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Due date: December 3, 2015

1. Correcting errors at known positions [12 points; 3 each]. Here we consider error
correcting codes for scenarios where, after the qubits have been transmitted, the location
of the possible error is known (but not the error itself). Consider the 4-qubit quantum
error correcting Code A with basis codewords

|c0〉 = 1√
2
(|0000〉+ |1111〉) (1)

|c1〉 = 1√
2
(|0011〉+ |1100〉). (2)

A qubit α|0〉 + β|1〉 is encoded as α|c0〉 + β|c1〉. This code does not protect against an
arbitrary one-qubit error as the 9-qubit Shor code does. However, if, after the transmission
of the codeword, we are given k ∈ {1, 2, 3, 4} which is the location of the (potential) error
but not the error itself then it is possible to correct it. For example, if k = 3 then we can
assume that we received a state of the form (I ⊗ I ⊗ U ⊗ I)(α|c0〉 + β|c1〉) but we don’t
know what U (the error on qubit 3) is. Our goal is to recover α|c0〉+ β|c1〉 from this.

(a) Show how Code A (described above) protects against I and X errors of known
location. In other words, along with the four qubits, we are given k ∈ {1, 2, 3, 4}
and either I or X has been applied to the kth qubit received (but we don’t know
which one). Show how to undo the error in this scenario. By the symmetry of |c0〉
and |c1〉, you may simply show how to undo the error in the case where k = 4; the
other three cases would be very similar to explain.

(b) Consider Code B, with basis codewords, |c′0〉 = H⊗4|c0〉 and |c′1〉 = H⊗4|c1〉, where
α|0〉 + β|1〉 is encoded as α|c′0〉 + β|c′1〉. Show how Code B protects against I and
Z errors (in the same sense that Code A does in part (a)). (Hint: You may use the
result in part (a) and the fact that HZH = X, but your explanation must be clear.)

(c) Show how Code A protects against I, X, Z, and XZ errors of known location. (Hint:
make use of the results established in parts (a) and (b).)

(d) Show how Code A protects against any one-qubit unitary U error of known location.
You may use the results from parts (a), (b) and (c) here.

Optional for bonus credit [5 points]:

(e) Prove that there exists no 4-qubit code (where the data encoded is one qubit) that
can protect against two errors of known location.

2. Searching when the fraction of marked items is 1/4 and 1/2 [12 points; 6 each].

(a) Suppose that f : {0, 1}n → {0, 1} has the property that, for exactly 1
4
2n of the values

of x ∈ {0, 1}n, f(x) = 1 and the goal is to find such an x. Show how to do this with
a single query to f . (Hint: consider a single iteration of Grover’s algorithm.)

(b) Same question as part (a), except assume that f has the property that for exactly
1
2
2n of the values of x ∈ {0, 1}n, f(x) = 1. Can the x still be found with one query?
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3. A nonlocal game [12 points; 6 each]. Consider the game where Alice and Bob
are physically separated and their goal is to produce outputs that satisfy the winning
conditions specified below. Alice and Bob receive s, t ∈ {0, 1, 2} as input (s to Alice and
t to Bob), at which point they are forbidden from communicating with each other (so
Alice has no idea what t is and Bob has no idea what s is). They each output a bit, a for
Alice and b for Bob. The winning conditions are:

• a = b in the cases where s = t.

• a ∕= b in the cases where s ∕= t.

(a) Show that any classical strategy (that uses no quantum information) of Alice and
Bob that always succeeds in the s = t cases can succeed with probability at most
2/3 in the s ∕= t cases.

(b) Give a quantum strategy (that is, one where Alice and Bob can create an entangled
state before the game starts and then base their outcomes on their measurements of
their parts of this state) that always succeeds in the s = t cases and succeeds with
probability 3/4 in the s ∕= t cases. (Hint: try the entangled state 1√

2
|00〉 − 1√

2
|11〉

and have Alice and Bob perform rotations depending on s and t respectively.)

4. Secret key encryption for qubits [12 points; 6 each]. Recall the classical one-time
pad encryption scheme restricted to a single bit. Alice wants to send a bit of information
to Bob over a channel that is possibly being monitored by (eavesdropper) Eve. Alice and
Bob share a secret key, which was set up in advance. The secret key is a randomly chosen
(uniformly distributed) k ∈ {0, 1}, which is known by Alice and Bob, but—importantly—
not by Eve. If Alice wants to send a bit m to Bob then Alice computes c = m ⊕ k and
sends c over the channel. When Bob receives c, he computes m′ = c ⊕ k. It is easy to
show that m′ = m and Eve acquires no information about m from looking at c.

Here, we consider a similar scenario, but where Alice wants to send a qubit |ψ〉 to Bob
over a quantum channel that is possibly being monitored by Eve. How can this be
accomplished so that if Eve performs a measurement on the data that goes through the
channel, she cannot acquire any information about what |ψ〉 was?
(a) If Alice and Bob share a classical secret key bit k ∈ {0, 1}, then one approach is for

Alice to send Xk|ψ〉 to Bob. This seems analogous to the classical protocol: Alice
flips or doesn’t flip according the key bit. Show that this is highly insecure by giving
two quantum states |ψ0〉 and |ψ1〉 whose encryptions Eve can perfectly distinguish.

(b) Suppose that Alice and Bob have two (independently generated) key bits k1, k2, and
Alice encrypts |ψ〉 as the state Zk1Xk2 |ψ〉. (Note that Bob can decrypt this since he
has k1 and k2.) Show that this is perfectly secure. For the purposes of this question,
you may prove this by showing that the scheme has the following property: for any
two pure states |ψ0〉 and |ψ1〉, if Alice is encrypting either |ψ0〉 or |ψ1〉 and Eve
can perform any measurement on the encrypted data, then Eve cannot distinguish
between the two cases with probability better than 1

2
.
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5. Distributed testing of |00〉+ |11〉 states [12 points; 6 each]. Consider the scenario
that arises in the Lo-Chau cryptosystem, where Alice and Bob share a two-qubit state
and they want to test if it is |φ+〉 = 1√

2
(|00〉+ |11〉) with local measurements and classical

communication.

We consider the following procedure. They randomly select a measurement basis: with
probability 1

2
, they both measure in the computational basis; and, with probability 1

2
,

they both measure in the Hadamard basis. Then they perform the measurement and
they accept if and only if their outcomes are the same.

(a) Show that the state |φ+〉 is always (i.e., with probability 1) accepted by this test.

(b) Show that |φ+〉 is the only state that this test accepts with probability 1.
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