QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F15)

Assignment 2 Due date: October 13, 2015

1. Entangled states and product states [9 points; 3 for each part]. For each twoqubit state below, either express it as a product of two one-qubit states or show that such a factorization is impossible (in the latter case, the qubits are *entangled*).

(a)
$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

- (b) $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle \frac{1}{2}|11\rangle$
- (c) $\frac{1}{2}|00\rangle + i\frac{1}{2}|01\rangle + i^2\frac{1}{2}|10\rangle + i^3\frac{1}{2}|11\rangle$ $(i = \sqrt{-1})$
- 2. Determining the "slope" of a linear function over \mathbb{Z}_4 [12 points; 3 each]. Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$, with arithmetic operations of addition and multiplication defined with respect to modulo 4 arithmetic on this set. Suppose that we are given a black-box computing a linear function $f : \mathbb{Z}_4 \to \mathbb{Z}_4$, which of the form f(x) = ax + b, with unknown coefficients $a, b \in \mathbb{Z}_4$ (throughout this question, multiplication and addition mean these operations in modulo 4 arithmetic). Let our goal be to determine the coefficient a (the "slope" of the function). We will consider the number of quantum and classical queries needed to solve this problem.

Assume that what we are given is a black box for the function f that is in reversible form in the following sense. For each $x, y \in \mathbb{Z}_4$, the black box maps (x, y) to (x, y + f(x)) in the classical case; and $|x\rangle|y\rangle$ to $|x\rangle|y + f(x)\rangle$ in the quantum case (which is unitary).

Also, note that we can encode the elements of \mathbb{Z}_4 into 2-bit strings, using the usual representation of integers as a binary strings (00 = 0, 01 = 1, 10 = 2, 11 = 3). With this encoding, we can view f as a function on 2-bit strings $f : \{0, 1\}^2 \to \{0, 1\}^2$. When referring to the elements of \mathbb{Z}_4 , we use the notation $\{0, 1, 2, 3\}$ and $\{00, 01, 10, 11\}$ interchangeably.

- (a) Prove that every classical algorithm for solving this problem must make two queries.
- (b) Consider the 2-qubit unitary operation A corresponding to "add 1", such that $A|x\rangle = |x+1\rangle$ for all $x \in \mathbb{Z}_4$. It is easy to check that

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$
 (1)

Let $|\psi\rangle = \frac{1}{2}(|00\rangle + i|01\rangle + i^2|10\rangle + i^3|11\rangle)$, where $i = \sqrt{-1}$. Prove that $A|\psi\rangle = -i|\psi\rangle$.

- (c) Show how to create the state $\frac{1}{2}((-i)^{f(00)}|00\rangle + (-i)^{f(01)}|01\rangle + (-i)^{f(10)}|10\rangle + (-i)^{f(11)}|11\rangle)$ with a single query to U_f . (Hint: you may use the result in part (b) for this.)
- (d) Show how to solve the problem (i.e., determine the coefficient $a \in \mathbb{Z}_4$) with a single quantum query to f. (Hint: you may use the result in part (c) for this.)

3. Can a function be evaluated at two points with one quantum query? [12 points; 4 each]. Here we consider the problem where we have a query oracle for a function $f: \{0, 1\} \rightarrow \{0, 1\}$ and the goal is to obtain information about both f(0) and f(1) with a single query. We assume that the query oracle is in the usual form of a unitary operator U_f that, for all $a, b \in \{0, 1\}$, maps $|a\rangle|b\rangle$ to $|a\rangle|b \oplus f(a)\rangle$. For simplicity, we consider methods that employ only two qubits in all and are expressible by a circuit of the form

$$\begin{array}{c} |0\rangle \\ |0\rangle \end{array} V U_f W$$

where V and W are two-qubit unitaries and the D-shaped gates are measurements in the computational basis. Therefore, it can be assumed that the input state to the query is a two-qubit state of the form $\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$.

- (a) For each of the four functions of the form $f : \{0, 1\} \to \{0, 1\}$, give the quantum state right after the query has been performed.
- (b) If there is a measurement procedure that perfectly distinguishes between the four states in part (a) then they must be mutually orthogonal. Show that, for a measurement to be able to perfectly determine the value of f(0), it must be the case that $\alpha_{10} = \alpha_{11}$. (Hint: think of the orthogonality relationships that need to hold.)
- (c) Show that, if the states are such that f(0) can be determined perfectly from them, then f(1) cannot be determined with probability better than 1/2 (which is no better than random guessing). (Hint: You may use the result in part (b) for this.)
- 4. A qubit cannot be used to communicate a trit [15 points; 5 each]. Suppose that Alice wants to convey a trit of information (an element of $\{0, 1, 2\}$) to Bob and all she is allowed to do is prepare one qubit and send it to Bob. Bob is allowed to prepare n-1 additional qubits, each in state $|0\rangle$, and apply an *n*-qubit unitary U operation to the entire n qubit system followed by a measurement in the computational basis.

qubit from Alice $x_1 \mapsto f(x_1, \dots, x_n) \in \{0, 1, 2\}$ $|0\rangle$ x_2 \vdots U \vdots \vdots $|0\rangle$ x_n

Bob's more complex measurement of a qubit

The outcome will be an element of $\{0,1\}^n$. It is conceivable that such a scheme exists where Bob can determine the trit from these *n* bits. We shall prove that this is impossible. The framework is that Alice starts with a trit $j \in \{0,1,2\}$ (unknown to Bob) and, based

The framework is that Alice starts with a trit $j \in \{0, 1, 2\}$ (unknown to Bob) and, based on j, prepares a one-qubit state, $\alpha_j |0\rangle + \beta_j |1\rangle$, and sends it to Bob. In summary:

Alice's trit j	state that Alice sends to Bob
0	$\alpha_0 0 angle+eta_0 1 angle$
1	$\alpha_1 0 angle+eta_1 1 angle$
2	$\alpha_2 0 angle+eta_2 1 angle$

Then Bob applies some *n*-qubit unitary U to $(\alpha_j|0\rangle + \beta_j|1\rangle)|00...0\rangle$ and measures each qubit in the computational basis, obtaining some $x \in \{0, 1\}^n$ as outcome. Finally, Bob applies some function $f : \{0, 1\}^n \to \{0, 1, 2\}$ to x to obtain a trit. The scheme works if and only if, starting with any $j \in \{0, 1, 2\}$, the resulting x will satisfy f(x) = j.

- (a) Note that each row of the matrix U is a 2^n -dimensional vector. For $j \in \{0, 1, 2\}$, define the space V_j to be the span of all rows of U that are indexed by an element of the set $f^{-1}(j) \subseteq \{0, 1\}^n$. Prove that V_0, V_1 , and V_2 are mutually orthogonal spaces.
- (b) Explain why, for a scheme to work, $(\alpha_j|0\rangle + \beta_j|1\rangle)|00...0\rangle \in V_j$ must hold for all $j \in \{0, 1, 2\}$.
- (c) Prove that it is impossible for $(\alpha_j | 0 \rangle + \beta_j | 1 \rangle) | 00 \dots 0 \rangle \in V_j$ to hold for all $j \in \{0, 1, 2\}$.
- 5. A version of Simon's problem modulo p [12 points; 6 each]. Let p be some large *n*-bit prime number $(2^{n-1} and assume that we are given a black box$ $computing <math>f : \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$ that is promised to have the property: $f(a_1, a_2) = f(b_1, b_2)$ if and only if $(a_1, a_2) - (b_1, b_2) \in S$, where $S = \{k(r_1, r_2) : k \in \mathbb{Z}_p\}$ for some unknown non-zero $(r_1, r_2) \in \mathbb{Z}_p \times \mathbb{Z}_p$ (non-zero means $(r_1, r_2) \neq (0, 0)$). Our goal is to determine an (r_1, r_2) that generates S. Note that S does not uniquely determine (r_1, r_2) (for example, $(2r_1, 2r_2)$ also generates the same S), so any non-zero multiple of (r_1, r_2) is an acceptable output.

Also, assume that we have a good implementation of F_p , the quantum Fourier transform modulo p, and its inverse F_p^{\dagger} . Technically, F_p can be defined in a qubit setting as an n-qubit unitary operation (where on the basis states that are out of range, namely $|a\rangle$ with $a \in \{p, \ldots, 2^n - 1\}$, some other arbitrary unitary operation is applied).

- (a) Describe and analyze a quantum algorithm that makes a single query to the (reversible) black box for f and produces an $(s_1, s_2) \in \mathbb{Z}_p \times \mathbb{Z}_p$ with uniform probability from the set $S^{\perp} := \{(s_1, s_2) \in \mathbb{Z}_p \times \mathbb{Z}_p : \text{such that } (s_1, s_2) \cdot (r_1, r_2) = 0\}.$
- (b) Give a one-query quantum algorithm that, with success probability 1-1/p, produces a non-zero multiple of (r_1, r_2) . (Hint: you can build on the algorithm in part(a).)
- 6. Optional challenge question for bonus credit [12 points]. Consider the variation of Question 2, where there is a function $f : \mathbb{Z}_3 \to \mathbb{Z}_3$ that is quadratic, of the form $f(x) = ax^2 + bx + c$ (all arithmetic is mod 3), for unknown coefficients $a, b, c \in \mathbb{Z}_3$, and the goal is to determine the value of $a \in \mathbb{Z}_3$ (the "leading coefficient").

The black box for f that we are given maps (x, y) to (x, y+f(x)) in the classical case; and $|x\rangle|y\rangle$ to $|x\rangle|y+f(x)\rangle$ in the quantum case (for each $x, y \in \mathbb{Z}_3$). For simplicity, assume here that the registers contain trits or qutrits.

- (a) [1 point] Show that any classical algorithm solving this problem must make at least three queries to f. (Note that the algorithm *only* has to determine a; not b or c.)
- (b) [3 points] Give a quantum algorithm that solves this problem with two queries to f.
- (c) [8 points] Prove that this problem cannot be solved by a quantum algorithm that makes only one query.