
QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F15)

Assignment 2
Due date: October 13, 2015

1. Entangled states and product states [9 points; 3 for each part]. For each two-
qubit state below, either express it as a product of two one-qubit states or show that such
a factorization is impossible (in the latter case, the qubits are entangled).
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2. Determining the “slope” of a linear function over Z4 [12 points; 3 each]. Let
Z4 = {0, 1, 2, 3}, with arithmetic operations of addition and multiplication defined with
respect to modulo 4 arithmetic on this set. Suppose that we are given a black-box
computing a linear function f : Z4 → Z4, which of the form f(x) = ax+ b, with unknown
coefficients a, b ∈ Z4 (throughout this question, multiplication and addition mean these
operations in modulo 4 arithmetic). Let our goal be to determine the coefficient a (the
“slope” of the function). We will consider the number of quantum and classical queries
needed to solve this problem.

Assume that what we are given is a black box for the function f that is in reversible form
in the following sense. For each x, y ∈ Z4, the black box maps (x, y) to (x, y + f(x)) in
the classical case; and |x〉|y〉 to |x〉|y + f(x)〉 in the quantum case (which is unitary).

Also, note that we can encode the elements of Z4 into 2-bit strings, using the usual
representation of integers as a binary strings (00 = 0, 01 = 1, 10 = 2, 11 = 3). With this
encoding, we can view f as a function on 2-bit strings f : {0, 1}2 → {0, 1}2. When refering
to the elements of Z4, we use the notation {0, 1, 2, 3} and {00, 01, 10, 11} interchangeably.

(a) Prove that every classical algorithm for solving this problem must make two queries.

(b) Consider the 2-qubit unitary operation A corresponding to “add 1”, such that A|x〉 =
|x+ 1〉 for all x ∈ Z4. It is easy to check that

A =

!

""#

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

$

%%& . (1)

Let |ψ〉 = 1
2
(|00〉+ i|01〉+ i2|10〉+ i3|11〉), where i =

√
−1. Prove that A|ψ〉 = −i|ψ〉.

(c) Show how to create the state 1
2

'
(−i)f(00)|00〉+(−i)f(01)|01〉+(−i)f(10)|10〉+(−i)f(11)|11〉

(

with a single query to Uf . (Hint: you may use the result in part (b) for this.)

(d) Show how to solve the problem (i.e., determine the coefficient a ∈ Z4) with a single
quantum query to f . (Hint: you may use the result in part (c) for this.)
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3. Can a function be evaluated at two points with one quantum query? [12 points;
4 each]. Here we consider the problem where we have a query oracle for a function
f : {0, 1} → {0, 1} and the goal is to obtain information about both f(0) and f(1) with a
single query. We assume that the query oracle is in the usual form of a unitary operator
Uf that, for all a, b ∈ {0, 1}, maps |a〉|b〉 to |a〉|b ⊕ f(a)〉. For simplicity, we consider
methods that employ only two qubits in all and are expressible by a circuit of the form

|0〉
V Uf W

l

|0〉 l

where V and W are two-qubit unitaries and the D-shaped gates are measurements in the
computational basis. Therefore, it can be assumed that the input state to the query is a
two-qubit state of the form α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉.

(a) For each of the four functions of the form f : {0, 1} → {0, 1}, give the quantum state
right after the query has been performed.

(b) If there is a measurement procedure that perfectly distinguishes between the four
states in part (a) then they must be mutually orthogonal. Show that, for a measure-
ment to be able to perfectly determine the value of f(0), it must be the case that
α10 = α11. (Hint: think of the orthogonality relationships that need to hold.)

(c) Show that, if the states are such that f(0) can be determined perfectly from them,
then f(1) cannot be determined with probability better than 1/2 (which is no better
than random guessing). (Hint: You may use the result in part (b) for this.)

4. A qubit cannot be used to communicate a trit [15 points; 5 each]. Suppose
that Alice wants to convey a trit of information (an element of {0, 1, 2}) to Bob and all
she is allowed to do is prepare one qubit and send it to Bob. Bob is allowed to prepare
n − 1 additional qubits, each in state |0〉, and apply an n-qubit unitary U operation to
the entire n qubit system followed by a measurement in the computational basis.

qubit from Alice

U

l x1

|0〉 l x2

... l
...

|0〉 l xn

'→ f(x1, . . . , xn) ∈ {0, 1, 2}

Bob’s more complex measurement of a qubit

The outcome will be an element of {0, 1}n. It is conceivable that such a scheme exists
where Bob can determine the trit from these n bits. We shall prove that this is impossible.

The framework is that Alice starts with a trit j ∈ {0, 1, 2} (unknown to Bob) and, based
on j, prepares a one-qubit state, αj|0〉+ βj|1〉, and sends it to Bob. In summary:

Alice’s trit j state that Alice sends to Bob
0 α0|0〉+ β0|1〉
1 α1|0〉+ β1|1〉
2 α2|0〉+ β2|1〉
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Then Bob applies some n-qubit unitary U to (αj|0〉 + βj|1〉)|00 . . . 0〉 and measures each
qubit in the computational basis, obtaining some x ∈ {0, 1}n as outcome. Finally, Bob
applies some function f : {0, 1}n → {0, 1, 2} to x to obtain a trit. The scheme works if
and only if, starting with any j ∈ {0, 1, 2}, the resulting x will satisfy f(x) = j.

(a) Note that each row of the matrix U is a 2n-dimensional vector. For j ∈ {0, 1, 2},
define the space Vj to be the span of all rows of U that are indexed by an element of
the set f−1(j) ⊆ {0, 1}n. Prove that V0, V1, and V2 are mutually orthogonal spaces.

(b) Explain why, for a scheme to work, (αj|0〉 + βj|1〉)|00 . . . 0〉 ∈ Vj must hold for all
j ∈ {0, 1, 2}.

(c) Prove that it is impossible for (αj|0〉+βj|1〉)|00 . . . 0〉 ∈ Vj to hold for all j ∈ {0, 1, 2}.

5. A version of Simon’s problem modulo p [12 points; 6 each]. Let p be some
large n-bit prime number (2n−1 < p < 2n) and assume that we are given a black box
computing f : Zp×Zp → Zp that is promised to have the property: f(a1, a2) = f(b1, b2)
if and only if (a1, a2) − (b1, b2) ∈ S, where S = {k(r1, r2) : k ∈ Zp} for some unknown
non-zero (r1, r2) ∈ Zp×Zp (non-zero means (r1, r2) ∕= (0, 0)). Our goal is to determine an
(r1, r2) that generates S. Note that S does not uniquely determine (r1, r2) (for example,
(2r1, 2r2) also generates the same S), so any non-zero multiple of (r1, r2) is an acceptable
output.

Also, assume that we have a good implementation of Fp, the quantum Fourier transform
modulo p, and its inverse F †

p . Technically, Fp can be defined in a qubit setting as an
n-qubit unitary operation (where on the basis states that are out of range, namely |a〉
with a ∈ {p, . . . , 2n − 1}, some other arbitrary unitary operation is applied).

(a) Describe and analyze a quantum algorithm that makes a single query to the (re-
versible) black box for f and produces an (s1, s2) ∈ Zp×Zp with uniform probability
from the set S⊥ := {(s1, s2) ∈ Zp×Zp : such that (s1, s2) · (r1, r2) = 0}.

(b) Give a one-query quantum algorithm that, with success probability 1−1/p, produces
a non-zero multiple of (r1, r2). (Hint: you can build on the algorithm in part(a).)

6. Optional challenge question for bonus credit [12 points]. Consider the variation
of Question 2, where there is a function f : Z3 → Z3 that is quadratic, of the form
f(x) = ax2 + bx + c (all arithmetic is mod 3), for unknown coefficients a, b, c ∈ Z3, and
the goal is to determine the value of a ∈ Z3 (the “leading coefficient”).

The black box for f that we are given maps (x, y) to (x, y+f(x)) in the classical case; and
|x〉|y〉 to |x〉|y + f(x)〉 in the quantum case (for each x, y ∈ Z3). For simplicity, assume
here that the registers contain trits or qutrits.

(a) [1 point] Show that any classical algorithm solving this problem must make at least
three queries to f . (Note that the algorithm only has to determine a; not b or c.)

(b) [3 points] Give a quantum algorithm that solves this problem with two queries to f .

(c) [8 points] Prove that this problem cannot be solved by a quantum algorithm that
makes only one query.
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