QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F15)

Assignment 3

Due date: October 27, 2015

1. Another construction of the quantum Fourier transform [12 points; 6 each]. Here we consider another, recursive, construction of $F_{2^{n}}$, the quantum Fourier transform on n qubits. This construction works if n is a power of 2 . Suppose that we have an implementation of $F_{2^{n}}$ and want to implement $F_{2^{2 n}}$. Divide the $2 n$ qubits into two registers: the first n qubits, and the last n qubits. Define the unitary P on two registers such that

$$
\begin{equation*}
P|x\rangle|y\rangle=\left(e^{2 \pi i / 2^{2 n}}\right)^{m(x, y)}|x\rangle|y\rangle \tag{1}
\end{equation*}
$$

for all $x, y \in\{0,1\}^{n}$, and where $m(x, y)$ denotes the product of x and y as n-bit integers (e.g., 1101 denotes 13 , and 0100 denotes 4 , so $m(1101,0100)=13 \times 4=52$).

(a) Show that the above circuit followed by a swap of the two n-bit registers computes $F_{2^{2 n}}$. (This swap is the unitary such that $|x\rangle|y\rangle \mapsto|y\rangle|x\rangle$ for $x, y \in\{0,1\}^{n}$.)
(b) You may assume without proof that the operation P can be implemented at the asymptotic cost of multiplying two n-bit integers, which is $O(n \log n \log \log n)$. Based on this, what is the resulting cost of computing $F_{2^{n}}$? (Hint: express the cost as a recurrence and then solve it.)
2. Generalized form of period-finding by quantum algorithms [12 points]. Let $\sigma:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a bijection (hence a permutation on the set $\{0,1\}^{n}$). Let $z \in\{0,1\}^{n}$. Then the sequence

$$
z, \sigma(z), \sigma(\sigma(z)), \sigma(\sigma(\sigma(z))), \ldots=\sigma^{(0)}(z), \sigma^{(1)}(z), \sigma^{(2)}(z), \sigma^{(3)}(z), \ldots
$$

eventually comes back to z. Consider the size of this cycle: that is, the minimum $r>0$ such that $\sigma^{(r)}(z)=z$. Suppose that we are given a black box for the mapping

$$
|x\rangle|y\rangle \mapsto|x\rangle\left|\sigma^{(x)}(y)\right\rangle,
$$

where $x, y \in\{0,1\}^{n} \equiv\left\{0,1,2, \ldots, 2^{n}-1\right\}$. Suppose that we are also promised that $r \leq 2^{n / 2}$, but that otherwise r is unknown to us, and our goal is to determine r. Let $\omega=e^{2 \pi i / r}$, and $|\phi\rangle=\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} \omega^{-s}\left|\sigma^{(s)}(z)\right\rangle$.
Show that there is a quantum circuit that, given the additional help of one copy of $|\phi\rangle$, determines r with a single query to the black box, plus an additional number of 1- and 2 -qubits gates that is polynomial in n. It suffices for the success probability $\geq 1 / 4$.
(Note: r can also be determined with a constant number of queries to the black box without being provided with any special quantum state; however, you are not asked to show this here.)
3. Classical and quantum algorithms for the AND problem [15 points; 3 each]. Recall that, for Deutsch's problem, there is a function $f:\{0,1\} \rightarrow\{0,1\}$ and the goal is to determine $f(0) \oplus f(1)$ with a single query to f. There is no classical algorithm that succeeds with probability more than $1 / 2$, whereas there is a quantum algorithm that succeeds with probability 1 . This question pertains to a variation of Deutsch's problem, which we'll call the AND problem, where the goal is to determine $f(0) \wedge f(1)$ with a single query to f. (\wedge denotes the logical AND operation.)
(a) Give a classical probabilistic algorithm that makes a single query to f and predicts $f(0) \wedge f(1)$ with probability at least $2 / 3$. (Note: the probability should be respect to the random choices of the algorithm; the input instance of f is assumed to be worst-case.)
It turns out that no classical algorithm can succeed with probability greater than $2 / 3$ (but you are not asked to show this here).
(b) Give a quantum circuit that, with a single query to f, constructs the two-qubit state

$$
\frac{1}{\sqrt{3}}\left((-1)^{f(0)}|00\rangle+(-1)^{f(1)}|01\rangle+|11\rangle\right) .
$$

(c) The quantum states of the form in part (a) are three-dimensional and have realvalued amplitudes. This makes it easy for us to visualize the geometry of these states (as vectors or lines in \mathbb{R}^{3}). Consider the four possible states that can arise from part (a), depending on which of the four possible functions f is. What is the absolute value of the inner product between each pair of those four states?
(d) Based on parts (b) and (c), give a quantum algorithm for the AND problem that makes a single query to f and: succeeds with probability 1 whenever $f(0) \wedge f(1)=1$; succeeds with probability $8 / 9$ whenever $f(0) \wedge f(1)=0$.
(e) Note that the error probability of the algorithm from part (d) is one-sided in the sense that it is always correct in the case where $f(0) \wedge f(1)=1$. Give a quantum algorithm for the AND problem that makes a single query to f and succeeds with probability $9 / 10$. (Hint: take the output of the one-sided error algorithm from part (d) and do some classical post-processing on it, in order to turn it into a two-sided error algorithm with higher success probability.)

4. Questions about unitaries with inputs in superposition [10 points; 5 each].

(a) Let U be any n-qubit unitary, $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ be orthogonal n-qubit states, and $a_{1}, a_{2} \in$ $\{0,1\}^{n}$ such that the following property holds. For each $j \in\{1,2\}$, if $U\left|\psi_{j}\right\rangle$ is measured in the computational basis then the outcome is a_{j} for sure (i.e., with probability 1). Let α_{1}, α_{2} be such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$. Does it follow that, if $U\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$ is measured in the computational basis, then the outcome is

$$
\begin{cases}a_{1} & \text { with probability }\left|\alpha_{1}\right|^{2} \\ a_{2} & \text { with probability }\left|\alpha_{2}\right|^{2} ?\end{cases}
$$

Either prove it or give a counterexample.
(b) Let U be any n-qubit unitary, $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be orthogonal n-qubit states, and $a_{1}, b_{1}, a_{2}, b_{2} \in\{0,1\}^{n}$ such that the following property holds. For each $j \in\{1,2\}$, if $U\left|\psi_{j}\right\rangle$ is measured in the computational basis then the outcome is

$$
\begin{cases}a_{j} & \text { with probability } p_{j} \\ b_{j} & \text { with probability } q_{j}\end{cases}
$$

(where $p_{k}+q_{k}=1$). Let α_{1}, α_{2} be such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$. Does it follow that if $U\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$ is measured in the computational basis then the outcome is

$$
\begin{cases}a_{1} & \text { with probability } p_{1}\left|\alpha_{1}\right|^{2} \\ b_{1} & \text { with probability } q_{1}\left|\alpha_{1}\right|^{2} \\ a_{2} & \text { with probability } p_{2}\left|\alpha_{2}\right|^{2} \\ b_{2} & \text { with probability } q_{2}\left|\alpha_{2}\right|^{2}\end{cases}
$$

Either prove it or give a counterexample.
5. More questions about unitaries with inputs in superposition [11 points]. This question is sort of a continuation of question 4, and is related to a detail that arose in the quantum algorithm for order-finding that was discussed in class. Let W denote a generalized n-qubit controlled- U gate (i.e., for all $x, y \in\{0,1\}^{n}, W|x\rangle|y\rangle=|x\rangle U^{x}|y\rangle$) and let $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ be two orthogonal eigenvectors of U. Let V be any n-qubit unitary (for order-finding, this was the inverse QFT F^{\dagger}). Also, let $|\phi\rangle$ be any n-qubit state initial state for the control-qubits of W (for order-finding, this was $\frac{1}{2^{n / 2}} \sum_{x}|x\rangle$). Suppose that the following property holds. For each $j \in\{1,2\}$, if the first register (i.e., the first n qubits) of $(V \otimes I) W|\phi\rangle\left|\psi_{j}\right\rangle$ is measured in the computational basis then the outcome is

$$
\begin{cases}a_{j} & \text { with probability } p_{j} \\ b_{j} & \text { with probability } q_{j}\end{cases}
$$

(where $p_{k}+q_{k}=1$). Prove that then, if the first register of $(V \otimes I) W|\phi\rangle\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$ is measured in the computational basis, the outcome is

$$
\begin{cases}a_{1} & \text { with probability } p_{1}\left|\alpha_{1}\right|^{2} \\ b_{1} & \text { with probability } q_{1}\left|\alpha_{1}\right|^{2} \\ a_{2} & \text { with probability } p_{2}\left|\alpha_{2}\right|^{2} \\ b_{2} & \text { with probability } q_{2}\left|\alpha_{2}\right|^{2}\end{cases}
$$

