Assignment 2

Due date: October 13, 2015

1. Entangled states and product states [9 points; 3 for each part]. For each twoqubit state below, either express it as a product of two one-qubit states or show that such a factorization is impossible (in the latter case, the qubits are entangled).
(a) $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$
(b) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(c) $\frac{1}{2}|00\rangle+i \frac{1}{2}|01\rangle+i^{2} \frac{1}{2}|10\rangle+i^{3} \frac{1}{2}|11\rangle \quad(i=\sqrt{-1})$
2. Determining the "slope" of a linear function over \mathbb{Z}_{4} [12 points; 3 each]. Let $\mathbb{Z}_{4}=\{0,1,2,3\}$, with arithmetic operations of addition and multiplication defined with respect to modulo 4 arithmetic on this set. Suppose that we are given a black-box computing a linear function $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}$, which of the form $f(x)=a x+b$, with unknown coefficients $a, b \in \mathbb{Z}_{4}$ (throughout this question, multiplication and addition mean these operations in modulo 4 arithmetic). Let our goal be to determine the coefficient a (the "slope" of the function). We will consider the number of quantum and classical queries needed to solve this problem.
Assume that what we are given is a black box for the function f that is in reversible form in the following sense. For each $x, y \in \mathbb{Z}_{4}$, the black box maps (x, y) to $(x, y+f(x))$ in the classical case; and $|x\rangle|y\rangle$ to $|x\rangle|y+f(x)\rangle$ in the quantum case (which is unitary).
Also, note that we can encode the elements of \mathbb{Z}_{4} into 2 -bit strings, using the usual representation of integers as a binary strings $(00=0,01=1,10=2,11=3)$. With this encoding, we can view f as a function on 2-bit strings $f:\{0,1\}^{2} \rightarrow\{0,1\}^{2}$. When refering to the elements of \mathbb{Z}_{4}, we use the notation $\{0,1,2,3\}$ and $\{00,01,10,11\}$ interchangeably.
(a) Prove that every classical algorithm for solving this problem must make two queries.
(b) Consider the 2-qubit unitary operation A corresponding to "add 1", such that $A|x\rangle=$ $|x+1\rangle$ for all $x \in \mathbb{Z}_{4}$. It is easy to check that

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \tag{1}\\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Let $|\psi\rangle=\frac{1}{2}\left(|00\rangle+i|01\rangle+i^{2}|10\rangle+i^{3}|11\rangle\right)$, where $i=\sqrt{-1}$. Prove that $A|\psi\rangle=-i|\psi\rangle$.
(c) Show how to create the state $\frac{1}{2}\left((-i)^{f(00)}|00\rangle+(-i)^{f(01)}|01\rangle+(-i)^{f(10)}|10\rangle+(-i)^{f(11)}|11\rangle\right)$ with a single query to U_{f}. (Hint: you may use the result in part (b) for this.)
(d) Show how to solve the problem (i.e., determine the coefficient $a \in \mathbb{Z}_{4}$) with a single quantum query to f. (Hint: you may use the result in part (c) for this.)
3. Can a function be evaluated at two points with one quantum query? [12 points; 4 each]. Here we consider the problem where we have a query oracle for a function $f:\{0,1\} \rightarrow\{0,1\}$ and the goal is to obtain information about both $f(0)$ and $f(1)$ with a single query. We assume that the query oracle is in the usual form of a unitary operator U_{f} that, for all $a, b \in\{0,1\}$, maps $|a\rangle|b\rangle$ to $|a\rangle|b \oplus f(a)\rangle$. For simplicity, we consider methods that employ only two qubits in all and are expressible by a circuit of the form

$|0\rangle$

where V and W are two-qubit unitaries and the D-shaped gates are measurements in the computational basis. Therefore, it can be assumed that the input state to the query is a two-qubit state of the form $\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.
(a) For each of the four functions of the form $f:\{0,1\} \rightarrow\{0,1\}$, give the quantum state right after the query has been performed.
(b) If there is a measurement procedure that perfectly distinguishes between the four states in part (a) then they must be mutually orthogonal. Show that, for a measurement to be able to perfectly determine the value of $f(0)$, it must be the case that $\alpha_{10}=\alpha_{11}$. (Hint: think of the orthogonality relationships that need to hold.)
(c) Show that, if the states are such that $f(0)$ can be determined perfectly from them, then $f(1)$ cannot be determined with probability better than $1 / 2$ (which is no better than random guessing). (Hint: You may use the result in part (b) for this.)
4. A qubit cannot be used to communicate a trit [15 points; 5 each]. Suppose that Alice wants to convey a trit of information (an element of $\{0,1,2\}$) to Bob and all she is allowed to do is prepare one qubit and send it to Bob. Bob is allowed to prepare $n-1$ additional qubits, each in state $|0\rangle$, and apply an n-qubit unitary U operation to the entire n qubit system followed by a measurement in the computational basis.

Bob's more complex measurement of a qubit
The outcome will be an element of $\{0,1\}^{n}$. It is conceivable that such a scheme exists where Bob can determine the trit from these n bits. We shall prove that this is impossible.
The framework is that Alice starts with a trit $j \in\{0,1,2\}$ (unknown to Bob) and, based on j, prepares a one-qubit state, $\alpha_{j}|0\rangle+\beta_{j}|1\rangle$, and sends it to Bob. In summary:

Alice's trit j	state that Alice sends to Bob
0	$\alpha_{0}\|0\rangle+\beta_{0}\|1\rangle$
1	$\alpha_{1}\|0\rangle+\beta_{1}\|1\rangle$
2	$\alpha_{2}\|0\rangle+\beta_{2}\|1\rangle$

Then Bob applies some n-qubit unitary U to $\left(\alpha_{j}|0\rangle+\beta_{j}|1\rangle\right)|00 \ldots 0\rangle$ and measures each qubit in the computational basis, obtaining some $x \in\{0,1\}^{n}$ as outcome. Finally, Bob applies some function $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ to x to obtain a trit. The scheme works if and only if, starting with any $j \in\{0,1,2\}$, the resulting x will satisfy $f(x)=j$.
(a) Note that each row of the matrix U is a 2^{n}-dimensional vector. For $j \in\{0,1,2\}$, define the space V_{j} to be the span of all rows of U that are indexed by an element of the set $f^{-1}(j) \subseteq\{0,1\}^{n}$. Prove that V_{0}, V_{1}, and V_{2} are mutually orthogonal spaces.
(b) Explain why, for a scheme to work, $\left(\alpha_{j}|0\rangle+\beta_{j}|1\rangle\right)|00 \ldots 0\rangle \in V_{j}$ must hold for all $j \in\{0,1,2\}$.
(c) Prove that it is impossible for $\left(\alpha_{j}|0\rangle+\beta_{j}|1\rangle\right)|00 \ldots 0\rangle \in V_{j}$ to hold for all $j \in\{0,1,2\}$.
5. A version of Simon's problem modulo p [12 points; 6 each]. Let p be some large n-bit prime number $\left(2^{n-1}<p<2^{n}\right)$ and assume that we are given a black box computing $f: \mathbb{Z}_{p} \times \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ that is promised to have the property: $f\left(a_{1}, a_{2}\right)=f\left(b_{1}, b_{2}\right)$ if and only if $\left(a_{1}, a_{2}\right)-\left(b_{1}, b_{2}\right) \in S$, where $S=\left\{k\left(r_{1}, r_{2}\right): k \in \mathbb{Z}_{p}\right\}$ for some unknown non-zero $\left(r_{1}, r_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ (non-zero means $\left.\left(r_{1}, r_{2}\right) \neq(0,0)\right)$. Our goal is to determine an $\left(r_{1}, r_{2}\right)$ that generates S. Note that S does not uniquely determine $\left(r_{1}, r_{2}\right)$ (for example, $\left(2 r_{1}, 2 r_{2}\right)$ also generates the same S), so any non-zero multiple of $\left(r_{1}, r_{2}\right)$ is an acceptable output.
Also, assume that we have a good implementation of F_{p}, the quantum Fourier transform modulo p, and its inverse F_{p}^{\dagger}. Technically, F_{p} can be defined in a qubit setting as an n-qubit unitary operation (where on the basis states that are out of range, namely $|a\rangle$ with $a \in\left\{p, \ldots, 2^{n}-1\right\}$, some other arbitrary unitary operation is applied).
(a) Describe and analyze a quantum algorithm that makes a single query to the (reversible) black box for f and produces an $\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ with uniform probability from the set $S^{\perp}:=\left\{\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}\right.$: such that $\left.\left(s_{1}, s_{2}\right) \cdot\left(r_{1}, r_{2}\right)=0\right\}$.
(b) Give a one-query quantum algorithm that, with success probability $1-1 / p$, produces a non-zero multiple of $\left(r_{1}, r_{2}\right)$. (Hint: you can build on the algorithm in part(a).)
6. Optional challenge question for bonus credit [12 points]. Consider the variation of Question 2, where there is a function $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ that is quadratic, of the form $f(x)=a x^{2}+b x+c\left(\right.$ all arithmetic is mod 3), for unknown coefficients $a, b, c \in \mathbb{Z}_{3}$, and the goal is to determine the value of $a \in \mathbb{Z}_{3}$ (the "leading coefficient").
The black box for f that we are given maps (x, y) to $(x, y+f(x))$ in the classical case; and $|x\rangle|y\rangle$ to $|x\rangle|y+f(x)\rangle$ in the quantum case (for each $x, y \in \mathbb{Z}_{3}$). For simplicity, assume here that the registers contain trits or qutrits.
(a) [1 point] Show that any classical algorithm solving this problem must make at least three queries to f. (Note that the algorithm only has to determine a; not b or c.)
(b) [3 points] Give a quantum algorithm that solves this problem with two queries to f.
(c) [8 points] Prove that this problem cannot be solved by a quantum algorithm that makes only one query.

