
QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F14)

Assignment 3
Due date: October 28, 2014

Note on new grading policy: For any part of a question, if you do not know
how to answer it, you have the option of clearly writing “I DO NOT KNOW HOW
TO ANSWER THIS QUESTION” and nothing else. For this you will receive 25%
of the grade for that part (rounded up to the nearest integer). For example, if you
do this for 2(c), you will receive 1 (out of 4). This does not apply to any optional
bonus questions—you should only answer those questions if you think you have a
solution.

1. Functions that compute the parity of two unknown input bits. Consider the set
of all functions f : {0, 1}n → {0, 1} that are of the form f(x1, x2, . . . , xn) = xj1 ⊕ xj2 for
some j1, j2 ∈ {1, 2, . . . , n} with j1 ∕= j2. Suppose that we are given such a function as a
black box (without information about j1, j2) and our task is to determine the set {j1, j2}.

(a) Show that any classical algorithm must make at least Ω(log n) queries to f to solve
this problem exactly. (Hint: First, note that the data that a k-query classical
algorithm obtains is a k-bit string. Next, consider how big k needs to be so that
there are enough k-bit strings to be uniquely assigned to each {j1, j2}.)

(b) Give a quantum algorithm that solves this problem exactly with a single query to f .

(c) Optional for bonus credit: Regarding the classical query cost of this problem, we
know from part (a) that it is asymptotically at least Ω(log n). What is the classical
asymptotic query complexity? Justify your answer. (Asymptotic means we can
disregard constant multiplicative factors.)

2. Approximating unitary transformations. There are frequent situations where it is
much easier to approximate a unitary transformation than to compute it exactly. For a

vector v = (v0, . . . , vm−1), let ||v|| =
!"m−1

j=0 |vj|2, which is the usual Euclidean length

of v. For an arbitrary m×m matrix M , define its (spectral) norm ||M || as

||M || = max
|ψ〉

||M |ψ〉||,

where the maximum is taken over quantum states (i.e., vectors |ψ〉 such that |||ψ〉|| = 1).
For this question, we define the distance between two m×m unitary matrices U1 and U2

as ||U1 − U2||.

(a) Show that ||A − B|| ≤ ||A − C|| + ||C − B||, for any three m × m matrices A, B,
and C. (Thus, this distance measure satisfies the triangle inequality.)

(b) Show that ||A⊗ I|| = ||A|| for any m×m matrix A and the l× l identity matrix I.

(c) Show that ||U1AU2|| = ||A||, for any m ×m matrix A and any two m ×m unitary
matrices U1 and U2.
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3. Approximate quantum Fourier transform modulo 2n. Recall that in class we saw
how to compute the QFT modulo 2n by a quantum circuit of size O(n2). Here, we
consider how to compute an approximation of this QFT within ε by a quantum circuit of
size O(n log(n/ε)).

(a) Recall that the O(n2) size QFT quantum circuit uses gates of the form

Pk =

#

$$%

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k

&

''( ,

for values of k that range between 2 and n. Show that ||Pk − I|| ≤ 2π/2k, where I
is the 4× 4 identity matrix. (Thus, Pk gets very close to I when k increases.)

(b) The idea behind the approximate QFT circuit is to start with the O(n2) circuit and
then remove some of its Pk gates. Removing a Pk gate is equivalent to replacing it
with an I gate. Removing a Pk gate makes the circuit smaller but it also changes the
unitary transformation. From part (a) and the general properties of our measure of
distance between unitary transformations in the previous question, we can deduce
that if k is large enough then removing a Pk gate changes the unitary transformation
by only a small amount. Show how to use this approach to obtain a quantum circuit
of size O(n log(n/ε)) that computes a unitary transformation F̃2n such that

||F̃2n − F2n || ≤ ε.

(Hint: Try removing all Pk gates where k ≥ t, for some carefully chosen threshold t.
The properties of our distance measure from the previous question should be useful
for your analysis here.)

4. Period inversion. Let p and q be integers greater than 1, and pq denote their prod-
uct. Recall that the quantum Fourier transform modulo pq is the pq-dimensional unitary
operation Fpq such that

Fpq|x〉 =
1

√
pq

pq−1!

y=0

"
e2πi/pq

#xy
|y〉

for each x ∈ Zpq.

(a) Define two quantum states |ψ1〉 and |ψ2〉 as

|ψ1〉 =
1
√
q
( |0〉 + |p〉+ |2p〉+ · · ·+ |(q − 1)p〉 ) = 1

√
q

q−1)

x=0

|xp〉

and

|ψ2〉 =
1
√
p
( |0〉+ |q〉+ |2q〉+ · · ·+ |(p− 1)q〉 ) = 1

√
p

p−1)

x=0

|xq〉.

Show that Fpq|ψ1〉 = |ψ2〉.
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(b) Let s ∈ {0, 1, . . . , p− 1}, and define |ψ3〉 (a “shifted” version of |ψ1〉) as

|ψ3〉 =
1
√
q
( |s〉 + |s+ p〉+ |s+ 2p〉+ · · ·+ |s+ (q − 1)p〉 )

=
1
√
q

q−1)

x=0

|s+ xp〉.

What is Fpq|ψ3〉? Find a simple expression for this quantity. If Fpq|ψ3〉 is measured in
the computational basis, what is the probability distribution describing the outcome?

5. Basic questions about density matrices.

(a) A density matrix ρ corresponds to a pure state if and only if ρ = |ψ〉〈ψ|. Show that
ρ corresponds to a pure state if and only if Tr(ρ2) = 1.

(b) Show that, for any operator that is Hermitian, positive definite (i.e., has no negative
eigenvalues), and has trace 1, there is a probabilistic mixture of pure states whose
denisty matrix is ρ.

(c) Show that every 2 × 2 density matrix ρ can be expressed as an equally weighted
mixture of pure states. That is

ρ =
1

2
|ψ1〉〈ψ1|+

1

2
|ψ2〉〈ψ2|

for states |ψ1〉 and |ψ2〉 (note that, in general, the two states will not be orthogonal).
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