs of quantum states [12 points; 4 for each part]. In each case, one of the two given states is randomly selected (probability $1 / 2$ each) and given to you. You are not told which one it is. Your goal is to guess which state was selected with as high a probability as you can achieve. Describe your distinguishing procedure as a unitary operation followed by a measurement (in the computational basis) and give its success probability. (Your assigned grade will depend on how close your distinguishing procedure is to optimal.)
(a) $|0\rangle$ and $|+\rangle \quad$ (recall that $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$.
(b) $|0\rangle|0\rangle$ and $|+\rangle|+\rangle \quad$ (two copies of the state in part (a))
(c) $|0\rangle|0\rangle$ and $\frac{1}{\sqrt{2}}|0\rangle|0\rangle+\frac{1}{\sqrt{2}}|1\rangle|1\rangle$
3. Product states versus entangled states [12 points; 4 each]. In each case, either express the 2-qubit state as a tensor product of 1-qubit states or prove that it cannot be expressed this way:
(a) $\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle-\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$
(b) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(c) $\frac{3}{4}|00\rangle+\frac{\sqrt{3}}{4}|01\rangle+\frac{\sqrt{3}}{4}|10\rangle+\frac{1}{4}|11\rangle$
4. Distinguishing states by local measurements [12 points; 4 each]. In this question, we suppose Alice and Bob (who are physically separated from each other, say, in separate labs) are each given one of the qubits of some 2-qubit state. Working as a team, they are required to distinguish between State I and State II with only local measurements. We will take this to mean that they can each perform a local (one-qubit) unitary operation and then a measurement (in the computational basis) of their own qubit. After their measurements, they can send only classical bits to each other.
In each case below, either give a perfect distinguishing procedure (that never errs) or explain why there is no perfect distinguishing procedure (i.e., that for any procedure the success probability must be less than 1).
(a) State I: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

State II: $\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$
(b) State I: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

State II: $\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$
(c) State I: $\frac{1}{\sqrt{2}}(|00\rangle+i|11\rangle) \quad(i=\sqrt{-1})$

State II: $\frac{1}{\sqrt{2}}(|00\rangle-i|11\rangle)$
5. Optional challenge question for bonus credit [10 points]. Question 4, but where Alice and Bob each receive a qutrit and the two qutrits are in one of these two states:

State I: $\quad \frac{1}{2}|00\rangle+\frac{1}{2}|11\rangle+\frac{1}{\sqrt{2}}|22\rangle$
State II: $\frac{1}{2}|00\rangle+\frac{1}{2}|11\rangle-\frac{1}{\sqrt{2}}|22\rangle$
(Note: This is intended to be very challenging.)
6. Teleporting part of an entangled state [12 points].

Recall that, in the teleportation protocol, Alice and Bob initially have a joint state of the form

$$
\left(\alpha|0\rangle_{\mathrm{A}}+\beta|1\rangle_{\mathrm{A}}\right)\left(\frac{1}{\sqrt{2}}|00\rangle_{\mathrm{AB}}+\frac{1}{\sqrt{2}}|11\rangle_{\mathrm{AB}}\right)
$$

(where the subscripts are to emphasize who possesses each qubit). At the end of the protocol, there remains only Bob's qubit, and it is in state $\alpha|0\rangle_{\mathrm{B}}+\beta|1\rangle_{\mathrm{B}}$.
Suppose that we introduce a third party, Carol, and that Alice's qubit-to-be-teleported is entangled with Carol's qubit, in state $\frac{1}{\sqrt{2}}|00\rangle_{\mathrm{CA}}+\frac{1}{\sqrt{2}}|11\rangle_{\mathrm{CA}}$. Set the initial state to

$$
\left(\frac{1}{\sqrt{2}}|00\rangle_{\mathrm{CA}}+\frac{1}{\sqrt{2}}|11\rangle_{\mathrm{CA}}\right)\left(\frac{1}{\sqrt{2}}|00\rangle_{\mathrm{AB}}+\frac{1}{\sqrt{2}}|11\rangle_{\mathrm{AB}}\right)
$$

and perform the teleportation protocol on Alice's and Bob's qubits. At the end of the protocol, there will remain two qubits: Carol's and Bob's. Will the joint state of Carol and Bob's qubits be in state

$$
\frac{1}{\sqrt{2}}|00\rangle_{\mathrm{CB}}+\frac{1}{\sqrt{2}}|11\rangle_{\mathrm{CB}} ?
$$

Justify your answer by giving a clear proof that your answer is correct.

